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Abstract—The recent decades have seen an increasing academic
interest in leveraging machine learning approaches to nowcast, or
forecast in a highly short-term manner, precipitation at a high res-
olution, given the limitations of the traditional numerical weather
prediction models on this task. To capture the spatiotemporal
associations of data on input variables, a deep learning (DL) archi-
tecture with the combination of a convolutional neural network and
a recurrent neural network can be an ideal design for nowcasting
rainfall. In this study, a long short-term memory (LSTM) modeling
structure is proposed with convolutional operations on input vari-
ables. To resolve the issue of underestimation of heavy rainfall that
challenges most of the DL models, a pixelwise modeling approach
is adopted to facilitate a stratified sampling process in generating
training data points for calibrating models to predict rain rates at
locations. The proposed pixelwise convolutional LSTM (CLSTM)
models are applied to data on mesoscale convective systems during
the warm seasons over the Korean Peninsula. Results show a
significant and consistent improvement in prediction skill scores
produced by the CLSTM models than a traditional rainfall now-
casting method, the McGill algorithm for precipitation nowcasting
by Lagrangian extrapolation, across all considered lead times from
10 to 60 min. Future work needs to reduce the relatively large false
positive rates produced by the CLSTM models and their blurring
effect in mapping spatial distributions of rain rates, in particular
for longer lead times.

Index Terms—Artificial neural network, convolutional neural
network, deep learning (DL), dual-polarimetric weather radar,
early warning, hydrometeorological hazard, long short-term
memory (LSTM) network, mesoscale convective system, rainfall
nowcasting, recurrent neural network (RNN), remote sensing,
storm.
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I. INTRODUCTION

IGHLY short-term forecasting of up to a few hours, or
H nowecasting, of precipitation is essential for managing haz-
ardous emergencies, such as flash floods, under sudden extreme
meteorological conditions [1]. To provide accurate and precise
short-term projections of heavy rainfall at a high spatiotemporal
resolution, however, the numerical weather prediction (NWP)
models that are widely used for daily weather forecasting usually
lack reliability, mainly, due to the uncertainties in the derivation
of the initial and boundary conditions, the exceptionally long
spin-up time, and the sophisticated process of physical parame-
terization [1], [2], [3], [4].

To improve the performance of rainfall nowcasting, tradi-
tionally, a number of tracking and computational methods have
been proposed and applied based on algorithms and predefined
rules to fuse meteorological data from multiple remotely sens-
ing and ground-based sources and extrapolate radar echoes to
locate and estimate precipitations [5], [6], [7], [8], [9]. These
methods include, for example, the Storm Cell Identification and
Tracking system [5], the Thunderstorm Identification, Tracking
and Nowcasting system [6], the Tracking Reflectivity Echoes
by Correlation system [7], [8], and the Auto-Nowcast system
[9]. Among these traditional rainfall nowcasting methods, the
McGill algorithm for precipitation nowcasting by Lagrangian
extrapolation (MAPLE) is one of the most recently developed al-
gorithms to use a variety of meteorological equations to estimate
the locations and amounts of future precipitations with prior
radar observations of storm motion [10], [11], [12], [13], [14].
Based on the variational echo tracking technique, the MAPLE
is capable of producing rainfall estimates at a high spatiotem-
poral resolution [15]. It has shown relatively high predictive
skill when being applied for precipitation nowcasting, partic-
ularly, in regions with complex terrains, such as the European
Alpine region [16] and the Korean Peninsula [17], [18]. Albeit
with improved predictive performance compared to the NWP
models, the traditional nowcasting methods, such as MAPLE,
are still considered to be limited largely because their physi-
cal assumptions only partially represent the true atmospheric
states [19].

Unlike the traditional methods, machine learning can be lever-
aged to predict rainfall with information extracted directly from
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observational data without relying on physical assumptions.
In particular, deep learning (DL) that is based on an artificial
neural network (ANN) architecture has been gaining increasing
popularity during recent decades for nowcasting rainfall [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32]. An ANN model of the generic form of the multilayer
perceptron (MLP) can be trained with observational input and
output data to efficiently predict rainfall of storms at specific
moments [1], [20]. To capture the spatial associations of input
and output data across the model area for locational nowcasting,
convolutional computations can be conducted in addition to the
matrix multiplications within an MLP-ANN. The convolution-
based ANNSs, exemplified by the conventional convolutional
neural network [19], [21], [22], [23], the generative adversarial
network [24], [25], and the U-net [26], [27], [28], [29], have
shown good predictive performance in rainfall nowcasting. To
better generalize the temporal patterns of sequential training
data, modelers have also proposed to leverage a recurrent neu-
ral network (RNN) design, with memory cells and feedback
connections, to augment the feedforward convolution-based
ANN models [30], [31], [32]. In particular, the long short-term
memory (LSTM) architecture is capable of retaining long-term
temporal dependencies in the data without causing the vanishing
gradient problem that is commonly associated with training
RNNs [33]. Despite the unbiased good predictive performance
in general, DL models, especially the convolution-based ones
producing an entire image as the output, tend to significantly
underestimate heavy rainfall values, while the ability to accu-
rately identify and quantify heavy rainfall is essential to the
provision of reliable early warnings against extreme pluvial
conditions.

In this study, a set of convolutional LSTM (CLSTM) regres-
sion DL models was proposed with remotely sensed data to
nowcast rain rates of 10-min intervals of mesoscale convective
storms (MCSs) for specific locations in a pixelwise fashion. For
capturing the spatial associations of input variables, a convolu-
tional method was used in addition to the conventional LSTM
modeling. The pixelwise modeling approach was adopted to
resolve the issue of underestimation of heavy rainfall. Rainfall
images were used as the ground truth output data for training
and testing models. The CLSTM models were trained with data
for the Korean Peninsula to provide predictions of rain rates
with lead times of 10, 20, 30, 40, 50, and 60 min. The predictive
performances of the proposed models were compared with the
ones produced by the traditional rainfall nowcasting algorithm
MAPLE.

The rest of this article is organized as follows. Section II
introduces the collection and processing of data for the study. In
Section III, the architecture of the proposed CLSTM models and
the methodology for model training and testing are presented.
In Section IV, the results of the study are laid out. Section V
presents discussions regarding the comparisons of the predictive
performances of the proposed models and the MAPLE. Finally,
Section VI concludes this article and summarizes the signifi-
cance and limitations of the study and points out the directions
for future work.
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II. DATA

The MCSs were classified into three types: convective cells
(CCs), mesoscale convective complexes, and squall lines. This
classification was based on meteorological and remotely sensed
image data collected across the Korean Peninsula during the
warm seasons from June 2018 to August 2021 [1].

All the data used for training were obtained from a dual-
polarimetric Doppler radar. This included horizontal reflectivity
(Zn), differential reflectivity (Zpr), and specific differential
phase (Kpp). Rainfall intensity (Ry) data, corrected from ground
rain gauge readings and converted to precipitation using a Z—R
relationship with Z = Zj, were also used as an input—output
variable. Zy, obtainable from single-polarized radar, is mainly
used for precipitation estimation using a Z—R relationship. Zpr,
the logarithm of the ratio of Zy to vertical reflectivity (Zy), varies
depending on the shape of the precipitation particle and is pri-
marily used for precipitation-type classification (e.g., rain, driz-
zle, graupel, and hail). Kpp represents the difference in specific
differential phase for horizontally and vertically polarized radar
pulses in a given area. Precipitation estimation using Kpp, often
combined with Zy, offers several advantages over the sole use
of a Z-R relationship for more accurate precipitation estimation.
Data on these radar variables were provided in the form of plan-
position indicators (PPIs) with quality control for each radar site,
accessible through the application programming interface hub
website operated by the Korea Meteorological Administration.!

To composite the PPI images from various radars, a hybrid
surface rainfall radar composite algorithm [34] was employed.
The training data were generated over a 2-D area extending 1200
km from north to south and 960 km from west to east.

The original data had a spatial and temporal resolutions of
1 km and 10 min, respectively. The composite Ry images were
used as the output data and one of the major input variables.
In the study, the rainfall intensity (Ry) in mm/h is derived by
correcting the original readings using ground rain gauges. This
correction is applied using the following equation:

R1=Rj original X 2.08 4 0.48 (1)

where the original Ry (R1 original) s computed from Zy using
the Z-R relationshop: Z= 200R 1.6 135].

The output of a CLSTM model was the aggregated rain rate
(ARR) of a coarse pixel derived from a corresponding RI image.
The ARR was computed based on all 10-min rain rate values of
the original data pixels with a spatial resolution of 1 km within
the scope of the coarse pixel. The ARR can be the mean, median,
or maximum of the rain rates of considered original data pixels.
The maximum method was adopted for the ARR in this study to
form datasets with sufficient numbers of data points for model
training. Based on trials and errors for producing optimal results,
the spatial resolution of the coarse pixel was set at 12 km.

The input of the CLSTM models was a time series of im-
age patches of four variables, including R; along with three
dual-polarimetric Doppler radar variables of Zy1, Zpg, and Kpp,

![Online]. Available: https://apihub.kma.go.kr/
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Fig. 1.  Selection of a data point.

centering at the output coarse pixel. The spatial resolutions of
the input variables were converted to be the same as the output
resolution with the same maximum method for data aggregation
as of the output data. Each time series of each input variable
consisted of n¢+1 image patches of the now moment and n
previous time stamps corresponding to ny 10-min intervals,
where n;= 6. The determination of n; was important, as a larger
n would help establish models with information from input data
involving more past time stamps. Meanwhile, however, a smaller
n; would be preferred to avoid an unnecessarily long training
time due to too many trainable parameters of the CLSTM
models. Corresponding to the six nowcasting lead times of 10,
20, 30, 40, 50, and 60 min, six datasets were created to train and
test six CLSTM models, respectively.

For effectively training and testing CLSTM models, data
points with paired information on input and output were gener-
ated based on their output Ry values. Adopted for rain rate output
were 11 categories, including: 1) zero rain rate; 2) (0, 10]; 3) (10,
20]; 4) (20, 30]; 5) (30, 40]; 6) (40, 50]; 7) (50, 60]; 8) (60, 70];
9) (70, 80]; 10) (80, 90]; and 11) (90, c0) mm/h. For each output
category, data points were generated separately. To facilitate
training and testing models, extreme values of variables of Ry,
Zu, Zpr, and Kpp were converted to their corresponding mini-
mum or maximum value of the adopted ranges of [0, 100] mm/h,
[-32, 70] dB, [-8, 8] dB, and [-2, 10]°/km, respectively. The
variable values were then standardized to be within the range
of [0, 1], accordingly. Data points with time stamps before year
2021 were used for model training, while ones of year 2021 were
used for both model testing and visual presentation.

For the selection of pairs of input and output data to be
included for training and testing models, a time stride n= 4
was adopted such that the selected output time stamps were at
least 10 x ny min apart from each other. For each output time
stamp and each rain rate category, at most ns= 20 output pixels
were randomly selected. Fig. 1 shows an example of selection of
output pixel for one rain rate category. For each selected output
pixel, image patches of the size of njpr=npc= 25 were created
centering at the output pixel location for each input time stamp,
where nipr and nipc were, respectively, the numbers of rows and
columns of the image patches. The values of the hyperparameters
of ng, ns, nipr, and npc were determined based on trials and
errors to provide an optimal training process, regarding the max-
imization of information gain from data within a limited time
budget. Following the data generation process, data points were
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TABLE I
NUMBERS OF GENERATED TRAINING DATA POINTS FOR PREDICTION LEAD
TIMES AND RAIN RATE CATEGORIES

Rainrate | o oo | 20-min | 30-min | 40-min | 50-min | 60-min
(mm/h)
0 256289 | 255 656 | 255 991 | 255 698 | 255 226 | 254 815
(0, 10] | 263 628 | 262 825 | 262322 | 262 375 | 261 884 | 261 211
(10,20] | 115801 | 115622 | 115216 115338 | 115616 115422
(20,30] | 70306 | 70239 | 70191 | 70 104 | 70216 | 70150
(30,40] | 42045 | 41758 | 41902 | 41834 | 42008 | 41705
(40,50] | 24449 | 24515 | 24426 | 24226 | 24444 | 24497
(50,60] | 15057 | 14832 | 14748 | 14899 | 15052 | 14823
(60,701 | 9130 | 8994 | 9285 | 9077 | 9121 | 8993
(70,80] | 5886 | 5825 | 6000 | 5786 | 5878 | 5820
(80,90] | 3831 | 3884 | 3793 | 3942 | 3828 | 388l
(90,00) | 8199 | 8070 | 8119 | 8141 | 8196 | 8067
TABLE Il

NUMBERS OF GENERATED TESTING DATA POINTS FOR PREDICTION LEAD
TIMES AND RAIN RATE CATEGORIES

Rain rate 10- 20- 30- 40- 50- 60-
(mm/h) min min min min min min
0 2140 2120 2120 2120 2120 2100
(0, 10] 2140 2120 2120 2120 2120 2100
(10, 20] 2108 2077 2076 2082 2091 2059
(20, 30] 1832 1767 1782 1776 1825 1760
(30, 40] 1291 1275 1278 1242 1285 1271
(40, 50] 879 902 901 896 879 900
(50, 60] 627 605 581 617 625 605
(60, 70] 404 419 446 419 404 419
(70, 80] 310 304 281 283 310 304
(80, 90] 233 205 219 188 233 205
(90, ) 448 444 445 474 448 444

prepared according to the rain rate categories and nowcasting
lead times for training and testing CLSTM models, as listed in
Tables I and II.

III. METHODOLOGY

In this study, six CLSTM regression DL-ANN models were
trained and tested with the processed datasets for six lead times,
i.e., 10, 20, 30, 40, 50, and 60 min, respectively, for nowcasting
rainfall values. The models were trained with Python 3.7.7
and TensorFlow 2.1 on a server of graphics processing unit of
NVIDIA-SMI440.95.01 with the driver version 220.950.01 and
CUDA version 10.2 [36], [37].

A. Proposed Model

The CLSTM models proposed in the study shared the same
architecture, as shown in Fig. 2. For each input variable, i.e., Ry,
Zu, Zpr, or Kpp, an image patch corresponding to a time stamp
of a data point was processed with three sets of convolutional op-
erations with batch normalization. In between the convolutions
were two operations of max pooling before the resulting four
feature maps of the size of 2 by 2 were flattened into a vector
of 16 nodes and fed into an LSTM cell. The “Other input” in
Fig. 2 refers to the flattened vectors of the other input variables
following the same convolutional processes. Each LSTM cell
had 32 hidden computational units. These 32 hidden units were
fully connected to another two vanilla ANN layers consisting of
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Fig. 2. Architecture of the proposed model.

®

Fig.3. LSTM cell.

16 and 8 nodes, respectively. The final output layer of the model
had only one node, corresponding to the predicted rain rate value
at the pixelated location at the center of the image patches of
the data point. Apart from the output layer with an identity
activation function, all convolutional and fully connected layers
were assigned with an exponential linear unit (ELU) activation
function [38]

exp(z)—1, 2 <0

z, x> 0. 2

Any ) = {

The temporal interdependencies of the input data were cap-
tured via the adoption of the LSTM cells, as detailed in Fig. 3.
For each LSTM cell at time stamp ¢, it was connected to the cell at
the previous time stamp ¢ — 1 through the cell state vector (c;—1)
and the hidden state vector (h;_1). The LSTM cell adopted in
the study consisted of three computational gates, i.e., the forget
gate, input gate, and output gate. The forget gate determined
whether and to what extent to keep or ignore information from

8 feature maps

Max pooling Convolutional LSTM
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Batch normalization
previous time stamps. At the forget gate
= o (Wylh T+b 3
fo= o (Wylhia, @] + by 3)

where f, is the forget gate vector, o(+) is the logistic sigmoid
activation function, W ; is the weight matrix at the forget gate,
x, is the input vector flattened from the convolutional operations,
T is the transpose operator, and b is the bias vector at the forget
gate. The input gate provided updates to the cell state vector via

i =0 (Wilhe 1, @]" +b;) )
& = tanh (Wé[ht_l, )T + b5> )

where #; is the input gate vector, ¢; is the cell input vector with ac-
tivation, tanh( - ) is the hyperbolic tangent activation function,
and W;, Wy, b;, and b; are, respectively, the corresponding
weight matrices and bias vectors. With the forget gate and input
gate, the cell state at time stamp # could be computed as

c=f; @ci1 +i G (6)

where ® denotes the Hadamard product operation. At the output
gate, the value of the hidden state at time stamp ¢ was decided
via

op=0 (Wo[htfla iEt]T + bo) N
h; = 0; ® tanh (¢;) )

where oy is the output gate vector, and W, and b,, are the weight
matrix and bias vector at the output gate, respectively.

B. Model Training

To establish each CLSTM model corresponding to one of the
six considered lead times, a shallow training scheme was adopted
with 400 iterations. During each iteration for each model, a
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TABLE III
PERCENTAGES OF TRAINING DATA POINTS SELECTED FOR MODEL TRAINING
FROM GENERATED DATA POINTS CORRESPONDING TO RAIN RATE CATEGORIES

Rain rate (mm/h) | Percentage
0 10%
(0, 10] 9%
(10, 20] 8.1%
(20, 30] 7.3%
(30, 40] 6.6%
(40, 50] 6%
(50, 60] 5.5%
(60, 70] 5.1%
(70, 80] 4.8%
(80, 90] 4.6%
(90, ) 4.5%

stratified sampling process was used to randomly select data
points without replacement from each of the 11 training datasets
corresponding to the rain rate categories. The percentages of
selected training data points are listed in Table III. The selected
data points were then pooled together. The pooled training
dataset was later used to train the same CLSTM model for five
epochs before the next iteration commenced. The mean squared
error (MSE) was used as the loss function for model training

1 & o
o > i — ) ©)

=1

MSE =

where n,, refers to the number of data points, y; is the observed
output value of the ¢th data point, and g; is the model prediction.
The adaptive moment estimation (Adam) algorithm was adopted
for training the CLSTM models [39]. At the beginning of each
training iteration, a learning rate (Rr,4) was updated with

Rimitial

Ryy=—-"—7-H7—
Y T riro (g—-1)

(10)
where Ry pmiiai= 5 x 10~ *is the initial learning rate, r rp= 0.1
is the ratio of learning rate decay, and g is a dummy variable
referring to the number of training iteration. For each epoch of
training, the batch size was set at 128, and 10% of the training
data points were used for deriving training validation MSE. The
values of Rymital, TLRD, batch size, and ratio of training data
points for validation were determined to provide optimal training
performance based on trials and errors.

C. Model Testing

To compare the predictive performances of the trained
CLSTM models with the ones of the MAPLE, the testing
datasets were used to derive eight testing skill metrics for two
sets of classification scenarios based on 11 rain rate categories.
The first set, or the within scenarios, considered whether predic-
tions were correct regarding being within or outside a rain rate
category. The within scenarios included 11 categories of rain
rate, as mentioned previously. The second set, or the greater
scenarios, examined whether predictions were correct in terms
of being greater than a threshold of rain rate. For the greater
scenarios, ten thresholds of rain rate were used, including 0, 10,
20, 30, 40, 50, 60, 70, 80, and 90 mm/h. The testing skill metrics
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included the false positive rate (FPR), false alarm rate (FAR),
recall, precision, F1 score, Heidke skill score (HSS), critical
success index (CSI), and equitable threat score (ETS)

FP
FPR = 5p (v
FAR = TPTFP (12
Recall = -2 (13)
Precision = 7TPTFP (14)
Pl — 2 Precision - Recall (15)

"~ Precision 4+ Recall
HSS
TP - TN -FN . FP
(TP +FN) - (FN+TN) + (TP 4+ FP) - (FP + TN)

(16)

TP
CST= TP 4+ FP + FN a7
ETS = TP — wers (18)

TP + FP + FN — WETS

where TP, FP, TN, and FN are the numbers of true positives,
false positives, true negatives, and false negatives, respectively,
and

(TP +FP) - (TP + FN)
TP + FP + TN + FN

WETS — (19)

IV. RESULTS

Results of this study consisted of three parts. They included
the visualization of the process of training individual CLSTM
models, comparative analyses of testing skill metrics between
the proposed CLSTM models and the MAPLE, and the compar-
isons between the nowcasting maps of rain rate values generated
by the proposed CLSTM models and the MAPLE.

A. Training Processes

The processes for training the proposed CLSTM models were
monitored via derivation of the training and validation MSEs
at each epoch. Fig. 4 displays an example of the process of
training the CLSTM model with the lead time of 30 min. As
shown in Fig. 4(b), the zigzag shapes of the training MSE curves
correspond to the five-epoch iterations of the adopted shallow
training scheme. The training processes for the CLSTM models
with other lead times produced the similar curves of the training
and validation MSE:s as the ones shown here. The curves indicate
good performance of the model training. They also imply that,
with more training epochs, the training and validation MSEs may
be further reduced, although such a further loss reduction may be
insignificant as well as highly inefficient given the exceptionally
long training time required.
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Fig. 4. Training and validation MSEs during the training process for the
CLSTM model with a 30-min lead time for (a) all 2000 and (b) the first 100
training epochs.

B. Testing Skills

To compare the predictive performances of the CLSTM mod-
els and the MAPLE, eight skill metrics were computed for both
the within and greater scenarios. Fig. 5 shows an example of
the comparison of the skill scores across all six lead times
for the within scenario, where models predicted whether rain
rate would be within (30, 40] mm/h. Apart from FPR, FAR,
and precision, all other five skill metrics indicate significant
and consistent better performances of the CLSTM models than
the MAPLE. For FAR and precision, the CLSTM models and
the MAPLE produced similar results. Albeit with overall better
performances, the CLSTM models resulted in much higher FPRs
than the MAPLE, indicating a blurring effect in the predictions
of rain rate by the CLSTM models. For the within scenarios with
other rain rate categories, the differences between the prediction
skill metric curves of the CLSTM models and the MAPLE were
similar.

Regarding the greater scenarios, Fig. 6 shows the comparisons
of skill scores of the CLSTM models and the MAPLE for
whether predicted rain rates are greater than 30 mm/h. Skill
scores for other rain rate thresholds presented similar com-
parisons between the CLSTM models and the MAPLE. For
practical purposes, the rain rate threshold of 30 mm/h can be
a good indicator for issuing early warning of heavy rainfall [1].
According to Fig. 6, apart from FPR, all other seven prediction
skill metrics indicated significant and consistent better perfor-
mances of the CLSTM models than the MAPLE. For FAR and
precision, unlike in the within scenarios [see Fig. 5(b) and (¢)],
these two metrics in the greater scenarios [see Fig. 6(b) and
(c)] also suggested the superiority of the CLSTM models over
the MAPLE. The results on the FARs and precisions indicated
that although the CLSTM models and MAPLE predicted rain
rates with similar performances for each individual rain rate
categories in terms of FAR and precision, the CLSTM models
tend to better predict high rain rate values, which is preferred
for provision of early warnings of heavy rainfall. In addition,
the F1 scores of the CLSTM models stayed above 0.5 across all
lead times considered in the study, indicating a high quality in
the predictive performance.
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Fig. 5. Comparison of prediction skill scores derived with CLSTM models

and the MAPLE for predicting rain rate within (30, 40] mm/h with lead times
of 10, 20, 30, 40, 50, and 60 min, in terms of (a) FPR, (b) FAR, (c) recall,
(d) precision, (e) F1 score, (f) HSS, (g) CSI, and (h) ETS. Note that a higher
score indicates better performance, except for the FAR, where a perfect score
is 0.

Similar to the within scenarios, the CLSTM models tend
to result in worse FPRs than the MAPLE in the greater sce-
narios. As shown in Fig. 6(a), apart from the 10-min lead
time, all the other FPRs of the CLSTM models were larger
than the ones of the MAPLE for the rain rate threshold of
30 mm/h. The results on FPRs suggested that the CLSTM
models, in particular with longer lead times, tend to overesti-
mate small or O rain rate values and to predict a larger area
with rainfall around the actual area with rainfall. This may
be the cause of a blurring effect in the visual presentation of
model predictions of rain rates, more so for the longer lead
times.

C. Visual Presentations

The trained CLSTM models can be applied to create maps
to predict the geographical distributions of rain rates with their
corresponding lead times. Fig. 7 displays an example of the
observed and predicted rain rates for a now moment of three
MCS cases for the lead time of 60 min. Despite the overall
better predictive performances in terms of the skill scores, the
CLSTM models tend to produce blurred distributions of rain
rates, in particular for the longer lead times (right figures in
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Fig. 6. Comparison of prediction skill scores derived with CLSTM models
and the MAPLE for predicting rain rate greater than 30 mm/h with lead times
of 10, 20, 30, 40, 50, and 60 min, in terms of (a) FPR, (b) FAR, (c) recall,
(d) precision, (e) F1 score, (f) HSS, (g) CSI, and (h) ETS. Note that a higher
score indicates better performance, except for the FAR, where a perfect score
is 0.

Fig. 7). This blurring issue is common for rainfall nowcasting
with machine learning methods, as it showcases the degrees of
uncertainty associated with the predictions. This issue is also
consistent with the previous discussion on the higher FPRs of the
CLSTM models than of the MAPLE. Despite the blurring effect,
the CLSTM models tend to hit the targets when locating the
areas with heavy rainfall. Contrarily, although the MAPLE did
not produce blurred predictions, the shapes of the distributions
of rain rates predicted by the MAPLE looked almost exactly the
same across the lead times (middle figures in Fig. 7). They looked
almost identical to the observed rain rate distribution at the
now moment, albeit with increasing locational differences with
longer lead times. Such locational differences led to the poorer
predictive performance of the MAPLE than of the CLSTM
models in terms of the skill scores.

In addition to the cases of MCSs, as exemplified in Fig. 7, the
results of visual presentations for other storm types such as the
CC show a similar blurring effect in the rain rate predictions
of the CLSTM models. To counter this blurring effect, two
filters, i.e., the subtraction filter and the multiplication filter, were
attempted to be applied to the nowcasting maps. The subtraction
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Fig. 7. Visual presentations of observed and predicted geographical distribu-
tions of three MCS cases on (a) 2021-5-30 22:00, (b) 2021-08-29 09:00, and
(c) 2021-08-28 03:50. Left figures show observations, middle figures are
MAPLE predictions, and left figures are CLSTM predictions. Note that solid
black lines demarcate the areas with observed or predicted heavy rainfall beyond
the rain rate threshold of 30 mm/h.

filter subtracted the predicted rain rates with a defined value.
The multiplication filter multiplied the rain rate predictions with
a specific number between 0 and 1. Neither of these filters
produced desirable results, as the subtraction or multiplication
operations altered the predicted values, leading to inaccurate
predictions. Future effort needs to be made to explore how to
reduce the blurring effect within the rain rate predictions of the
CLSTM models without sacrificing the accuracy of the model
predictions.

V. DISCUSSION

Despite the overall better performance of the proposed
CLSTM regression approach than the traditional rainfall now-
casting algorithm MAPLE, there are three issues worth high-
lighting. First, the proposed approach was validated only on
radar products of rainfall estimations, instead of the pre-
cipitation records from gauge stations on the ground. For
practical purposes, future work needs to collect and com-
pile datasets on rainfall from gauge stations that are com-
patible with the spatiotemporal resolutions of the presented
study to test the predictive performances of the CLSTM
models.

The second issue is the need for sensitivity analyses in fu-
ture works. For example, further studies should explore how
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prediction results may be affected by different levels of errors
associated with the input variables, such as the errors caused by
the retrieval algorithm for rainfall. In addition, future inquiries
need to address how the predictive performances of the CLSTM
models react to the changes in the values of hyperparameters of
the models as well as the size of the training datasets. To take
into consideration the input data without proper corresponding
output rainfall values, future work also needs to explore the
integration of semisupervised machine learning methods into
the CLSTM modeling framework [40], [41]. Besides that, the
effects of inclusion and exclusion of other input variables,
such as satellite radiances from satellite data, on the model
performances should also be examined through sensitivity
analyses.

Third, like other machine learning methods [43], the DL
approach adopted in this study tends to provide good predictive
performance regarding interpolation for data points within the
general range of the input data. However, its predictive results
based on extrapolation for data points outside this general range,
in particular the outliers, may be far from being reliable. Along
this line, there may also be latent variables, such as topographical
and environmental variables, that are uniquely associated with
the study area. Cautions and supervisions are needed, therefore,
before directly applying the calibrated models to nowcast heavy
rainfall for areas with different portfolios of latent variable
values in an extrapolative manner. In addition to the latent
variables, the presented study was focused on MCSs for training
models to nowcast heavy rainfall values, without the considera-
tion of other forms of heavy rain fall scenarios such as tropical
cyclones. This focus on MCSs can be justified for the study area
around the Korean Peninsula, as MCSs in the warm seasons
are the dominating sources of heavy rainfall locally. Because
of the sole focus on MCSs in the study, however, additional
cautions are needed if the trained models are to be applied to
other regions also significantly affected by other forms of heavy
rainfall.

VI. CONCLUSION

The presented study proposed a pixelwise modeling approach
to establish CLSTM regression DL-ANNs to nowcast rain rates
for lead times from 10 to 60 min, with applications to the
MCSs during the warm seasons across the Korean Peninsula.
The adopted approach of pixelwise modeling facilitated the
stratified sampling processes that enabled the trained CLSTMs
to effectively nowcast heavy rainfall without significant under-
estimations of large rain rate values. The results of the study
indicated significantly and consistently better performances of
the CLSTM models than the traditional rainfall nowcasting
algorithm MAPLE in terms of prediction skill scores across
all the considered lead times. These results suggested that the
proposed approach to establishing CLSTM models was appro-
priate for issuing short-term early warnings of heavy rainfall
to enhance pre-event preparedness. In addition, the architecture
of the CLSTM models was designed to be flexible so that when
data on other pertinent input variables became available, the new
data could be included for model training. Given the ongoing

8431

generation of weather observational data, the CLSTM model
developed in this study can be periodically retrained with newly
acquired datasets to enhance its performance. In the interest
of efficiency and resource conservation, fine-tuning the exist-
ing model has gained popularity as a more practical approach
compared to training from scratch. However, the inclusion of
more input variables may increase the numbers of trainable
parameters of the CLSTM models, resulting in significantly
longer training time than the already long training time needed
for calibrating the CLSTM models separately for different lead
times. To shorten the training time of the proposed CLSTM
models, future work needs to explore how to improve the design
of the model architecture and how to leverage the tools for
parallel computing. Besides the long training time, the proposed
CLSTM models produced relatively high FPRs and a blurring
effect in showing the geographical distributions of rain rates.
These issues should also be resolved in future work.
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