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MSBR-GNet: A High-Resolution Imagery
Generative Optimization Model for Building Rooftop
Boundary Guided by Interpretable Statistical Model

in Spatial and Spectral Domain
Liu Jianhua , Ning Xiaohe , Wang Mengchen , Wang Xinyu , Liu Yuan , Chen Xiaoyou , and Zeng Shiyi

Abstract—Automated extraction of building rooftop information
is of great significance in remote sensing of land resources and
other related applications. In this article, a building roof boundary
generating optimization model called multiscale boundary reg-
ulation generative net (MSBR-GNet), guided by interpretability
statistical model in the spatial and spectral domains, is proposed to
solve the problem of inaccurate boundary segmentation caused by
mixed pixel transition region of remote sensing images. Incorporate
the boundary loss function guided by statistical models in the
spatial and spectral domains into the generator loss calculation
of MSBR-GNet, precisely constrain the regularized generation of
building rooftop contours by interpretable mechanism. The exper-
iments show that MSBR-GNet can extract more regular building
rooftop contours, and the precision values in the INRIA, WHU, and
Massachusetts public datasets reached 0.9275, 0.9228, and 0.8779,
respectively, which can ensure the accuracy of building extraction
while achieving optimal results in the boundary morphology eval-
uation index.

Index Terms—Building rooftops, contour optimization, edge
transition zones, generative networks, instance segmentation,
interpretability, Tupu theory.

I. INTRODUCTION

W ITH the rapid development of remote sensing Earth
observation technology, especially the significant im-

provement of image spatial resolution, the detailed information
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Fig. 1. Comparison of original mask with idealized mask for building recog-
nition. (a) shows the comparison of the original mask and the idealized mask for
building recognition. (b) shows the jagged, speckled building outline. (c) shows
the comparison of the vectorization results of (a) original mask and (b) idealized
mask for building recognition, respectively. (a) Original mask versus idealized
mask. (b) Spotty, jagged appearance. (c) Original vectorization versus idealized
vectorization.

of geometry, structure, spectrum, and texture of features is
becoming more and more abundant, which makes the accurate
detection and recognition of targets possible. Meanwhile, as a
class of extremely important artificial feature targets in high-
resolution remote sensing images, in the process of urbanization,
the number and height of buildings increase year by year, and
the impact on the ecological environment is increasingly evident.
Therefore, it is of great significance to study its refined extraction
and to research and explore the impact of buildings on the
ecological environment, in order to promote the development of
high-resolution remote sensing image information mining tech-
nology and the future sustainable development of the city [1].

At present, while deep learning recognition models have made
great progress in extracting buildings using geometric, spectral,
and textural features, there are still some critical issues that have
not been effectively solved. As shown in Fig. 1, first, the edge
transition area formed by mixed pixels on both sides of the
rooftop boundary leads to inaccurate segmentation results of
the deep learning network model at the boundary, especially in
the low-contrast boundary region, which also causes secondary
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Fig. 2. Mask extraction vectorized contour boundary.

problems, such as the boundary cannot be accurately depicted
when the samples are manually constructed; second, the width
direction of the rooftop raster boundary is composed of multiple
pixels, resulting in polygonal contour lines that appear jagged
and speckled during the “raster-vector” conversion process for
building rooftop segmentation, which is not in line with the in-
dustry standard of GIS building edge vectorization mapping [2],
[3], [4]; finally, the method is prone to errors and omissions due
to the potential confusion between side and elevation confusion,
as well as possible obscuration of tree and shadow with rooftop
geometric spectral features.

In response to the above-mentioned problems, postprocessing
optimization methods based on building contour extraction re-
sults have been proposed, such as those using image morphology
processing [5] and optimization methods using image feature
information [6], these methods perform overall operations with
polygonal contour individuals, and all of them require well-
segmented building rooftop contour masks as input. In fact,
the building rooftop contour shape obtained by segmentation is
generally coarse, making such algorithms difficult to implement
and prone to loss of details, which can cause error accumulation
problems while regularizing the boundaries [2]. Meanwhile,
the traditional deep networks will give rise to blurry bound-
aries between different semantics among hierarchical features.
Therefore, the refinement of boundary features can improve
the extraction accuracy [7]. In addition, if the results of the
vectorized building roof contour are directly optimized, in other
words, the secondary optimization of the model recognition
result mask, it will also cause the error accumulation. As shown
in Fig. 2, the primary (secondary) directional deviations (θ1,
θ2, and θ3), contour (direction and length) deviations (Δx1 and
Δx2), and area deviations (ADs) (Δs) differ significantly from
the real contours of the building rooftop.

In summary, 1) the separation of the building rooftop segmen-
tation and contour regularization processes reduces the accuracy
in large-scale processing, so the optimization of the original
identification mask generation process for building rooftops di-
rectly is the most fundamental and effective method. Adversarial
loss in generative adversarial network (GAN) can be used to
complement the standard pixel-level loss used in CNN networks,
improving the efficiency of model training [8]. In addition,
deep learning network models are computationally large and
complex, leading to challenges for users to explain the decision
mechanisms in the models even if they have a well-defined
network structure, which can lead to difficulties in subsequent

optimization and generalization of the models. The integration
of mechanisms into models has become a hot research concern
in the field of computer vision and geomatics.

2) At the same time, deep learning network models need to
ensure a certain number and quality of samples if they want
to maintain high accuracy of recognition results. Currently, the
spatial distribution and types of building samples inadequately
capture the coupling factors of diverse regional geographic
environments. Moreover, the process of constructing the sample
database lacks effective theoretical methodologies to guide it,
resulting in overfitting of the model to local area or specific
building features. Consequently, this diminishes the generaliza-
tion ability of deep learning network models when applied on
a large scale [9], [10]. Furthermore, the model lacks the ability
to quantify the type and quantity of training samples, and it
remains unclear which classes of samples (features) contribute
to the parameterization process during model training. This
can result in repetitive and ineffective labeling of imbalanced
training samples, while also lacking guidance from mechanisms
in the “black box” construction process of samples. Conse-
quently, there is a steep increase in manual labeling workload
without achieving desired outcomes. Therefore, it is necessary
to explore how to interpretably and comprehensively to guide the
construction of the sample set according to the intrinsic mech-
anism of sample spectral characteristics [11], and to more effi-
ciently migrate the model with both geographical coupling and
global universality [10]. In this study, we propose a generative
optimization model multiscale boundary regulation generative
net (MSBR-GNet) for building rooftop boundaries guided by
interpretable statistical models in the boundary space domain
and spectral domain. This module can accurately extract build-
ing rooftops from high-resolution remote sensing images and
effectively alleviate the problem of model generalization from
the above-mentioned contour regularization and interpretability
perspectives. MSBR-GNet is based on the MS-CNN model [10],
and combines the latest GAN architecture with a library of Tupu
samples for training and sample ablation experiments. The main
contribution points of this study are as follows.

1) This study proposes a generative optimization network
MSBR-GNet for building rooftop boundaries guided by
interpretable statistical patterns in the spatial and spec-
tral domains. Based on the statistical patterns of spatial
distribution of band grayscale in the edge transition re-
gion of high-resolution images, this study uses a GAN as
the reference framework and an MS-CNN model as the
generator. An innovative boundary loss function is added
to the generator mask loss calculation of MSBR-GNet to
constrain the regularized generation of building rooftop
mask boundaries, and the model training results are made
closer to the ground-truth labels by iterative feedback of
the discriminator.

2) Based on WHU, INRIA, Massachusetts public building
dataset, and national representative city remote sensing
image data, we propose a genealogical sample library
(dataset) construction method based on the three laws of
geography (correlation, heterogeneity, and similarity) and
Tupu theory, and accordingly implement BUCEA2.0, a
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genealogical Tupu sample library (dataset) for building
rooftops.

The rest of this article is organized as follows. Section II
describes the progress of existing research on intelligent identifi-
cation and contour optimization methods for building rooftops.
Section III introduces the main methods used in this article.
Section IV describes the experiments of this study, including
datasets, accuracy evaluation, and experimental parameter set-
tings; experimental results will be presented and discussed in
Section V. Finally, Section VI concludes this article.

II. RELATED WORKS

A. Building Rooftop Identification

In the field of remote sensing interpretation, building recog-
nition refers to the extraction of individual building targets
from remote sensing images [11]. Very high-resolution aerial
and satellite images, such as IKONOS, QuickBird, GeoEye,
WorldView, Pleiades, Ziyuan-3, and Gaofen-2, provide rich spa-
tial geometric detail information for building recognition [12].
Traditional image target recognition of remote sensing methods
include the following.

1) Template-based methods: mainly composed of two parts:
template making and similarity measurement. It first con-
structs a standard library through template making, and
then extracts feature vectors from the image to be detected
and compares and matches with the standard library. The
template library needs to be designed manually, heavily
relies on a priori knowledge, and is computationally in-
tensive [13].

2) Expert knowledge-based method: It can effectively reduce
the phenomenon of false detection, but the key of this
method is to build expert knowledge, and the manually
constructed expert knowledge relies too much on subjec-
tive factors, which easily leads to missed detection and
makes the final effect insufficient [14], [15], [16].

3) Traditional machine learning methods: First, the features
of the region of interest (RoI) are extracted from the image;
Subsequently, these features are fed into a trained classifier
for redundant candidate region identification and removal,
resulting in refined outcomes [17], [18]. This process ne-
cessitates meticulous data cleaning and refinement efforts,
accompanied by a substantial human–machine interaction
workload.

With the rapid development of deep learning-related research,
convolutional neural networks (CNNs) have successfully ad-
dressed challenges encountered in traditional machine learning
approaches and demonstrated remarkable performance in target
detection, image segmentation, and image classification tasks.
Deep learning-based target detection methods can be divided
into two categories, one is region proposal-based target detec-
tion methods and the other is regression-based target detec-
tion methods. Region proposal-based target detection methods,
include R-CNN [19], SPP-Net [20], fast R-CNN [21], faster
R-CNN [22], mask R-CNN [23], hybrid task cascade [24], CP-
NDet [25], CenterNet2 [26], etc. The class of methods referred
to as two-stage methods involves the initial generation of a

series of sample candidate frames by the algorithm, followed
by classification using CNN. This approach exhibits higher
network accuracy but relatively slower speed. Regression-based
target detection methods, such as YOLOv1 [27], SSD [28],
RetinaNet [29], YOLACT [30], TensorMask [31], M2Det [32],
and PolarMask [33]. The class of methods referred to as one-
stage methods employs CNN for feature extraction and directly
regress object class probability and location information, result-
ing in faster processing but relatively lower accuracy compared
to two-stage methods.

In remote sensing images, multiscale detection of targets with
“different sizes” and “different aspect ratios” is one of the main
technical challenges in target detection. The term “scale” in
the context of multiscale detection of image targets generally
refers to the perceptual field size, which encompasses various
factors, such as target size, range, mapping scale, resolution,
geometric and spectral heterogeneity, and particle size [34].
In the last 20 years, multiscale detection has gone through
several historical periods: the “feature pyramids and sliding win-
dows (before 2014),” “object proposals-based detection (2010–
2015),” “deep regression (2013–2016),” “multireferences detec-
tion (post-2015),” “multiresolution detection (post-2016)” [35].
Earlier detection models, such as the VJ detector [36] and the
HOG detector [37], were specifically designed to detect objects
with a “fixed aspect ratio,” and for more complex objects, only
the “hybrid object proposals” were first used for object detection
in 2010 to help avoid exhaustive sliding window searches across
images [38]. In recent years, with the increase in GPU computing
power, it has become more straightforward for people to handle
multiscale detection. The multiscale problem is solved by using
deep regression, i.e., directly predicting the coordinates of the
bounding box based on deep learning features [39]. However,
due to the lack of accurate localization, it can prone to some
missed detection of extremely small targets. Multireference and
multiresolution detection have become two fundamental frame-
works in state-of-the-art target detection systems. Meanwhile,
attention mechanism [40] is introduced to aggregate multiscale
features to facilitate achieving multiscale symbiosis detection
of buildings. n of remote sensing images, it is crucial to further
investigate the optimization approach for constructing rooftop
contours in deep learning network models. This investigation
aims to improve the ultimate accuracy of building recognition
outcomes while accounting for the impact of multiscale parame-
ters on recognition models. The optimization method of building
rooftop contour for deep learning network models should be
further investigated to enhance the ultimate accuracy of building
recognition outcomes.

B. Building Contour Optimization

The instance segmentation results of general high-resolution
images often exhibit jagged and speckled morphological fea-
tures, which do not conform to the geometric characteristics
of building contours or the standard specifications of the GIS
mapping industry. Currently, numerous optimization methods
have been proposed by researchers for delineating recognition
mask contours in high-resolution remote sensing images. These



JIANHUA et al.: MSBR-GNET:A HIGH-RESOLUTION IMAGERY GENERATIVE OPTIMIZATION MODEL FOR BUILDING ROOFTOP BOUNDARY 8167

methods can be broadly categorized into three main groups, and
this article specifically focuses on enhancing the third category
of techniques.

1) Optimization Methods Using Image Morphology Process-
ing: This method mainly uses the operations of image morphol-
ogy processing, such as erosion and expansion to morphologi-
cally correct the contours.

2) Optimization Methods Using Image Feature Information:
This method mainly uses the direction of the straight lines in the
building outline, the turning points, and the bounding rectangle
to rasterize the building outline and reconstruct it.

3) Optimization Methods Using Deep Learning: The ex-
ceptional capability of deep feature extraction has positioned
deep learning as a prominent approach for extracting buildings
from high-resolution remote sensing images. These methods
are broadly divided into two categories, one is the optimiza-
tion method based on boundary loss function, the other is the
optimization method based on point generation.

Among them, the methods based on the boundary loss func-
tion introduce a boundary function on the basis of CNN to guide
the generation of building rooftops boundaries. In the initial
stage of building boundary extraction based on deep learning
methods, many scholars have used CNN to extract building
rooftops. However, the CNN fails to adequately address edge
detection, leading to potential issues, such as missed and false
detections due to occlusion from vegetation or shadows. Conse-
quently, it proves ineffective in accurately extracting buildings
with well-defined boundaries. To address this issue, Gregoris
and Stavros [41] developed a new active contour model for
building extraction using descriptors from grayscale values and
saturated images. In addition, they introduced a new energy
term to enhance the accuracy of contour segmentation results.
Zhao et al. [42] proposed a new deep neural network that can
jointly detect building instances and normalize noisy building
boundary shapes from a single satellite image. As the number of
parameters increases with the model representation capability,
many scholars have enhanced the efficiency and accuracy of
model task processing by incorporating an attention mechanism
to focus on key information and solve the information over-
load problem. Jin et al. [43] proposed a new network BARNet
embedded with special boundary-aware loss to solve the prob-
lem of incomplete segmentation of building boundaries. The
network incorporates gated attention refinement fusion units,
denser spatial pyramid pool modules, and boundary-aware loss.
Li et al. [44] used boundary-aware attractor fields to represent
building footprints in remotely sensed images, which helped
to enhance building boundaries while suppressing the effects
of background clutter. In addition to computation, multiscale
features of objects are also a challenge for CNN. Zhu et al. [45]
proposed a MAP-Net for efficient and accurate extraction of
multiscale building footprint boundaries by parallel localization-
preserving convolutional networks, and introduced a channel-
level attention module to adaptively compress multiscale fea-
tures extracted from multipath networks. Liu et al. [10] proposed
a multiscale building rooftop recognition model, MS-CNN, to
enhance multiscale symbiosis recognition of building rooftops
by introducing multiscale parameters in the residual network.

The second category is the optimization method of building
rooftops contour extraction based on point generation, which
considers image segmentation as a point-rendering problem.
Kirillov et al. [46] proposed a point-based rendering (PointRend)
neural network, which optimizes image segmentation of object
edges by iteratively refining the segmentation prediction from
the points of the target contour region, and it uses an order
of magnitude less floating-point operations than direct dense
computation. Wei et al. [47] proposed CLCNN, which initially
employs an edge detector to extract the coarse contour bound-
aries of the RoI and subsequently refines the polygon vertices
using a concentric ring convolutional network with bidirectional
pairwise loss. This point-based generation method is suitable for
building rooftops edges that are difficult to segment, or for the
scenes that require high accuracy in edge segmentation.

In recent years, multitask learning in the field of deep learning
has provided researchers with novel insights for developing
contour optimization methods that exploit the similarity be-
tween different tasks to simultaneously solve several different
tasks, thereby enhancing the quality of building contour extrac-
tion while ensuring the accuracy of building recognition. Shao
et al. [48] proposed a building residual refinement network
consisting of a prediction module and a residual refinement
module for accurate and complete building extraction in remote
sensing images. Zhou et al. [49] proposed a new segmentation
network framework, BOMSC-Net, which introduces a direc-
tional feature optimization module to further sense the orien-
tation information of buildings to refine the results of building
boundary segmentation. However, most of these methods are
postprocessing optimization methods based on deep learning
recognition results, and their optimization results are heavily
dependent on the input building segmentation mapping and
have a strong dependence on the labeled data, therefore the
potential of the method is limited. In addition, the separation of
building rooftop segmentation and contour regularization makes
the whole method inefficient in large-scale processing.

The GAN is a framework that employs alternating training
between generation and adversarial processes. During training,
the generation method learns from samples and labels to obtain
a model with a distribution similar to the original data. Subse-
quently, the discriminative network assesses whether generated
instances are true or false through continuous confrontation and
competition, ultimately capturing the underlying patterns within
the data. However, when confronted with complex distributions,
controlling the generated outcomes during GAN model training
becomes challenging. To address this issue, current GAN models
are striving to enhance stability and proposing novel training
techniques to elevate model quality.

Currently in the area of adversarial learning strategies for
building rooftop extraction, the segmentation model can be
viewed as a generative network that can learn building rooftop
segmentation results in an adversarial manner by using CNN
discriminators. Ding et al. [50] proposed an adversarial shape
learning network (ASLNet) to learn shape regularized building
extraction results. The ASLNet employs a shape discriminator to
eliminate redundant information and prioritize the construction
of shape details, followed by a shape regularizer that expands
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Fig. 3. MSBR-GNet structure diagram.

the receptive field and explicitly models local shape patterns. Li
et al. [51] proposed an end-to-end network RegGAN for building
footprint generation that utilizes a multiscale discriminator to
distinguish between false and true inputs, and a generator to
learn from the discriminator responses to generate more realistic
building rooftop boundaries. Most of these methods are based on
relevant paradigms in the traditional computer vision field with
modular and migratory improvements to deep learning models,
and have not yet resulted in a dedicated deep learning network
model that fits the characteristics of remote sensing data. The re-
mote sensing image features extracted by deep learning models
need to consider the geology spatial semantic relation and the
physical knowledge of quantitative remote sensing to improve
the interpretability and reliability of the models [52]. In this
article, we use the above-mentioned features of GAN to guide the
construction of boundary loss functions through boundary mod-
els based on spatial and spectral domains. This approach aims to
enhance the accuracy of building rooftop mask extraction at the
boundary while ensuring interpretability of recognition results.
Ultimately, our proposed method generates building rooftop
masks that are oriented to engineering practical applications and
meet the quality standards of GIS data production.

III. METHODS

A. Overview

Aiming at the building rooftop recognition and its boundary
regularization objective, based on the boundary model (i.e., the
spatial statistical distribution pattern that the pixel grayscale
in the edge transition region have), this article proposes an
MSBR-GNet model that integrates instance segmentation and
boundary regularization in an end-to-end network. As shown in
Fig. 3, MSBR-GNet is a GAN composed of two modules. The
generator aims to learn regularized building rooftop masks and
the discriminator distinguishes ideal building masks; these two
modules compete with each other in training, and both eventually
reach Nash equilibrium to produce the optimal output. The final

output of the generator is a building rooftop mask closer to the
ground-truth version with clear boundaries and corners.

B. Bounding Box Section

Bounding box generator: As shown in Fig. 4, the bounding
box header of MS-CNN [10] is utilized as the bounding box gen-
erator of MSBR-GNet. Instead of taking random noise as input
like the conventional GAN, the bounding box generator uses
RoI features and outputs class and bounding box predictions.
During the training process, only the predicted bounding boxes
and ground-truth bounding box labels are exclusively selected
and subsequently forwarded to the bounding box discriminator.

Bounding box discriminator: As shown in Fig. 4, the purpose
of the bounding box discriminator is to receive the bounding box
predictions from the generator and evaluate their merit. In fact,
it is difficult for any discriminator to evaluate the bounding box
predictions of an object by observing at four coordinates. There-
fore, our solution is to send the feature maps of the bounding box
predictions and their ground-truth values to the discriminator as
a pair of false and true sample labels. For this purpose, we use
an accurate RoI pool on the feature map output of the FPN
backbone to extract the RoI for bounding box prediction. The
discriminator network consists of five convolutional layers, and
then each layer is immediately followed by a BN layer and a
LeakyReLU layer. It accepts a multidimensional image of size
512 × 512 and outputs a score between [0, 1] to indicate the
superiority of the prediction result (higher score is better).

C. Mask Section

Mask generator: As shown in Fig. 5, like the prediction head,
MSBR-GNet uses the mask head of MS-CNN as the mask gener-
ator. The network contains four convolutional layers followed by
a transposed convolutional layer and a 1 × 1 convolutional layer
(see Fig. 5). It takes MS-CNN RoI features as input and outputs
a binary mask prediction of size 512× 512 for each object class.
During the training process, logs are extracted from the channels
of the prediction classes and sent to the mask discriminator.
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Fig. 4. Box prediction architecture.

Fig. 5. Mask head architecture.

Mask discriminator: As shown in Fig. 5, the mask and Gt-
mask, i.e., the binary mask predictions and their ground-truth
values, are input to the mask discriminator, and both are multi-
plied with RoI features of size 512 × 512. The mask discrimi-
nator network consists of five convolutional layers, designed in
a manner similar to an encoder. However, due to the inherent
resolution degradation problem caused by the convolution op-
eration, we employ a residual link-like approach to connect the
features of each convolutional layer with an output. This strategy
effectively preserves the geometric detail information of the
rooftop and enables its utilization for calculating the adversarial
loss.

D. Loss Function

The loss function of the model is a combination of generator
loss and discriminator loss. The generator loss function is
formulated as follows:

LGenerator = Lcls + Lbbox + Lmask + LGb
adv + LGm

adv (1)

where Lcls denotes the loss of the category in the generator
MS-CNN; Lbbox denotes the loss of the bounding box in the
generator MS-CNN; Lmask denotes the loss of the mask in the
generator MS-CNN. The last two terms LGb

adv and LGm
adv are

complementary losses, that help the model to further optimize
the results of baseline generation. LGb

adv denotes the generator
loss of the bounding box; LGm

adv denotes the generator loss of the
mask. To ensure that the loop set in the GAN achieves closure,
a loss of discriminator for bounding boxes LDb

adv is needed to
compete with LGb

adv, and a loss of discriminator for masks LDm
adv

is needed to compete with LGm
adv

LDiscriminator = LDb
adv + LDm

adv (2)

where LGb
adv, LDb

adv, and LGm
adv are defined as follows:

LGb
adv =

1

N

N∑
i=1

− log(Db(Gb(RoIi))) (3)



8170 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 6. Example graph of the statistical pattern of grayscale distribution in the edge transition area. (a) Original image. (b) Example of pixel value change in edge
transition area. (c) Change in pixel value in the direction of the vertical building rooftop edge ΔSV . (d) Change in pixel value along the building rooftop edge
direction ΔSH .

LDb
adv =

1

N

N∑
i=1

−(log(Db(bb
gt
i )) + log(1−Db(Gb(RoIi))))

(4)

LGm
adv =

1

N

N∑
i=1

‖ Dm(maskgti )−Dm(Gm(RoIi)) ‖ (5)

LDm
adv = LGm

adv (6)

where N is the batch size; Gb(RoIi) denotes the predicted value
of the RoI of the ith bounding box, denotes the ground-truth
value corresponding to the ith bounding box; Db(Gb(RoIi))
denotes the probability that the image is true. In training, LGb

adv
encourages Gb to generate a bounding box that can be spoofed
to Db, and LDb

adv enhances the ability of Db to distinguish
between real and false bounding boxes.

As shown in Fig. 6, in the process of building rooftop mask
prediction, the edge transition area (ΔSV,ΔSH) formed by the
mixed pixels on both sides of the rooftop boundary leads to the
inaccurate segmentation results of the model at the boundary.
Therefore, in the generator of the mask loss Lmask, we add a
boundary loss function LBR to constrain the generation of the
building rooftop mask boundary in order to improve the accuracy
of the building rooftop mask boundary extraction. From the
perspective of the loss function, the correspondence between
the measured ground-truth boundary vertices and the predicted
contour vertices is very complex for pixel-level segmentation.
To solve this problem, this article proposes a boundary model
based on the spatial and spectral domains for the construction
of the boundary loss function LBR.

As shown in Figs. 7–9, the boundary statistical patterns in
the spatial and spectral domains describe the fluctuation range
of pixels in the value domain and the distribution characteristics
in the spatial domain within the edge transition zone of the
image, and the boundary model can be established accordingly.
According to the spectral profiles of the internal pixels in the
edge transition zone along the boundary direction of the build-
ing rooftop and perpendicular to the boundary direction in the
remote sensing image, we can statistically find that in the edge
transition zone (ΔSV,ΔSH), the grayscale (R, G, B channels)
distribution of the building rooftop along the boundary direction
will have a smaller range of fluctuation, and the fluctuation of the
grayscale (R, G, B channels) distribution in the perpendicular
boundary direction has “step phenomenon.”

As shown in Tables I and II, the fluctuation range of pixel
grayscale values along the building rooftop edge direction
(ΔSV ) and perpendicular to the building rooftop edge direction
(ΔSV ) were statistically analyzed within the edge transition
zone (ΔSV,ΔSH).

Based on the statistical analysis results, theΔSH values along
the building rooftop edge are generally between 5 and 30, with
the mean value of 13.4 and the minimum value of 6, and the
fluctuation is small, and the variance is 34.9. The ΔSV values
perpendicular to the building rooftop edge are generally above
30, with the mean value of 74.6 and the maximum value of 163,
and the fluctuation is large, and the variance is 1835.2. Based
on the above-mentioned edge transition area The loss function
is constructed based on the above-mentioned statistical feature
pattern of the grayscale distribution, first, the loss function LBH

is constructed for the pixel value feature distribution pattern
along the building rooftop edge direction, and then the loss func-
tion LBV is constructed for the pixel value feature distribution
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Fig. 7. Profile with pixel values (with white rooftop).

pattern perpendicular to the building rooftop edge direction, and
finally the boundary loss function LBR is established based on
this boundary model. Equation is as follows:

LBH =
1

N

N∑
i=1

(
∣∣gHi − gHi−1

∣∣− ∣∣pHi − pHi−1

∣∣) (7)

LBV =
1

T

T∑
i=1

(
∣∣gVi − gVi−1

∣∣− ∣∣pVi − pVi−1

∣∣) (8)

LBR = αLBH + βLBV . (9)

As shown in Table III, N denotes the number of edge pixels
along the rooftop edge direction and T denotes the number of
edge pixels perpendicular to the building rooftop edge direc-
tion, i.e., the pixel width of the edge transition zone in this
boundary model. pi denotes the predicted probability value
of the ith pixel of the image, gi denotes the true value of

the ith pixel of the image. H and V indicate the pixel width
along the building rooftop edge direction and perpendicular to
the building rooftop edge direction, respectively. α, β is the
hyperparameter that controls the effect of these two losses and
sets the initial value α = β = 0.5, which is generally related
to the spatial resolution and boundary intensity of the image.
Sobel operator weights the difference between the gray values
of the four neighbors of each pixel in the image, up, down, left
and right, to reach the extremes at the edges thus detecting the
edges. The proposed method, however, effectively handles the
gradient in all eight directions surrounding each pixel. The loss
function is constructed based on the statistical feature pattern
of pixel grayscale distribution in the edge transition region (as
illustrated in Fig. 6). In addition, it adheres to the principle of
geographic correlation by considering the spatial distribution
of pixels. This integration combines the merits of knowledge-
driven and data-driven approaches, thereby enhancing model
interpretability.
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Fig. 8. Profile with pixel values (with red rooftop).

Based on the above-mentioned established loss function,
the mask loss Lmask of the generator can be expressed as
follows:

Lmask =
1

m2
λ

m2∑
1

[−y ∗ log(sigmoid(x))

− (1− y) ∗ log(1− sigmoid(x))] + ηLBR (10)

where the first part is the original mask loss (binary cross-entropy
loss) of the generator MS-CNN [10], m2 denotes the output of
the mask branch with m ∗m dimensions, and the second part,
i.e., our newly added boundary loss function LBR for optimal
building rooftop contour generation. λ, η is the hyperparameter
that constrains the two losses, hyperparameters are related to the
geographical spatial–temporal heterogeneity of buildings and
set the initial value λ = 1, η = 0.5.

IV. EXPERIMENTS

A. Datasets

To verify the effectiveness of the method, we combine public
building datasets and high-resolution remote sensing image data
of China’s building styles regions to construct a self-annotated
building rooftop pedigree sample dataset BUCEA2.0. The pub-
lic datasets include the WHU building dataset, the INRIA aerial
image dataset and the Massachusetts building dataset. The re-
sulting BUCEA2.0 dataset covers sensors, resolutions, cities and
scenes from different environments.

1) Public Building Datasets for Building Extraction. WHU
buildings dataset: This dataset was presented by Ji et al. [1]. The
dataset has a large variation in image features including differ-
ent illumination and atmospheres, sensors, scales, and building
structures. The dataset is abundant in diverse data sources,
including QuickBird, Worldview series, IKONOS, ZY-3, etc.,
and the spatial resolution of the image’s ranges from 0.3 to 2.5 m.
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Fig. 9. Profile with pixel values (with gray rooftop).

TABLE I
STATISTICS OF PIXEL WIDTH CORRESPONDING TO THE BOUNDARY TRANSITION AREA
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TABLE II
STATISTICS OF THE RANGE OF PIXEL VALUE CHANGES IN THE BOUNDARY TRANSITION AREA: ΔSV

TABLE III
STATISTICS OF THE PIXEL WIDTH CORRESPONDING TO THE BOUNDARY TRANSITION AREA

The dataset contains 204 512× 512 RGB images, providing
aerial images and corresponding ground-truth images. Examples
are shown in Fig. 10(a) and (b).

INRIA aerial image dataset: This dataset, presented by Mag-
giori et al. [53], has a total area of 810 km, of which 405 km
are used for the training set and the test set contains 805 km.
The images cover different urban buildings, ranging from dense
urban villages to high mountain towns.

Massachusetts buildings dataset: This dataset was presented
by Volodymyr [54]. He presented the Massachusetts road dataset
and the Massachusetts building dataset in Chapter 6 of his Ph.D.
thesis. One of the building datasets consists of 151 aerial images

of the Boston, USA, divided into a training set of 137 images,
a validation dataset of four images, and a test set of ten images.
Each image has 1500 × 1500 pixels, and each image covers an
area of 2.25 km2. Therefore, the whole dataset covers about 340
km2. The dataset contains example image data, as shown in Fig.
10(c) and (d) in the following. In this study, 10% (125) of the
images in the training set, cropped to 512 × 512 pixels, were
selected to construct a genealogical sample library of building
rooftop.

2) Self-Annotated Genealogical Sample Dataset BUCEA
2.0: A highly accurate sample pool is one of the most
important factors influencing the recognition results of deep
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Fig. 10. Overview of the dataset from (a) and (b) WHU dataset; (c) and (d) Massachusetts dataset; (e) and (f) INRIA building dataset.

learning network models. The spatial differences in solar ra-
diation, land and sea location, and altitude cause the natural en-
vironment and biomes to differentiate geographically, resulting
in the geographical spatial–temporal heterogeneity of buildings
as a vehicle for human settlement. The spatial distribution of
buildings and building types are not sufficiently characterized
by the commonly used sample libraries, which cannot reflect
their geographical spatial–temporal heterogeneity, resulting in
models with high extraction accuracy in some areas or a certain
type of buildings, but seriously lacking in generalization abil-
ity. At the same time, most of the current building extraction
methods only focus on the first level of building classification,
and the lack of corresponding classification label data when
facing the demand for accurate extraction of different building
rooftop types greatly hinders the engineering application of the
model. Therefore, this study builds BUCEA2.0, a Tupu sample
library with coupled geographic environment factors, based on
Tupu theory and geographic knowledge, such as the laws of
geography.

As shown in Fig. 11, this study uses high-resolution remote
sensing images of representative cities at the global scale as
the base data, selecting places such as Milan and Wuhan in the
Asia-European plate, Chicago and Santiago in the American
plate, Cairo in the African plate, and Christchurch in the In-
dian Ocean plate, respectively. In accordance with the law of
geographic heterogeneity, BUCEA 2.0 was built on the basis
of BUCEA 1.0 [10] and guided by the intrinsic mechanism of
the sample genealogical features of the geographically coupled
buildings [11] to more efficiently migrate the model with both
geographic coupling and generalizability. The geometric and
spectral features of building rooftops are extracted from the

Fig. 11. Global distribution of representative cities in the self-labeled sample
dataset.

remote sensing images of these representative cities to form
a subset of the spectral samples, which in turn form a global
sample library of Tupu.

In addition, this study illustrates the geographical coupling
of the building rooftop dataset and the idea of constructing the
Tupu sample database of this article, using the geographical dis-
tribution of typical building landscapes in China as an example.
China is a vast country, spanning different climatic zones from
north to south, such as cold temperate, middle temperate, warm
temperate, subtropical, and tropical. The north-eastern plains
(in the case of Changchun) and the plains of northern China
have a temperate monsoon climate, with high temperatures and
rain in summer and cold, dry winters; the middle and lower
reaches of the Yangtze River and the hills of the south-east
(in the case of Fuzhou) have a subtropical monsoon climate,
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Fig. 12. Chinese geographically coupling pedigree building rooftop sample dataset range distribution (standard map source: http://bzdt.ch.mnr.gov.cn/).

with high temperatures and rain in summer, mild winters and
sloping roofs; southern Taiwan, Hainan Island (in the case of
Haikou), and southern Yunnan have a tropical monsoon climate,
with no winter and high temperatures and rain all year round;
the northwest region (Shihezi and Yinchuan, for example) is
far from the sea, with a dry climate and scarce precipitation,
and has a temperate continental climate; the Qinghai–Tibet
Plateau (Lasa, for example) is at a high altitude, covered with
snow and ice during the winter half of the year, and cool
and pleasant during the summer half of the year, a typical
plateau climate. As shown in Fig. 12, according to the law
of geographic heterogeneity, we select high-resolution remote
sensing images of six typical areas of architectural landscape to
create a sample dataset of building rooftops, so that geometric
and spectral features can be characterized in diversity. The
building styles are differentiated with regional climate and other
environmental changes, reflecting the geographical spatial and
temporal heterogeneity of buildings. Therefore, the construc-
tion of a spectral sample dataset for these regions based on
Tupu theory fully considers the law of geographic heterogeneity
and satisfies the need for geographical coupling of the sample
dataset.

As shown in Table IV, according to the style and feature
type of building rooftops from remote sensing images of the
study area, building rooftops can be classified according to
geometric features as follows: rectangle, character shape (H, L,

T, U, Z, and other geometric shapes and variants), circle, com-
bination shape, etc.; according to the building rooftop spectral
characteristics can be classified into the following categories by
visual color: red, yellow, green, blue, dark gray, white, gray,
brown, etc. We used the image annotation tool Labelme to
extract the feature-generating attributes and mask information
of various types of target buildings, and then transformed them
into COCO dataset format to construct a geographically coupled
spectral high-resolution remote sensing building rooftop sample
dataset. BUCEA 2.0 sample library [55] contains 1400 images,
BUCEA 2.0 sample library contains 1400 images, 800 images
are 512 × 512 pixels, 600 images are 512 × 512 pixels.

B. Experimental Procedure

1) Method Implementation: All experiments in this article
were implemented in the framework of Pytorch 0.4.1 powered
by CUDA 9.0 on Ubuntu 16.04 OS and run on a single GPU
of NVIDIA GeForce GTX 1060. This experiment trains the
network by using backpropagation from the original MS-CNN
losses and a newly added boundary loss function. The generators
and discriminators are trained alternately. The generator is first
frozen and the discriminator is trained. As the discriminator is
trained to try effectively discerning real data from false data, it
must learn how to identify defects in the generator. Similarly,
the discriminator is frozen while the generator is trained. As the

http://bzdt.ch.mnr.gov.cn/
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TABLE IV
EXAMPLE FEATURES OF THE PEDIGREE SAMPLE LIBRARY

training progresses, both the generator network and the discrimi-
nator network exhibit enhanced capabilities, ultimately enabling
the generator to generate predictions that closely approximate
the ground truth. In all experiments, we used a weight decay of
0.0001 and a momentum of 0.9 with SGD optimizer. In addition,
we used the same learning rate of 0.001 for both the generator
and the discriminator.

In order to quantitatively evaluate the performance of MSBR-
GNet, this study evaluated performances of the model in two
aspects. The mask metrics are used to evaluate the generated
building rooftop masks. The boundary metrics are used to eval-
uate the quality of the extracted building rooftop boundaries.

2) Evaluation Metrics:
1) Mask metrics: The evaluation of the example segmen-

tation in this study incorporates several commonly em-
ployed metrics, including precision, recall, F1-score, and
IoU. Precision indicates the percentage of correctly pre-
dicted areas as buildings, while recall indicates the pro-
portion of correctly predicted buildings in the building
ground truth. F1-score is the sum of precision and recall
The F1-score is the weighted average of precision and
recall; IoU represents the ratio of the intersection area
between building prediction and ground truth to the joint
area. The following equation can be used to express the
evaluation metrics:

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 − score =
2× Precision × Recall

Precision + Recall
(13)

IoU =
|Pp

⋂
Pt|

|Pp

⋃
Pt| =

TP
TP + FN + FP

(14)

where TP, TN, FP, and FN represent true positive, true
negative, false positive, and false negative, respectively.
Here,Pp denotes the set of pixels predicted to be buildings
and Pt denotes the ground-truth set. | • | denotes the
function to calculate the number of pixels in the set.

2) Boundary metrics: The Hausdorff distance (HD) and
structural similarity measure (SSIM) metrics are com-
monly used in evaluating object detection performance.
However, it is important to note that the boundary IoU met-
ric exhibits higher sensitivity toward large object bound-
ary errors without excessively penalizing small objects.
Nevertheless, it should be acknowledged that this metric
may not be universally applicable when assessing building
rooftops. Therefore, this evaluation metric is not used in
this article [56]. In addition, four new evaluation metrics
are introduced in this study to impose constraints on the
building rooftop boundaries, which are AD, circumference
deviation (CD), geometrical center distance (GCD), and
main direction deviation (MDD). The following equation
can be used to express the evaluation index:

dH(X,Y ) = max{dXY , dY X}
= max{maxmin(x, y),maxmin(x, y)} (15)

where X and Y denote the ground-truth and prediction
maps, respectively. It can be interpreted as the maximum
value of the shortest distance from a point in a point set
to another point set. To eliminate the effect of very small
outlier sets, the HD is multiplied by 95% to obtain the final
evaluation index (95% HD). When the distance is small,
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the predicted result exhibits a shape that closely resembles
the form of the actual label

S(X,Y ) = F (l(X,Y ), c(X,Y ), s(X,Y ))

=
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
(16)

where l(X,Y ), c(X,Y ), s(X,Y ) denote the luminance func-
tion, contrast function, and structure function, respectively.μ, σ,
and σxy represent the mean, variance, and covariance, respec-
tively. To avoid dividing by zero,C1 andC2 denote the constants
6.50 and 58.52. The range of SSIM is (–1,1). The value of SSIM
is equal to 1 when the two images are identical

AD = 1− log

(∑n
i SX∑n
i SY

)
(17)

CD = 1− log

(∑n
i CX∑n
i CY

)
(18)

GCD = 1− log

(∑n
i

√
(xg)2 + (yg)2∑n

i

√
(xp)2 + (yp)2

)
(19)

MDD = |θX − θY | (20)

where X and Y denote the ground-truth and predicted result,
respectively. SX denotes the true area of the building rooftop
ground and SX denotes the area of the building rooftop split
mask; CX denotes the true parameter of the building rooftop
ground and CY denotes the parameter of the building rooftop
split mask; (xg, yg) denotes the geometric centroid of the true
value of the building rooftop ground and (xp, yp) denotes the
geometric centroid of the predicted value of the building rooftop;
AD, CD, and GCD all quantify the proximity between the
predicted result and the ground truth, with a higher closeness
to 1 indicating a closer alignment between them. θx indicates
the principal directional angle of the ground-truth value of the
building rooftop, and θy indicates the principal directional angle
of the predicted value of the building rooftop, where the principal
directional angle of the predicted value of the building rooftop
is the principal directional angle of the predicted mask after it is
turned into the smallest external rectangle, as shown in Fig. 13.

C. Result

The results of the building rooftop test identification on remote
sensing imagery from three different cities are shown in Fig.
14. (a) is Bellingham, a city in Washington State, USA, which
is characterized by less variation in the spectral characteristics
of building rooftops which predominantly exhibit cool tones.
The majority of buildings are single-family houses with a large
number of small and medium-sized structures; (b) is Tyrol, a
region of the Alps straddling western Austria and northern Italy,
characterized by significant variations in the spectral properties
of building rooftops and a higher prevalence of large contiguous
structures; (c) is the south-western Austrian city of Innsbruck,
a region where Gothic-style buildings are lined up and much of
the old town appearance is preserved. As can be seen in Fig. 14,

Fig. 13. Schematic diagram of MDD.

MSBR-GNet is able to extract a large range of building rooftops
from different geographical areas, and the contour patterns of
large and small buildings remain intact and have prominent edge
features. The comparative analysis of the local detail information
of the rooftop will be described in the “Discussion” section.

V. DISCUSSION

A. Comparison Experiments

To further analyze and compare the strengths and limitations
of MSBR-GNet, as well as to validate the generalization capabil-
ity of the model, we present building prediction results and local
detail comparison plots on three publicly available datasets, re-
spectively. In this article, the MSBR-GNet method is compared
with five mainstream SOTA building extraction methods, includ-
ing mask R-CNN [23], MS-CNN [10], MAP-Net [45], STT [57],
and CBR-Net [58]. Mask R-CNN is the most popular building
instance extraction method, which adds a network branch to
the original R-CNN for predicting segmentation masks on each
RoI. MS-CNN is an improved residual block based on mask
R-CNN, which introduces multiscale parameters to improve
the model’s ability to identify multiscale building symbiosis.
The MAP-Net is an innovative neural network that employs
multiple attending paths to learn spatial localization-preserved
multiscale features. These features are extracted through a
multiparallel path, where each stage progressively generates
high-level semantic features with a fixed resolution. STT uses
the transformer for efficient building extraction and introduces
a new module, the sparse token sampler, by which buildings are
represented as a set of “sparse” feature vectors in their feature
space, greatly reducing computational complexity. CBR-Net
introduces a boundary refinement module that reflects building
predictions by sensing the orientation of each pixel in an optical
remote sensing image to the center of the nearest object to which
it may belong, for the purpose of boundary optimization. These
methods have achieved SOTA performance in either semantic
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Fig. 14. Test results from remote sensing images of three different cities. (a) Bellingham. (b) Tyrol. (c) Innsbruck.

TABLE V
QUANTITATIVE COMPARISON OF EXTRACTION ACCURACY WITH SOTA

METHODS ON INRIA AERIAL IMAGE DATASET

segmentation or building extraction tasks. Among them, mask
R-CNN, MS-CNN, and MSBR-GNet belong to the instance
segmentation methods, while we added experiments with three
semantic segmentation models (MAP-Net, STT, and CBR-Net)
to compare the two classes of methods. All methods use the
same experimental setup and the same self-labeled building
rooftop dataset BUCEA 2.0 mentioned in 4.1 as the training set,
and are tested on three publicly available building datasets to
compare the model recognition effectiveness and generalization
capability.

1) Evaluation With the INRIA Aerial Image Dataset: The ex-
traction accuracy comparison results on the INRIA aerial image
dataset are presented in Table V. MSBR-GNet achieved the best
results in precision, F1-score, and IoU metrics, with F1-score
and IoU reaching 91.42% and 85.54%, respectively. In terms
of precision, the proposed method outperformed mask R-CNN,

MS-CNN, MAP-Net, STT, and CBR-Net by 10.37%, 0.47%,
1.34%, 3.01%, and 2.07%, respectively. It indicates that the
method can effectively improve the accuracy of building rooftop
extraction. The index in recall is slightly lower than MAP-Net
and STT (0.0044, 0.0012) due to the higher resolution of the
INRIA aerial remote sensing image dataset and the influence
of the “same spectrum with different objects” phenomenon in
remote sensing images, which confuses the spectral features of
buildings with the surrounding features and increases the false
detection rate of building rooftops.

As shown in Table VI, the comparison results of the boundary
quality on the INRIA aerial imagery dataset. The MSBR-GNet
model exhibited superior performance across all boundary eval-
uation metrics, with a minimum HD95 value of 80.59 and a
maximum SSIM value of 0.9245, indicating its effectiveness
in enhancing the accuracy of boundary extraction. Due to the
small and scattered buildings in the INRIA dataset, the values
of all indicators tested in all models on this dataset are relatively
high.

As shown in Fig. 15, a further look at the results of the tests
in the INRIA aerial dataset in detail. MSBR-GNet was able
to ensure the integrity of the large building outline extraction,
as shown by the red box in the fourth column in Fig. 15. In
the INRIA aerial imagery dataset, the buildings in the area are
relatively scattered and not contiguous, which has less impact
on the extraction of building rooftops.

2) Evaluation With the WHU Building Dataset: As shown
in Table VII, the comparison results of extraction accuracy
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Fig. 15. Visualized results of building instance extraction using the INRIA aerial image dataset. (a) Original remote sensing imagery. (b) Ground truth. (c) Mask
R-CNN. (d) MS-CNN. (e) MAP-Net. (f) STT. (g) CBR-Net. (h) Proposed model.
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TABLE VI
QUANTITATIVE COMPARISON OF BOUNDARY QUALITY WITH SOTA METHODS ON INRIA AERIAL IMAGE DATASET

TABLE VII
QUANTITATIVE COMPARISON OF EXTRACTION ACCURACY WITH SOTA

METHODS ON WHU DATASET

on the WHU building dataset. MSBR-GNet achieved the best
results in all four metrics, with the F1-score and IoU reach-
ing 88.26% and 82.43%, respectively. In terms of precision,
the proposed method outperformed mask R-CNN, MS-CNN,
MAP-Net, STT, and CBR-Net by 9.90%, 6.64%, 1.85%, 2.66%,
and 1.70%, respectively. In terms of recall, the proposed method
outperformed mask R-CNN, MS-CNN, MAP-Net, STT, and
CBR-Net by 6.49%, 4.07%, 0.96%, 0.23%, and 0.69% respec-
tively. MSBR-GNet was effective in improving the accuracy
of building rooftop extraction. The overall metrics tested on this
dataset were slightly lower than the INRIA dataset. In addition to
differences in satellite sensors, atmospheric conditions, panchro-
matic and multispectral fusion algorithms in the imagery, atmo-
spheric, and radiometric corrections, and seasonal variations, the
ability to generalize the model was also influenced by seasonal
fluctuations. The densely distributed buildings, primarily con-
sisting of factory structures and exhibiting a contiguous pattern,
also exerted an impact on the overall evaluation metrics.

The comparison results of the boundary extraction quality
on the WHU satellite image dataset are shown in Table VIII.
On both HD95 and SSIM, the proposed model MSBR-GNet
achieved the best results with 185.46 and 0.9277, respectively,
the overall metrics in the WHU dataset are comparatively low
when compared to those in the INRIA dataset, primarily due to
the varying resolution of building images and their overall darker
tone, which unfavorably impacts the predicted results after being
input into the model.

The results of building extraction on the WHU building
dataset are shown in Fig. 16. As shown in the red boxed part
of the second column of Fig. 16, dense building area adhesion
occurred in the STT and CBR-Net recognition results, and
building omission occurred in mask R-CNN and MAP-Net,
while our proposed MSBR-GNet model can ensure the integrity

of building contour extraction while guaranteeing a certain
detection rate. In the remote sensing images of the WHU dataset,
the features around the building have similar spectral, textural,
shape, and color characteristics to the plant, which increasing
the incidence of wrong and missed detection of the building
rooftop. As shown in the red box in the fifth column of Fig. 16,
even in complex scenes containing tree shading, mislabeled or
buildings of different sizes and styles, MSBR-GNet can still
extract building rooftop results with a more complete boundary
shape than other models.

3) Evaluation With the Massachusetts Building Dataset: As
shown in Table IX, the comparison results of extraction accuracy
on the Massachusetts building dataset. MSBR-GNet achieved
the best results in precision, F1-score, and IoU metrics, with
F1-score and IoU reaching 87.15% and 83.44%, respectively.
In terms of precision, the proposed method outperformed mask
R-CNN, MS-CNN, MAP-Net, STT, and CBR-Net by 12.33%,
5.33%, 1.01%, 4.41%, and 4.96%, respectively. In terms of
recall, MSBR-GNet was significantly higher than comparable
methods, and MSBR-GNet was effective in extracting building
rooftops in dense areas. The MAP-Net method had higher pre-
cision values, but lower recall values, indicating many missed
detections.

The results of the boundary quality evaluation for building
extraction in the Massachusetts dataset are shown in Table X.
The HD95 values are generally high for all methods due to
the presence of many complex buildings in the Massachusetts
dataset, however MSBR-GNet still achieved a minimum value of
254.26, which indicates that our model is effective for complete
and regular extraction of complex buildings.

A qualitative evaluation of the test results in the Massachusetts
building dataset is shown in Fig. 17. Both mask R-CNN and
MAP-Net show missed detection of large-scale and intricate
buildings. The MS-CNN and CBR-Net also show a certain
degree of distortion in their recognition results, compared to
MSBR-GNet, which achieves regularized extraction of large-
scale and intricate buildings. In addition, as shown in the red box
in the fifth column of Fig. 17, MSBR-GNet still able to achieve
a certain degree of completeness while achieving regularized
extraction of dense building areas.

B. Ablation Experiments

1) Model Ablation: In this section, the ablation study will test
the validity of two key components of the model. Without loss
of generality, the ablation experiments and analysis are carried
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Fig. 16. Visualized results of building instance extraction using the WHU building dataset. (a) Original remote sensing imagery. (b) Ground truth. (c) Mask
R-CNN. (d) MS-CNN. (e) MAP-Net. (f) STT. (g) CBR-Net. (h) Proposed model.
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Fig. 17. Visualized results of building instance extraction using the Massachusetts building dataset. (a) Original remote sensing imagery. (b) Ground truth. (c)
Mask R-CNN. (d) MS-CNN. (e) MAP-Net. (f) STT. (g) CBR-Net. (h) Proposed model.
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TABLE VIII
QUANTITATIVE COMPARISON OF BOUNDARY QUALITY WITH SOTA METHODS ON WHU DATASET

Fig. 18. Comparison of sample ablation results based on a subset of geometric features. (a) is the original image. (b) Test results for model training using only
a subset of rectangular building rooftop samples. (c) Test results for model training using only a subset of L-shaped building rooftop samples. (a) Original image.
(b) Only rectangle image. (c) Only L roof.

out in the INRIA dataset based on the analysis of the above-
mentioned experimental results. The well-known mask R-CNN
is also used as the baseline model, and then the components of
each module are added gradually.

As shown in Table XI, in terms of precision, the fusion of
the multiscale parameter residual blocks improved the baseline
from 82.38% to 87.93%. In particular, the recall value improved
from 78.09% to 86.25%. This percentage improvement indicates
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Fig. 19. Comparison of sample ablation results based on a subset of spectral features. (a) is the original image. (b) Test results of model training using only a
subset of red building rooftop samples. (a) Original image. (b) Only red.

TABLE IX
QUANTITATIVE COMPARISON OF EXTRACTION ACCURACY WITH SOTA

METHODS ON MASSACHUSETTS DATASET

that the introduction of a multiscale residual block is effective in
achieving multiscale symbiosis recognition of building rooftops.

As shown in Table XII, the addition of BR loss increases
the SSIM from 87.44% to 90.44% and the HD95 value is
reduced by 120.85, which means that BR loss helps to extract
finer building rooftop contours. The majority of the extraction
accuracy metrics exhibited a slight improvement compared to
the baseline model results, but with a smaller magnitude. This
observation further underscores the effectiveness of BR loss in
mitigating irregularities during building rooftop extraction and
achieving an optimal level of segmentation precision. Ultimately
MSBR-GNet precision, F1-score and IoU all achieved optimal
scores of 92.75%, 89.18%, and 85.84% respectively, and further
improvements of 10.37%, 8.10%, and 11.31% over the baseline,

while the boundary evaluation metrics also achieved optimal
scores.

2) Sample Ablation: The construction of the self-labeled
pedigree sample dataset BUCEA 2.0 was described in Exper-
iments, where subsets of pedigree samples were separately
constructed based on the geometric and spectral features of
building rooftops in remote sensing imagery, thereby forming
a comprehensive Tupu sample library. Based on the geometric
and spectral features of the rooftops, we extracted 1–2 sam-
ple subsets corresponding to each of them to train the model
schematically. The feasibility of the sample set organization
form oriented toward the interpretability of rooftop features
and the effectiveness of the sample set construction method
are verified through ablation, in accordance with the intrinsic
mechanism of pedigreed features.

As shown in Figs. 18 and 19, we extracted a subset of rectan-
gular and L-shaped building rooftops and red building rooftops
from the Tupu sample library for model training experiments,
respectively. From the prediction results obtained, it can be
seen that by training the sample subsets with different geomet-
ric and spectral features separately, the building rooftops with
the required geometric and spectral features can be extracted
separately from the remote sensing images, which verifies the
feature interpretability of the construction of the Tupu sample
library (set) in this article. At present, due to the limitation of
the number of sample subsets, the building rooftops matching
a certain spectral feature (e.g., the part in the first column of
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TABLE X
QUANTITATIVE COMPARISON OF BOUNDARY QUALITY WITH SOTA METHODS ON MASSACHUSETTS DATASET

TABLE XI
QUANTITATIVE EVALUATION OF EXTRACTION ACCURACY IN ABLATION EXPERIMENTS

TABLE XII
QUANTITATIVE EVALUATION OF BOUNDARY QUALITY IN ABLATION EXPERIMENTS

red box in Fig. 19) are not marked in the sample due to their
complex geometric features, and thus are not detected, which
can be considered for optimization in the subsequent sample
subset construction work.

VI. CONCLUSION

This article proposes a generative optimization model MSBR-
GNet for regularized extraction of building rooftop boundary in
aerial and satellite imagery, guided by interpretable statistical
pattern in the boundary spatial and spectral domains. The method
utilizes a generative network structure and incorporates an inno-
vative boundary loss function into the generator’s mask loss to
constrain the regularized generation of the building roof mask
boundary. The MSBR-GNet generative network structure can
help improve the accuracy of the instance segmentation model
by providing additional supervision, where the adversarial loss
encourages the generator network to produce outputs closer
to the ground-truth segmentation mask and generating more
accurate segmentation masks. The boundary loss function can
guide the generation of regularized mask boundary from both
the spatial and spectral domains.

Experiments conducted on public datasets demonstrate the
validity of the proposed MSBR-GNet. The module ablation

study conducted in this article also shows that the boundary
loss function in the method has good performance for building
rooftop contours regularized generation, improving the accuracy
of building extraction and performs well in multiscale symbiosis
identification. In addition, this article constructs a set of sample
library of building roof genealogical Tupu for the interpretability
of geological laws, and verifies the feasibility and validity of the
Tupu sample library construction method through sample set
ablation experiments.

In our future research, we aim to enhance the accuracy of
building extraction from aerial imagery by incorporating se-
mantic constraints and will further expand our sample library
based on geological laws, with a specific focus on addressing
the inherent contradiction between geographical coupling of
samples and the model’s universal applicability.
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