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PolSAR Image Classification Via a Multigranularity
Hybrid CNN-ViT Model With External Tokens
and Cross-Attention
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Abstract—With the development of deep learning technology,
the application of convolutional neural network (CNN) and vision
transformer (ViT) for polarimetric synthetic aperture radar (Pol-
SAR) image classification has been deepened. However, the POISAR
image has very rich information due to its special data form,
which makes it difficult for the existing single network structure
to comprehensively extract such effective information. In addition,
deep learning methods require a large amount of data for training,
whereas PolSAR labeled data is scarce and difficult to obtain.
Therefore, a multigranularity hybrid CNN-ViT model based on
external tokens and cross-attention is proposed for PolISAR image
classification. First of all, CNN is able to learn local features very
well. Thus, a CNN-based external feature extractor is designed
to extract local features from the PolSAR image. Then, ViT can
focus on global features. So, a multigranularity attention struc-
ture is constructed for extracting global information at multiple
scales. With these two modules, the model can fully access the
feature information contained in PolSAR images, which is more
advantageous than a single network structure. Next, to further
utilize these features, a cross-attention feature fusion module is
built for fusing global-local information of different granularities.
Finally, by connecting with the softmax classifier, the network
outputs the final prediction results. Experimental results on three
benchmark datasets show that the present method using a small
amount of labeled data for training also achieves the highest level
of classification among the compared methods.

Index Terms—Convolutional neural network (CNN), cross-
attention, external tokens (ETs), multigranularity, polarimetric
synthetic aperture radar (PolSAR), vision transformer (ViT).

1. INTRODUCTION

YNTHETIC aperture radar (SAR) [1] is an active mi-
crowave imaging method. It provides its own illumination
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and can therefore operate around the clock without the influence
of the sun. In addition, it utilizes microwaves to penetrate clouds
and tree canopies, soil and snow. So, it also has the ability
to deal with different weather conditions [2], [3]. Thanks to
these characteristics, SAR plays an important role in all aspects
of national production and life, such as land surveying [4],
planning [5], and utilization in urban and rural areas [6], etc. [7].
Polarimetric synthetic aperture radar (PolSAR) is a type of SAR
that can operate in different polarization combination modes.
Due to the variety of polarization combinations, it is possible to
obtain richer information data. Comparatively, the exploitation
of PolSAR allows a new level of information acquisition for
different kinds of land cover types [8]. POISAR image classi-
fication [9] is the process of classifying all pixels in an image
into a certain category according to specific rules. It is a key
fundamental research direction of PoOISAR image understanding
and interpreting technology, as well as a prerequisite work
for feature recognition and evaluation of images. However,
the special structural form of PolSAR data [10] allows it to
contain richer information. As a result, it is difficult for most
deep learning methods to fully learn the feature information of
PoISAR data [11]. At the same time, PoISAR labeled data are
scarce and relies heavily on expert knowledge as well as manual
manipulation. While, deep learning methods basically sample a
large amount of labeled data in order to perform well. Therefore,
these issues make the application of deep learning methods to
PolSAR image classification a challenging topic.

Before deep learning methods were applied to the PoISAR
image classification task, a number of different approaches
have been given. The more traditional methods are based on
polarimetric targets decomposition. The methods decompose
the obtained polarimetric data into some parameters of practical
physical significance, which facilitates the analysis of the
complex scattering processes of the targets [12], [13], [14],
[15]. In addition, the methods based on statistical distribution
are continuously provided for POISAR image classification [16],
[17], [18]. For example, in view of the problem of class distribu-
tion bias in datasets between different domains, an unsupervised
domain adaptive network based on coordinated attention and
weighted clustering was presented for achieving the alignment
of data distributions between different domains [19]. In the last
decade, the use of machine learning methods for PoOISAR image
classification tasks has become a major trend [20], [21], [22].
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Meanwhile, the link between machine learning and statistical
data distribution methods is also becoming a topic in research.
Such as Wang et al. [23] presented an improved autoencoder
for PolSAR image classification. It combines polarimetric
targets decomposition parameters selection as well as statistical
distribution of PolSAR data to improve the autoencoder network
for better classification. Furthermore, there was a work that com-
bined Wishart measures into machine learning training, which
led to the definition of novel Wishart-AE and Wishart-CAE mod-
els [24]. In recent years, accompanied by the persistent research
of deep learning methods, the combinations of traditional meth-
ods have erupted into a new research fervor, which has injected
new energy into the research of PoISAR image classification.

Benefiting from the excellent hierarchical and local feature
extraction ability of convolutional neural networks (CNNs),
many improved networks [25], [26], [27] have been designed
to mine more abstract and deeper features in PoOISAR images.
Wang et al. [28] considered that most CNN-based methods can
only classify one pixel at a time, thus ignoring the inherent
correlation between different feature types. So, a type of CNN
using a fixed feature size was constructed to classify all pixels in
a patch at once. In order to fully utilize the phase information of
PolSAR images, Li et al. [29] redefined the regular operations of
CNN in the complex domain and represented the data through
complex-valued matrices, which in turn led to the proposal
of a complex multiscale network. To achieve PoISAR image
classification using a deep learning approach on a limited labeled
dataset, Shang et al. [30] presented a spatial feature-based CNN.
By using a two-branch structure and sharing parameters, the
network is able to receive more than one sample as input. The
original dataset can be expanded by combining different samples
through such a special structure, which relieves the problem
of insufficient training data in the PolSAR image classification
task. Parikh et al. [31] pointed out that fewer studies have
explored the effect of convolutional kernel size selection on
classification modeling. Hence, a CNN based on homogeneous
kernel selection was introduced for PoISAR classification mod-
eling. The method demonstrates that classification accuracy can
be effectively improved by using a pair of CNN models with
different kernel sizes to classify image blocks with different
high and low homogeneity separately. Aiming at the problem
that buildings in PoOISAR images are easily confused with other
objects to affect the feature extraction, Li et al. [32] constructed a
method to extract buildings from PolSAR images with statistical
texture, polarization features, and hyperpixels by constructing
a feature space that is sensitive to buildings. Although CNNs
can learn abstract features in PolSAR images well, each con-
volutional kernel is limited to a fixed and small region, making
it difficult to effectively extract global correlations in PoISAR
images.

In recent years, with the wide applications of vision trans-
former (ViT) [33] in the field of vision [34], [35], [36], many
researchers have tried to introduce it into the field of remote
sensing. Liu et al. [37] designed an end-to-end network for
HR SAR classification, i.e., global-local network structure.
The structure employs a lightweight CNN and a compactly
structured ViT to learn local and global features, respectively.
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Moreover, the complementary information is mined through the
fusion network, and a better classification effect is obtained.
Liu et al. [38] established a new lightweight attention discarding
transformer in order to solve the problems of small training
samples, easy overfitting and lack of local information extraction
ability in the application of ViT for HR SAR. The model is based
on the swin transformer backbone network, which introduces
lightweight group convolution and channel shuffling block in-
stead of the self-attention mechanism to extract local features,
and consequently a new method of composite normalization
is presented. Dong et al. [39] first explored the application of
ViT for PolSAR image classification and designed a ViT-based
representation learning framework. Through dividing PolSAR
images into small patches and converting them into token vectors
that can be accepted by the encoder, the framework realizes the
extraction of global features of PoOISAR images and achieves
good classification results. Yin et al. [40] introduced ViT to
the study of the classification of multitemporal PolSAR data.
A classification model is devised that combines a dual-stream
network and a temporal—polarimetric—spatial transformer for
extracting temporal—polarization—spatial features. Moreover, a
3-D convolutional attention module is developed to weigh the
importance of different dimensions. Li et al. [41] introduced a
multifeature dual-stage cross manifold attention network, which
improves the feature extraction capability of the network by
mining the complementary information between different fea-
tures. The network presents a cross-feature network module
to acquire different feature information in PolSAR targets in
the first stage and a cross-metamorphic attention transformer to
extract nonlinear relationships between features in the second
stage. Despite the fact that ViT has been widely researched and
applied in the field of remote sensing, ViT-based PoISAR image
classification methods are still scarce compared to CNN-based
methods.

Considering the better utilization of the local feature extrac-
tion capability of CNN and the global information acquisition
capability of ViT to solve the problem of incomplete feature
extraction from PolSAR data, this article proposes a multigran-
ularity hybrid CNN-ViT model for PoISAR image classification
based on external tokens (ETs) and cross-attention. The model
requires only a very small amount of labeled data to complete
the training and obtain more effective feature information from
PolSAR data. Compared to the works that already exist, the main
contributions of this article are as follows.

1) Without changing the structure of the ViT, an ET module

is proposed to extract the local information in the Pol-
SAR image. Then, the local information is converted into
a feature vector form that can be accepted by the ViT
encoder. Such an approach provides ViT with the ability
to access local information without compromising the
global nature of ViT and is highly scalable. Furthermore, a
multigranularity attention (MGA) structure is constructed
for extracting global information at different granularities.
The use of both modules can fully extract the rich feature
information contained in PolSAR data and solve the prob-
lem that it is difficult for a single network structure to fully
learn the information of PoISAR data.
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Fig. 1.  Overall structure of the proposed model.

2) To further utilize the ET module and the MGA structure to
obtain global-local information, a cross-attention feature
fusion (CAFF) module is proposed for complementary
fusion of features extracted from different granularity
branches. It fully explores the feature extraction capabil-
ities of CNN and ViT. By fusing global and local feature
information, the characterization representation capability
of the model is further enhanced. In this way, the extraction
of complex features from PolSAR data can be accom-
plished with only a very small amount of labeled data. As
a result, the conflict between the need for large amounts
of labeled data for current deep learning methods and the
scarcity and difficulty of accessing PolSAR labeled data
is resolved.

3) To better realize the use of CNN in conjunction with ViT,
this article further discusses the effect of local feature
incorporation on the global performance of ViT. With
a special experimental design and the introduction of
the local impact index (LII) as a metric, the question of
how CNN and ViT can be effectively combined to better
extract features from PolSAR data is fully explored. The
combined use of multiple network structures will be an
interesting direction for POISAR image classification.

The rest of this article is organized as follows. Section II

describes the model structure and related principles. Section
IIT details the PolSAR datasets used for the experiments, the
experimental parameters, and the analysis of the experimental
results. Section IV provides a discussion of the different factors
that affect model performance. Finally, Section V concludes this
article.

II. PROPOSED METHODS

The classification performance of PoISAR images depends
on the extraction of learned features from the complex polarized
spatial features of PoOISAR images. Therefore, a multigranularity
hybrid CNN-ViT model based on ETs and cross-attention is
presented for PolSAR image classification. The structure of
the proposed method is composed of three parts, as shown
in Fig. 1. The first part is the ET module, which is used
to extract local features from PolSAR images. The second
part is a MGA architecture for extracting global features with

different granularity sizes. The third part is the CAFF module for
the complementary fusion of global-local features of different
granularities. After feature extraction, the classification task is
performed on each of the three granularity branches and the sum
of the predicted probabilities of the three branches is taken as the
final classification result. The algorithmic flow of the proposed
method is summarized as Algorithm 1.

Before performing PolSAR image feature extraction, some
processing on the raw PolSAR data are conducted to make it
conform to the input data structure of CNN and ViT. To begin
with, the initial form of the PoISAR datais a 9-D real vector [42]:
[Tlla TQQ, T33, RC[Tlg], Im[Tlg], RC[T13], Il’l’l[T13], Re[ng], Im
[T23]], where Re[e] and Im[e] denote the real and imaginary
parts, respectively. The initial form of the PolSAR data can
then be expressed as R9%h>xw where h and w denote the
height and width of the PolSAR image, respectively. After
that, a domain of size p x p is extracted for each pixel point
contained in the image, where the edge portion is subjected to
a complementary zero strategy to ensure the completeness of
the extracted domain. For each domain can be represented as
R9*P*P | ag a result the input data for feature extraction can be
represented as R (W) x9xpxp,

A. External Tokens

Since CNNs have strong local feature extraction capability
and have been employed as feature extractors for POISAR images
in many works [43], [44], [45], [46], a multilayer CNN is
designed for extracting local features from PolSAR images.
The CNN involves three blocks consisting of convolutional
and pooling layers. Each has a convolutional kernel size of 3.
ReLU is utilized as an activation function in each block to
enhance its nonlinear representation. To use the feature maps
extracted by the CNN directly as ETs for ViT, the number of
convolutional channels in each block of the CNN is adapted.
Assume that the three granularity branches are coarse-grained L,
medium-grained M, and fine-grained S, and the corresponding
granularity sizes g of each branch are [, m, and s, respectively.
As shown in Fig. 2, X; ;) denotes the output of each con-
volutional block, where (i, g) € {(1,s), (2,m), (3,1)} denotes
the correspondence between different levels of external feature
tokens and different granularity of branching. Then, X; 4 can
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Fig. 2. Structure of the ET module.

be obtained by the following equation:

X(i,q) = ReLU(Pooling;(Conv;(X;_1,4)))) @))
where Conv; and Pooling; denote the convolutional and pooling
layers of the ith block, respectively. When 7 is 1, X; 1 gy is
the input data X . First for the input data X € R%*P*P, certain
underlying features X(; ) with shape (c1, ns, ns) are extracted
after a convolution pooling operation in the first convolution
block. A second block of Xy ,) is then performed on X ,,) of
shape (c2, 1y, Ny, ). Finally after the third block the output shape
X(s,1y with (¢3,m,n) is obtained. The feature maps X ),
X(2,m)» and X3 ;) obtained after the feature extractor will be
provided as output. In addition, the three feature maps are de-
formed at output time for direct use as ETs. X; ;) € R *"a*"q
will be deformed from 3-D feature maps to 2-D feature vectors
€(i,g) € R™s %% To guarantee that the feature vectors have the
same length as the token vectors in the multigranularity branch,
the values of ny and ¢; need to satisfy the following conditions:
ng=15] ci=9-g-g @)
g
where n, denotes the shape of the output of the convolutional
layer corresponding to the g granularity branch, and its value is
rounded down; ¢; stands for the dimension of the convolutional
output of the ¢th layer. Ultimately, the ETs can be represented
as e, € R"*(99%),

The module can output feature maps of different sizes with
different receptive fields, and can be added to the ViT branch of
the corresponding granularity as a complement to the original
patch tokens. It effectively makes up for the lack of local feature
extraction capability of ViT, which enables it to obtain more
comprehensive and rich feature information. Furthermore, if
the input data to the feature extractor are changed to other
representations of the PoISAR image, or other data modalities, it
will give the proposed method the capability of multimodal data
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processing and feature extraction. Therefore, the ET is very flex-
ible and scalable, which greatly enhances the feature extraction
and representation learning capabilities of the proposed method.

B. Multigranularity Attention

Benefiting from the excellent global information extraction
capability of ViT, it will be applied as the backbone network to
extract the global features of PoISAR images [47], [48], [49].
The structure of the MGA module is shown in Fig. 3. In order to
extract global features with different granularities, three parallel
ViT structures with changes made at the data processing layer
are set up first. For the input data X € R?*P*P with the same
three branches, itis first divided into different granularity patches
X, € R"*(9%9%9) wheren, = (2], 9 € {l,m, s} denotes the
number of corresponding granularity patches. Subseguentl;/,
X, are flattened to 2-D and the patch tokens z, € R™s*(%9")
are obtained. At this point, splice the ETs ¢, € R *(9-9%)
into the current token vectors to get new patch tokens ex, €
R +n5)x(9:9%) Then, a class token xz € R1X(99%) s added
to each of the granularity branch token vectors for capturing
the feature representation of that branch. Finally, the token
vectors for global feature extraction can be represented as
ex € R (5 +75+1)x(99%) Be aware that for a fixed input image
size p it may not be possible to divide the patches equally. To
accommodate this situation, this article improves on the original
patch division method in ViT. A 2-D convolutional layer with
a convolutional kernel of the same size as the step size is used
in the data preprocessing layer of ViT instead of the original
sliding window approach to implement the tokenization process.
Positional coding has also been removed to make patch division
more flexible and unrestricted.

Once the token vectors with different granularity sizes are
captured, each branch extracts the global information contained
in the token vectors via multiple encoders. Each encoder can
be composed of multihead self-attention (MSA), multilayer
perceptron (MLP), and layer normalization (LN), and residual
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Fig. 4.

Structure of the CAFF module.

connections are used between each layer. Therefore, the way the
encoder works can be described by the following equations:

x), = MSA(LN(z,, 1)) + 2, 3)
x, = MLP(LN(z}))) + 2/,,n € RN )

where n denotes the nth layer encoder and z,, denotes the data
processed by the nth layer encoder. Following feature extraction
by multiple encoders, the class tokens z, of each of the three
branches contain all the features represented by the token vectors
in the branch.

Such MGA structure can obtain richer feature information,
and the information contained for different granularity can be
well extracted, which more fully utilizes the POISAR image. At
the same time, the addition of ETs also enables the structure to
obtain more local information, which together with the original
token vectors will enhance the robustness of the model and make
the model more capable of feature representation.

C. Cross-Attention Feature Fusion

The two previous works are just obtaining a global-local
feature representation of the PolISAR image at multiple gran-
ularities, but there is a lack of complementary fusion of infor-
mation among the three mutually independent branches. Thus,
the CAFF module is applied to the complementary fusion of
the features obtained from the three branches, which consists of
multihead cross-attention (MCA), LN, and residual connection.
Because of the addition of class tokens, the abstract information
contained in the patch tokens in each branch can be represented
by the class tokens of that branch. So, feature fusion can be
realized in the following way, as presented in Fig. 4.

Specifically, the class tokens of each branch act as agents for
that branch, exchanging information with the patch tokens of
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the other branches, which are then reprojected to the original
branch. Repeating this operation several times, the class tokens
in each branch contain the information of the patch tokens in the
other branches, which accomplishes the complementary fusion
of different granularity information. When the token vectors of
the three branches are fed into the CAFF module, in the case of
the L branch, for example, the class token X' is transformed by
a linear projection f,,(-) into token vectors f,, (x}) of the same
shape as the patch tokens ex,,, of the M branch. Then, f,,(z})
pass through the projection matrix W, to form the variable query
g in the self-attention, while f,,, (x}) and ez, together form the
new vector set [f,,(x}) || ex,,] and go through the projection
matrix W;, and W, into variable key k and variable value v,
respectively. After the self-attention computation, the feature
information in the M patch tokens ex,, are incorporated in
fm(2}), which are then retransformed to its original shape by
a linear projection f;(-) and spliced with the patch tokens ex;
to form new L token vectors. Afterward, in the same way, the
information contained in the patch tokens ex for the branch .S
is fused in z;. In this way, L completes feature fusion with the
other two branches, and its class token contains the information
in the patch tokens of the other two branches. Similarly, the class
tokens in M and S will complete the information exchange with
the patch tokens of the other two branches, respectively. Fol-
lowing the cross-attention computation, the feature information
of the other two branches is fused in the class tokens of all
three branches, which accomplishes the complementary fusion
between different branches. The process can be expressed in the
following equations:

wy = fg(xy) + MCA(LN([f5(xy) || exg))) Q)
zy = [fo(zy) |l exgl, g € {l,m, s} (©6)

where g denotes branch of different granularity and g signifies
other branches different from g. Since the variable ¢ in MCA
consists of only class token, it reduces a lot of computation in
the actual attention computation, which makes it more efficient.

The module is able to effectively fuse the extracted feature in-
formation from multigranularity branches in a fully complemen-
tary manner. A softmax classifier is then connected separately to
obtain the prediction results, and the sum of the prediction results
of the three branches will be taken as the final classification
result, which further improves the credibility of the prediction
results of the model.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the information about the dataset used for the
experiments is presented first and then the specific parameter
configurations of the proposed model are illustrated. In addition,
the evaluation indicators used for the experiments are described.
In the end, the arguments based on the experimental results are
analyzed.

A. Dataset

In order to better validate the effect of the proposed model,
three different POISAR standard datasets were selected, which
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Algorithm 1: Multi-Granularity Hybrid CNN-ViT Model
with External Tokens and Cross-Attention.

Input: The coherency matrix of PolISAR data and its
corresponding ground truth; parameters of the model
shown in Table II; the number of cross-validation folds;
data batch size; training epochs; learning rate; weight
decay

Output: Classification results

1:  Extract the neighborhood by the labeled PoISAR data
center pixel as the input image and form the
corresponding dataset by using the center pixel label
as the image label.

2: A specified number of randomly selected data from
the labeled datasets are originally used as the training
and validation sets, and the remaining portion as the
test set.

3: The training data are fed into the proposed ET module
to obtain three different levels of local features with
Eq. (1).

4: Divide the training data into three patch sequences
with different granularities, deform the local feature
maps obtained earlier and add them to the
corresponding granularity branches. Global
information at different levels of granularity is
obtained through the constructed multi-granularity
attention structure with Eq. (3)—(4).

5:  Three different granularities of feature information are
further complementarily fused using the proposed
cross-attention feature fusion module with Eq. (5)—(6).

6: Each granularity branch generates the corresponding
predicted category probability by the softmax
classifier separately, and the sum of the three branch
probabilities is the final result.

7: The predicted image is obtained by classifying all the
pixels with the trained model.
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Fig. 5. AIRSAR Flevoland dataset and its color code. (a) Pauli-RGB image.
(b) Ground truth map. (c) Legend of the dataset.

were acquired from different platforms. Figs. 5-7 show their
Pauli-RGB image, ground truth map, and a legend illustrating
the correspondence between each color and feature type. The
labeling information of the pixels is manually performed by
expert knowledge [50].
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Fig.6. RADARSAT-2 San Francisco dataset and its color code. (a) Pauli-RGB
image. (b) Ground truth map. (c) Legend of the dataset.
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Fig. 7. ESAR Oberpfaffenhofen dataset and its color code. (a) Pauli-RGB
image. (b) Ground truth map. (c) Legend of the dataset.

1) AIRSAR Flevoland: Fig. 5 illustrates a submap Flevoland
image of size 750 x 1024 of the L-band multiview PolSAR
dataset acquired by the AIRSAR platform. The dataset contains
15 feature categories with each category identified by a color.
The total number of pixels labeled in the ground truth map is
167 712.

2) RADARSAT-2 San Francisco: Fig. 6 is a C-band dataset of
the San Francisco area acquired by the RADARSAT-2 satellite
with a selected scene size of 1380 x 1800. The dataset includes
five feature types: High-density urban, water, vegetation, devel-
oped urban, and low-density urban. The total number of pixels
that have been labeled in the ground truth map is 1 804 087 [51].

3) ESAR Oberpfaffenhofen: Information on the L-band Pol-
SAR dataset of the Oberpfaffenhofen area with a size of
1300% 1200 acquired by the ESAR airborne platform is pre-
sented in Fig. 7. Three categories of the dataset are built-up
area, wood land, and open area. The total number of pixels with
labeling information in the ground truth map is 1 374 198.

In conclusion, a summary of the specific information of the
PoISAR datasets is presented in Table I.

B. Parameter Configuration and Training Details

The specific network configuration of the proposed method
is as follows. Since ViT receives input in the form of imagery,
the raw PolSAR data needs to be processed. For all the data
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TABLE I
SPECIFIC INFORMATION OF THE POLSAR DATASETS

Dataset Platform Band Year Resolution Size Categories
Flevoland AIRSAR L 1989 6.6x12.1m 750 x 1024 pixels 15
San Francisco RADARSAT-2 C 2008 10x5m 1800 x 1380 pixels 5
Oberpfaffenhofen ESAR L 2002  3.0x2.2m 1300 x 1200 pixels 3
TABLE I

SPECIFIC PARAMETER CONFIGURATIONS FOR THE THREE MODULES

Module Parameter configuration
Block 1 Block 2 Block 3
ET Conv.36@3x3 Conv.81@3x3 Conv.225@3 x3
Maxpool@3 x3 Maxpool@3 x3  Maxpool@3 x 3
(36,7,7) (81,5.5) (225,3,3)
S M L
s=2 m=3 1=5
MGA depth=1 depth=1 depth=1
MSA-(3 x64),36 MSA-(3 x 64),81 MSA-(3 x 64),225
FFN-108 FFN-243 FFN-675
CAFF depth=2 MSA-(3 x 64)

used in this article, a neighborhood of size 14 x 14 is extracted
centered on the pixel point, resulting in a value of 15 for the
input space size p. This value is chosen for two reasons. One
is inspired by Dong et al. [39]. To maintain consistency, this
setting has been extended. Another one is that the size of the
input space affects the amount of information in the input data
and the calculation cost of the model. On the one hand, a larger
neighborhood can contain more data information, but it will
increase the computational cost of the model. On the other hand,
a small neighborhood will reduce the computational overhead
of the model, but the amount of information it contains will also
be reduced. After the previous experimental verification, 15 is a
more appropriate choice. The specific parameter configurations
for the three modules can be viewed in Table II.

Different amounts of training data are used for each dataset in
order for the model to be adequately trained. Three datasets of
300 (2.68%), 900 (0.25%), and 1500 (0.33%) randomly selected
labeled data from each category are used for training and valida-
tion. Parentheses indicate the proportion of selected data to the
total labeled data. All remaining labeled data will be available for
testing. Selecting training data by category alleviates the sample
imbalance problem to some extent, and allows categories with
less data to be well represented by the model.

In addition, a five-fold cross-validation approach is utilized
when performing the training process. Each fold has 50 training
epochs and each batch size is 256. The Adam optimizer is also
applied to automatically adjust the learning rate with an initial
value set to 0.001. The loss function employs a cross-entropy
loss. With model testing on all test data, the one-fold model
with the highest OA among the five-fold models is selected as
the final training model and used for subsequent prediction of
results.

This article focuses on exploring the deep combination
of CNN and ViT for better feature extraction. Therefore,
CNN-based methods ResNet [52], CV-FCN [53], and CV-3D-
CNN [54], ViT-based method SViT [39] and CNN combined
with ViT methods CCT [55] and MCPT [56] are selected for
comparison experiments.

C. Objective Evaluation Indicators of Classification
Performance

The experiments use overall accuracy (OA) [57], average
accuracy (AA), and Kappa coefficient (Kappa) [58] as the eval-
uation indicators to judge the classification performance of the
model. OA is a measure of the OA performance of the model
and can visualize the performance strengths and weaknesses of
the model. The formula is as follows:

TP + TN

OA = TP EN+FP+ TN @
where TP stands for true positive, FN denotes false negative, FP
expresses false positive, and TN symbolizes true negative. AA
is the average of the prediction accuracy for each feature type
and can be applied to measure the classification performance of
the model on a specific feature type. AA is calculated by the
following formulas:

Recall;
An = =Recall — ®)
TP
Recall = —— 9
T TP EN ©)

where Recall is the ratio of the number of correctly categorized
positive samples to the number of positive samples, ¢ means the
category, and NN; signifies the number of categories. Kappa is
calculated based on the confusion matrix for consistency test-
ing, where larger values indicate higher consistency and better
model classification performance. Kappa can be calculated by
the following formula:

Po — De
1- Pe
where p, indicates the OA. With aq,as,...,a. pointing the
number of true samples in each class, by, bo, ..., b, showing
the number of predicted samples in each class, and n signifying

the total number of samples, p. can be expressed as follows:

Kappa = (10)

_a1Xb1+(12Xb2+"‘+CLCXbC

Pe =

(11)

n2
From the above-mentioned calculation formulas, the three eval-
uation indicators can well measure the performance of the
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TABLE III
OBJECTIVE EVALUATION INDICATORS OF SEVEN METHODS ON THE AIRSAR FLEVOLAND DATASET
ResNet CV-FCN CV-3-D-CNN SViT CCT MCPT Proposed
Water 0.6812 £0.2065 0.9496 +0.0049  0.9866 + 0.0036  0.9882 +0.0131 0.9822 +£0.0304 0.9110+0.0814 0.9985 + 0.0021
Forest 0.9240 £ 0.0756  0.9940 £ 0.0015  0.9990 + 0.0006 0.9787 +0.0074 0.9933 +£0.0031 0.9791 £0.0121  0.9807 + 0.0271
Lucerne  0.8362+0.1876 0.8855+0.0009 0.9868 +£0.0045 0.9905 +0.0064 0.9895 +0.0061 0.9861 +0.0032  0.9952 + 0.0042
Grass 0.7900 £ 0.2771  0.9013 £0.0036  0.9670 £ 0.0027  0.9828 +0.0171  0.9305 £ 0.0170  0.9715 £0.0049  0.9893 + 0.0122
Peas 0.9824 £0.0185 0.9934 £0.0028 0.9963 £ 0.0019  0.9787 +£0.0130  0.9973 £0.0019  0.9904 +0.0018  0.9989 + 0.0014
Barley 0.5080 + 0.4420  0.8420 £ 0.0053  0.8231 £0.0021  0.9935 +0.0108 0.9678 £ 0.0666 0.9749 +0.0165  0.9983 + 0.0014
Bare Soil  0.8615+0.1718 0.9135+0.0046 0.9936 +0.0024 0.9948 + 0.0058 0.9855 +0.0076  0.9991 + 0.0007  0.9996 + 0.0008
Beet 0.9625 £0.0389  0.9848 £0.0016  0.9728 £0.0022 0.9712+0.0110  0.9929 + 0.0028 0.9849 +0.0078 0.9898 + 0.0109
Wheat 2 0.8874+£0.0758 0.9853 £0.0028 0.9942 + 0.0015 0.9577 £0.0259 0.9827 +0.0069 0.9404 + 0.0166 0.9761 + 0.0263
Wheat 3 0.8478 £0.1554  0.9956 £ 0.0014 0.9875 +0.0019 0.9799 + 0.0048 0.9853 +0.0104 0.9926 +0.0032  0.9970 + 0.0034
Stembeans  0.9423 £0.0593  0.9857 £0.0021  0.9902 £0.0022 0.9806 +0.0220  0.9964 + 0.0029 0.9741 £0.0070  0.9989 + 0.0010
Rapeseed  0.8558 £0.1639  0.9901 £0.0009  0.9028 £ 0.0026  0.9688 £ 0.0299  0.9452 £ 0.0396 0.9521 £0.0116  0.9898 + 0.0037
Wheat 0.8832 +£0.0952  0.9994 + 0.0002 0.9823 +0.0014  0.9643 +0.0223  0.9847 £ 0.0177 0.9604 + 0.0066 0.9889 + 0.0067
Buildings  0.8588 £0.2273  0.9745+0.0027 0.9640 £0.0023 0.9801 £0.0170  0.9886 + 0.0091 0.9801 £0.0116  0.9973 + 0.0000
Potatoes  0.8069 +0.2284  0.9910 £0.0007 0.9467 £ 0.0045 0.9538 +0.0371  0.9971 £ 0.0015 0.9772 +0.0066 0.9673 + 0.0619
AA 0.8418 £0.0568  0.9590 £ 0.0023  0.9662 + 0.0002  0.9776 +£0.0042 0.9813 £ 0.0044 0.9716 £0.0047  0.9910 + 0.0040
Kappa 0.8324 £0.0659 0.9749 £0.0027  0.9635 +0.0022  0.9731 £0.0056 0.9807 £ 0.0040 0.9674 + 0.0066  0.9882 + 0.0057
OA 0.8457 £0.0610  0.9769 £ 0.0023  0.9666 + 0.0033  0.9753 +£0.0052  0.9822 +0.0037 0.9700 = 0.0060  0.9892 + 0.0052
The bold values indicate the best performance in that category or evaluation indicator.
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Fig. 8. (a) Ground truth map. (b) ResNet. (c) CV-FCN. (d) CV-3D-CNN. (e) SViT. (f) CCT. (g) MCPT. (h) Proposed method.

model in all aspects, which is instructive for the results of the
experiments.

D. Results

In this section, the results and detailed analysis of the compar-
ison experiments are displayed and described separately accord-
ing to the datasets. The analysis of the experimental results for
each dataset consists of an objective analysis of the evaluation
metrics as well as a subjective judgment of the predicted images,
which makes the results of the analysis more realistic and
credible. Since the experiment uses a five-fold cross-validation
method, the objective evaluation metrics show the mean and
the corresponding standard deviation of the five-fold cross-
validation. In the subjective judgments of the prediction result
images, the corresponding colors are used directly to illustrate

the predicted classification results to make the analysis more
intuitive and clearer.

1) Analysis of the experimental results of the AIRSAR
Flevoland dataset: The detailed results of the comparison ex-
periments are given in Table III and the predicted classification
results for all pixels are shown in Fig. 9. The overall results of
the classical network model ResNet are poor compared to other
methods, and each metric has a significant gap with other meth-
ods. Moreover, the standard deviation of three evaluation metrics
of the method is large, which indicates the poor stability of the
method. The CV-FCN and CV-3-D-CNN methods are based on
the improvement of CNN for the characteristic that POISAR data
are complex-valued, so all their evaluation indicators are more
advantageous compared with ResNet. The CV-FCN achieves the
highest classification accuracy in the comparison experiments
on the wheat category, and the CV-3-D-CNN shows the best
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Fig. 9.

classification accuracy in both categories, forest and wheat 2.
SViT is the first ViT-based method introduced for PolSAR
image classification. The method has a good performance with
high indicators and balanced classification accuracy in each
class, where the highest classification accuracy is achieved in
the barley class. In the methods based on the combination of
CNN and ViT, both CCT and MCPT have good classification
performance and perform better than most of the single methods.
It demonstrates to some extent that the combination of CNN and
ViT has a positive effect on the classification performance. The
method proposed further supports the feasibility of this idea.
The proposed method reaches the highest OA on the AIRSAR
Flevoland dataset. It not only obtains the best performance on
all three evaluation metrics, but also accomplishes the highest
classification accuracy on all ten categories. The building class
has the least labeled data, which means that the proposed method
still maintains a good performance in less sample classification.
Besides, the standard deviations of the metrics of the proposed
method are all small, which means that the model is well
stabilized and has low sensitivity to the data.

Because the AIRSAR Flevoland dataset has less labeled data,
additional images of the prediction results with only the labeled
portion are shown here and compared to the ground truth map
as shown in Fig. 8. It can better illustrate the predictive effec-
tiveness of the model on the labeled data, and fully demonstrate
the ability of the model to learn the features of the Pol[SAR
data. As can be seen from Fig. 8(b), ResNet does not predict
the labeled regions well, and there are many cases of prediction
errors. Not only the edge portions, but also within the regions
are similarly full of prediction errors. It is also consistent with
the performance of the objective evaluation indicators of the
method. Fig. 8(c) illustrates the prediction result of CV-FCN.
It can be seen that most of the regions are able to be correctly
predicted. However, there appear to be many spots of other colors
in the cyan area at the bottom of the image and the blue area in
the upper right corner. It reveals that the method is less effective
in predicting individual classes and does not fully capture the
characteristics of the data. The green part of the upper right

(a) Pauli-RGB image. (b) ResNet. (¢) CV-FCN. (d) CV-3D-CNN. (e) SVIT. (f) CCT. (g) MCPT. (h) Proposed method.

corner in Fig. 8(d) shows a more severe prediction error problem,
and other regions also have edge prediction errors that propagate
to the interior. In Fig. 8(e), it is basically the edge predictions that
are faulty. Fig. 8(f) presents the CCT works well. The predictions
are largely correct except for a few isolated areas in the middle
section. Most of the regions in Fig. 8(g) are predictable, and
only a few areas show spotty conditions. Fig. 8(h) shows the
prediction result of the proposed method. It is evident that there
are basically very few cases of prediction errors, which is close
to the ground truth map. The results indicate that the proposed
method has the best performance for the prediction of the labeled
portion and is able to learn the PoISAR image features well.

In addition to the prediction of labeled regions, POISAR image
classification places more importance on the prediction results
forunlabeled parts. Fig. 9 exhibits the full pixel prediction results
of each method for the AIRSAR Flevoland dataset and com-
pares them with the Pauli-RGB image. From the classification
prediction image Fig. 9(b), it can be seen that the boundary
of each region in the prediction image of ResNet is not clear
enough, and a lot of places are stuck together and cannot be
clearly distinguished. The CV-FCN prediction image Fig. 9(c)
illustrates the classification performance for the unlabeled region
is inadequate as there are multiple colors mixed together, leading
to difficulties in distinguishing the specific region category. It is
clear from Fig. 9(d) that the CV-3-D-CNN method has a better
classification effect. The unlabeled part can also be predicted
well. However, the blending of colors in specific areas within
the image indicates a range of categories. It is obvious from
Fig. 9(e) that although SViT method has a high level of accuracy
performance, the actual presentation of prediction image is not
satisfactory. The edges of most of its areas appear diffuse, and
the different categories intermingle with each other in the lack
of distinct boundaries. The CCT prediction image presented in
Fig. 9(f) suggests that most of the regions are well predicted
with the correct category and the purity within the region is
high. Yet, the predicted colors of the unlabeled location in the
upper left corner of its image are fused together and the original
region delineation is also lost. The prediction result map Fig. 9(g)
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TABLE IV

OBJECTIVE EVALUATION INDICATORS OF SEVEN METHODS ON THE RADARSAT-2 SAN FRANCISCO DATASET

ResNet CV-FCN CV-3-D-CNN SViT CCT MCPT Proposed
Water 0.7784 £ 0.4539  0.9921 £0.0009  0.9938 £ 0.0029  0.9985 + 0.0019  0.9997 + 0.0003  0.9766 + 0.0471  0.9969 + 0.0060
Vegetation 0.9363 £ 0.0321  0.9522 £ 0.0067 0.9554 + 0.0019 0.9223 £ 0.0378  0.8991 £ 0.0065 0.9064 +0.0182 0.9211 + 0.0571
High-density urban ~ 0.8765 +0.1152  0.9311 +0.0056  0.9495 + 0.0008  0.9629 + 0.0102  0.9611 +0.0051  0.9583 + 0.0089  0.9665 + 0.0123
Developed 0.9422 £ 0.0381  0.9672 £ 0.0046  0.9345 +0.0017 0.9628 £ 0.0177  0.9626 + 0.0024  0.9238 £ 0.0172  0.9635 + 0.0142
Low-density urban ~ 0.9416 + 0.0647  0.8955 +0.0059  0.9224 +0.0017 0.9310 £0.0131  0.9449 £ 0.0065 0.9428 +0.0122  0.9371 + 0.0571
AA 0.8950 £ 0.0879  0.9476 £ 0.0036  0.9511 +0.0008 0.9555 + 0.0058  0.9535 £ 0.0015 0.9416 £ 0.0109  0.9570 + 0.0087
Kappa 0.8180 £ 0.2362  0.9537 £ 0.0017  0.9532 £ 0.0015  0.9542 + 0.0075 0.9541 £ 0.0017 0.9366 + 0.0308  0.9555 + 0.0125
OA 0.8536 £ 0.2078  0.9542 £ 0.0041  0.9629 + 0.0023  0.9682 + 0.0052  0.9681 +0.0012  0.9556 + 0.0223  0.9690 + 0.0087

The bold values indicate the best performance in that category or evaluation indicator.

of MCPT seems to be more neatly divided into regions as a
whole, but the boundaries of each region are blurred and can be
encroached by other colors. It is also less pristine within most
regions and more forecasting errors occur. While the prediction
result map Fig. 9(h) of the proposed method is able to distinguish
each region well, the boundaries are also clearer, and the internal
purity of most of the regions is also higher. It is evident from the
prediction images that the CNN-based method is more accurate
for localized prediction, i.e., each region has a higher degree
of internal purity. But, these methods are not clear enough for
the overall area delineation, which is manifested in the lack
of clear boundaries. Whereas the ViT-based approach has a
better grasp of the overall structure, it is slightly less specific
to each part. The combined methods demonstrate the strengths
of both approaches to various degrees. However, there is a lack of
balance between CNN and ViT, which can lead to differences in
emphasis. The CCT approach is more localized, while MCPT is
more concerned with the global picture. The proposed method
in this article better balances the advantages of the two. And
local information is preserved as well as having a good overall
view.

2) Analysis of the experimental results of the RADARSAT-2
San Francisco dataset: As can be seen in Table IV, there is
still a large gap between the performance of ResNet on this
dataset compared to other methods. And the standard deviation
of its indicators is poor, which again points to the instability
of the model. CV-FCN and CV-3-D-CNN perform moderately
well on this dataset, although CV-3-D-CNN performs best in
classifying the vegetation class. SViT and CCT have a dominant
performance on this dataset and both have high OA. Yet the CCT
model is more stable as can be seen from the standard deviation.
MCPT performs poorly on this dataset, which is below average
and has a large standard deviation. It suggests that this dataset
is a challenge to its feature learning capability. The proposed
method still retains its advantages. Not only does it achieve
the highest classification accuracy in all four categories, but it
also reaches the highest level among the compared methods in
all three evaluation metrics. The results again illustrate that the
proposed method possesses strong feature extraction capability.
Regardless of the size of the PoISAR image, the model is able
to learn the feature information contained in it very well.

Since there are fewer unlabeled areas in the RADARSAT-2
San Francisco dataset, the prediction results for the labeled
portion are not shown separately. As seen from the prediction

image Fig. 10(b), ResNet has more classification errors in
the vegetation class, i.e., many other colors appear in green.
Fig. 10(c) shows a figure of the prediction results of CV-FCN.
The red color appears more at the left edge of the land, which
is largely absent from the other prediction images. Moreover,
it misses some of the green lines in the yellow area that are
present in all the other images. The blue areas in the land appear
in Fig. 10(d) that are not present in the other images. The result
is more consistent with what is shown in the Pauli-RGB image.
CV-3D-CNN shows a better prediction ability that other methods
do not have, and with less clutter in the blue and yellow regions.
However, it appears more yellow inside the red region, indicating
some problems with the prediction of the high-density urban
class. The top portion of yellow in Fig. 10(e) is encroached
upon by blue and cannot be connected to the formation. It is
because SViT only focuses on global information resulting in
the loss of local information. The prediction image Fig. 10(f) of
CCT compensates for the problem of localized information loss
to some extent. But, it is too aggressive in its prediction of the
low-density urban class, even though purple parts appear inside
the red regions. For the MCPT prediction image Fig. 10(g), there
is nothing wrong with the overall structure. Yet, each color area
displays a lot of stray portions of other colors, especially the red
portions small and numerous in the yellow areas. The prediction
image Fig. 10(h) of the proposed method is purer within each
color region. There are some other stray colors as well, but
they are already less present compared to the other images.
For the overall structure as well as local details can be better
shown.

3) Analysis of the experimental results of the ESAR Oberp-
faffenhofen dataset: Table V shows that ResNet has the worst
feature learning ability for this dataset. In particular, the method
has poor classification performance for the open area category
and is very unstable. Both CV-FCN and CV-3-D-CNN perform
better on this dataset. CV-3-D-CNN even achieves the highest
classification accuracy in the wood land category. It indicates
that the use of complex values does have a very positive effect on
PolSAR image classification. Of the three ViT-based methods,
only CCT achieves an overall average classification accuracy
of more than 90%. The other two methods performed poorly
and only moderately well. The presentation of the proposed
methodology continues to be superior. The best classification
results are obtained on both categories and the three evaluation
metrics are also the highest among the compared methods.
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Fig. 10.

(a) Pauli-RGB image. (b) ResNet. (c) CV-FCN. (d) CV-3D-CNN. (e) SViT. (f) CCT. (g) MCPT. (h) Proposed method.

TABLE V
OBJECTIVE EVALUATION INDICATORS OF SEVEN METHODS ON THE ESAR OBERPFAFFENHOFEN DATASET

ResNet CV-FCN CV-3-D-CNN SViT CCT MCPT Proposed
Built-up area  0.9284 +0.0621  0.9722 £0.0004  0.9104 + 0.0020  0.9289 +0.0459 0.9276 £ 0.0195  0.9206 + 0.0294  0.9316 * 0.0561
Wood land ~ 0.8205 +0.2513  0.7810£0.0016  0.9333 £ 0.0010 0.7524 +0.0732  0.7938 £ 0.0384  0.6679 £ 0.0649  0.7990 + 0.0728
Openarea  0.5205 +0.3509 0.9256 £0.0030  0.9263 +0.0015 0.9444 +£0.0202 0.9438 £0.0215  0.9649 + 0.0089  0.9667 + 0.0189
AA 0.7565 £0.1051  0.8929 £ 0.0009  0.9233 +0.0006 0.8752+0.0115 0.8884 +0.0117 0.8512+0.0124 0.8991 * 0.0053
Kappa 0.5306 £0.2116  0.8243 +£0.0026  0.8601 +0.0110  0.8205 £ 0.0203  0.8365+0.0112  0.7986 + 0.0144  0.8605 + 0.0065
OA 0.6742 £0.1756  0.9009 £ 0.0008  0.9142 +0.0020  0.8939 £0.0127 0.9035 £ 0.0068  0.8829 +0.0079  0.9184 + 0.0042

The bold values indicate the best performance in that category or evaluation indicator.

Although the proposed method performs slightly worse in the
wood land category, its overall performance remains high, which
demonstrates the excellent performance of the proposed method.

The prediction image Fig. 11(b) of ResNet can clearly see
a lot of green parts in the red region, which confirms the poor
classification performance of the method on the Wood Land
class. But it still has some value with fewer stray colors within
the green and yellow areas. Fig. 11(c) illustrates that CV-FCN
is accurate in predicting the red region, and only this method
predicts the red region in the lower half of the image more
completely. Overall, each area seems more complete, and there
are fewer large areas of other colors in the interior. CV-3D-CNN
predicts each region more accurately, and the green part in the
red region in Fig. 11(d) is small and few. The prediction image
Fig. 11(e) of SVIT is not much different from Fig. 11(d) and
both appear red at the edges of the green part. Whereas the CCT
improved this phenomenon in its predicted image, as shown in

Fig. 11(f). However, its yellow area appears with red blotches.
The yellow area in Fig. 11(g) of MCPT displays the same red
spots as Fig. 11(f) and it shows more green parts in the red area
with more stray colors inside the area. The prediction image
Fig. 11(h) of the proposed method is purer in each region and
less of other color patches appear. Besides, the overall structure
is clear and presents a good categorization of both labeled and
unlabeled sections.

In summary, the results of the experiments on the three
datasets are mutually corroborated in two ways through ob-
jective analysis and subjective judgments of the experimental
results. It is finally evidenced that the proposed method in this
article has higher classification accuracy and better performance
on all three datasets. By comparing with ResNet, CV-FCN,
CV-3-D-CNN, and SViT which are based on a single method,
the proposed method based on the combination of the two is
effective and superior. Therefore, it can better extract the rich
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Fig. 11.

(a) Pauli-RGB image. (b) ResNet. (c) CV-FCN. (d) CV-3-D-CNN. (e) SVIiT. (f) CCT. (g) MCPT. (h) Proposed method.

TABLE VI
EXPERIMENTAL RESULTS OF ABLATION STUDY ON THREE DATASETS

. OA
Experiment Flevoland  San Francisco  Oberpfaffenhofen
(HVIT 97.80 96.37 91.46
(2)VIT+ET 99.04 97.12 92.11
(3)ViT+DGA_CAFF 98.10 96.76 91.58
(4)ViT+ET+DGA_CAFF 99.36 97.63 93.04

The bold values indicate the best performance in that category or evaluation indicator.

information contained in PoISAR data, and has a stronger feature
representation learning capability. Further compared to CCT and
MCPT, which are methods based on the combination of CNN
and ViT, the proposed method better balances the characteristics
so that it can better utilize the advantages of them.

IV. DISCUSSION

In this section, several factors that affect the performance of
the model are discussed with the following three main compo-
nents, namely ablation experiments, amount of training data,
and granularity selection. The impact of these factors on model
performance is explored through specific experimental designs
and results, which will provide a more comprehensive and
rigorous assessment of the proposed method.

A. Ablation Study

To better validate the effectiveness of the proposed method,
ablation experiments are performed on the three datasets. It is
worth noting that MGA and CAFF have to be used together.

Therefore, when conducting ablation experiments, MGA_CAFF
indicates both modules are activated at the same time. Mean-
while, in order to make the experimental results more intuitive,
only OA of the three evaluation indicators is used in the ablation
experiments for the evaluation of the classification performance.
Table VI shows the results of the ablation experiments and each
experiment is numbered in the table in order to facilitate the
analysis of the results.

Experiment (1) in Table VIindicates that only the original ViT
is used for the experiment, and it can be seen that the original ViT
already has a relatively good classification accuracy. Experiment
(2) adds the ET module to ViT. It is observed that the addition
of the ET module is more helpful in improving the classification
performance of the model. The OAs on the three datasets are
improved by 1.24%, 0.75%, and 0.65%, respectively. The results
of this experiment explain that the ET module can well extract
the local features of the data to improve the final classification
performance of ViT. Experiment (3) is the introduction of the
proposed DGA_CAFF module based on ViT. The introduction
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Fig. 12.  Experimental plot about the impact of training data amounts.

of this module can also provide an improvement in the model
classification accuracy. Although the boost over the ET module
is not as great, there is a degree of advantage over the ViT. Exper-
iment (4) is the proposed method. A significant improvement in
the overall classification performance of the model can be seen
when the proposed three modules are used together. Compared
to the original ViT, the OAs of the three datasets are improved
by 1.56%, 1.26%, and 1.58%, respectively.

To summarize, each of the modules proposed in this article
provides some performance improvement to the original ViT. In
addition, the proposed method better combines the advantages
of CNN and ViT, which makes the classification performance on
all three datasets more advantageous. The results of the ablation
experiments further demonstrate the feasibility as well as the
superiority of the proposed method to better accomplish the
PolSAR image classification task.

B. Impact of Training Data Amount

Itis well known that the training effectiveness of deep learning
models is limited by the amount of training data [59]. For the
original ViT, a large amount of labeled data is required if it is
to be adequately trained [60]. But labeling the PoISAR dataset
pixel by pixel depends heavily on expert knowledge and is very
time consuming. In most cases, labeling information can be
acquired for only a few pixels in the PoISAR image. Therefore,
an experiment is designed to train the model using different
amounts of data and the model is evaluated on two aspects, OA
and training time. The effect of the amount of training data on
the proposed method is explored through this experiment.

In specific experiments, the model is trained on the AIRSAR
Flevoland dataset using five different data volumes, 100 per
category (0.89%), 200 per category (1.7%), 300 per category
(2.68%), 500 per category (5.3%), and 1000 per category (8.9%),
respectively. The parentheses are the proportion of training data
volume to all labeled data, and the experimental results for
different training data volumes are shown in Fig. 12. Asitis seen,
although the OA of the model tends to increase as the amount of
training data increases, at the same time the training time of the
model is also rising. When the amount of training data goes from
100 to 300 per class, the OA improves significantly, although
simultaneously the training time also grows dramatically. Such
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local features.

results are intuitive. However, when the amount of training data
is added from 300 to 1000 per class, the OA curve does not
improve much. Instead, the training time increases sharply. It
indicates that increasing the amount of data has a large effect on
the OA of the model when the amount of training data is less
than 300 per class, but this effect becomes small when it is more
than 300 per class. As a result, the proposed model requires
only 300 labeled data per class for training on the AIRSAR
Flevoland dataset, which is more practical for the POISAR image
classification task with less labeled data.

C. Influence of Granularities Selection and Local Features

This article presents a multigranularity approach that incor-
porates local features. Therefore, the choice of combinations for
different granularities is very much in need of discussion. Not
all granularity combinations lead to better feature information.
Several different granularity combinations are validated on the
AIRSAR Flevoland dataset to investigate the effect of different
granularity combinations and local features on the performance
of the proposed model.

The granularity combinations used for the experiments are (3,
5,7),2,5,7),(2,3,7), and (2, 3, 5). Again, OA is used as an
evaluation metric for the model. Meanwhile, according to the
design of the model, the granularity size is also closely related
to the depth of the feature map output by the ET module. The
greater the granularity, the deeper the feature map is needed
and the more abstract the features included in it. To better
analyze the impact of the incorporation of local features on the
final classification performance of CNN combined with ViT, the
concept of LII is introduced into the experiments. The value of
LII is the sum of the three granularity sizes. Due to the nature
of the proposed ET module, when the value of LII is larger, it
indicates that the ETs used come from a deeper extraction of
features from the module and contain more local information.
This affects the global nature of the subsequent ViT and leads
to an influence on the model performance. In particular, the LII
value is 0 when the ET module is not used. From the results of the
first four experiments in Fig. 13, it is clear that as LII decreases,
OA is gradually increasing, which is negatively correlated with
each other. However, it does not mean that the inclusion of
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Fig. 14.  Model generalization performance study result. (a) Pauli-RGB image
of AIRSAR San Francisco dataset. (b) Prediction result image of AIRSAR
San Francisco dataset using the model trained on RADARSAT-2 San Francisco
dataset. (c) Legend of RADARSAT-2 San Francisco dataset.

localized features results in lower OA. (2, 3, 5)* denotes the
result of the experiment using the granularity (2, 3, 5) but with the
ET module removed, i.e., the result of the ablation Experiment
(3). It has an LII value of 0, however, the OA gets lower and is
lower than the results of all the experiments containing localized
features.

The experimental results prove that the incorporation of local
features is beneficial to enhancing the feature representation
and classification performance of ViT. On the contrary, adding
too many localized features will also degrade the classification
performance of ViT. A balance between local and global features
is needed. Of course, this choice is not fixed, it also depends on
the input image size. When the input image is larger, the size
of the output feature map of the convolution layer will have
more choices. It means that there will be more combinations of
granularity, but it will also increase the computational overhead
of the model. When the input image is much smaller, no more
convolutional computations can be performed and the size of the
feature map output from the convolutional layer is limited. As a
result, the combination of granularities that can be selected will
also be limited, but this will relatively reduce the computational
cost of the model. Based on the above-mentioned considerations
and experimental validation, the granularity combination of this
balance point in this article is (2, 3, 5).

D. Model Generalization Performance Study

Although three different datasets have been used to validate
the performance of the proposed method in previous comparison
experiments, an additional AIRSAR San Francisco dataset is
used for the generalization performance study to further illus-
trate the generalization ability of the model. The Pauli-RGB
image of the dataset is shown in Fig. 14(a). It was acquired
by the AIRSAR platform in 1989 with a spatial resolution of
10 m and an original image size of 900 x 1024. The dataset
contains five land cover types including mountain, water, urban,
vegetation, and bare soil.

In this experiment, a model trained on the RADARSAT-2
San Francisco dataset is utilized to make predictions directly
on the AIRSAR San Francisco dataset. The predicted result is
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TABLE VII
FLOPS AND PARAMS FOR SEVEN METHODS

FLOPs Params
ResNet 61.523M  853.427K
CV-FCN 2.273K 966.165K
CV-3D-CNN  126.093M 1.869M
SViT 45.503M 101.379K
CCT 14.880M  257.341K
MCPT 74914M  4.101M
Proposed 237.832M  6.178M

presented in Fig. 14(b), where the different colors represent the
land cover types given in Fig. 14(c). For the classes water and
vegetation, which are common to both datasets, the model is
able to make good predictions. The blue portion of Fig. 14(b)
is largely predicted correctly and the green portion is mostly
predicted. However, it is difficult to correctly predict land cover
types that have not been learned by the model, such as mountain
and bare soil. But as can be seen by the Pauli-RGB image
comparison, most of the bare soil is predicted to be yellow, i.e.,
the low-density urban category. It suggests a large similarity
between the two land cover types. For categories that the model
has not learned, it predicts the most similar land cover types,
which is understandable and intuitive. The prediction results
for the Urban category reveal that although the AIRSAR San
Francisco dataset does not further differentiate this category, the
model still breaks it down according to existing knowledge.
The experimental result indicates that the proposed method
has good generalization performance. For different datasets and
land cover types, the model is first able to predict well for the
same categories. Second, the model for completely different
feature classes is also able to predict them as the class with the
most similar characteristics. Finally, for categories with more
meaning, the model is capable of subdividing the category area
based on existing knowledge as well. It further illustrates the
superior performance of the proposed method with a strong
feature learning representation and strong generalization.

E. Research on Model Computation Cost

Due to the fact that both the proposed method and the com-
parison methods used are based on deep learning, it is necessary
to discuss the computational costs of them. To measure the com-
putational effort of these methods, the number of floating point
operations (FLOPs) and the number of parameters (Params)
are chosen as metrics. FLOPs represents the computational
complexity of the model, while Params refers to the number
of model parameters.

The FLOPs and Params for each method are given in Ta-
ble VII. As can be seen from Table VII, the computation and
number of parameters of the proposed model are the largest. It
isrelated to the structural complexity of the proposed model. The
aim of this article is to solve the problem that a single network
structure cannot fully extract the rich feature information con-
tained in PolISAR data, and that a large amount of labeled data
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is required for the training of existing deep learning methods.
So, the proposed method employs a network structure that uses
a fusion of CNN and ViT. Inevitably, it makes the model more
complex and increases the computational and parametric quanti-
ties of the model, but it can solve the above-mentioned problems
well. In comparison with other models with less computational
and parametric quantities, the proposed model is better able to
extract more comprehensive information about the PoOISAR data
and requires only a small amount of labeled data to complete the
training.

V. CONCLUSION

In order to solve the problem that the existing single network
makes it difficult to extract the complex and rich information
contained in PolSAR data, and that deep learning methods
require a large amount of PolSAR labeled data, this article
explores more deeply how CNN and ViT can be effectively fused
to extract POISAR image features. Therefore, a multigranularity
hybrid CNN-ViT model based on ETs and cross-attention is
proposed for PolSAR image classification. The ET module
can effectively extract the local information of the PolSAR
image and add them as ETs to the original patch tokens in the
ViT branch, which is useful to make up for the lack of local
information neglected by ViT. The application of MGA further
improves the richness and confidence of the extracted features of
the model. In addition, through the CAFF module, the features
of the two branches can be better complementarily fused to
more effectively represent the feature information contained
in the PolSAR image. Experimental results demonstrate the
effectiveness of the proposed method. Not only can the rich
feature information contained in PoISAR data be well extracted,
but also the labeled data required for training is very little,
and the complementary fusion between CNN and ViT is well
accomplished to achieve the classification of PoISAR images.
However, the proposed method still has some shortcomings.
There is only a consideration of the feature extraction process
of the PoISAR data, and a more in-depth study of the data dis-
tribution is lacking. In addition, the proposed model is complex
and lacks consideration of computational costs. In subsequent
work, the research focus will be on the study of PolSAR data
distribution and the optimization of the computational cost of the
model to better explore the implementation of PolSAR image
classification.
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