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Proxy-Based Rotation Invariant Deep Metric
Learning for Remote Sensing Image Retrieval

Zhoutao Cai , Yukai Pan , and Wei Jin

Abstract—Convolutional neural networks (CNNs) are frequently
utilized in content-based remote sensing image retrieval (CBRSIR).
However, the features extracted by CNNs are not rotationally in-
variant, which is problematic for remote sensing (RS) images where
objects appear at variable rotation angles. In addition, because
RS images contain a wealth of content and detailed information,
CNNs may lead to information loss by superimposing multiple
convolutional and pooling layers, affecting the ability of the model
to extract features. To address these problems, this article proposes
a proxy-based feature fusion network. By designing a proxy-based
Euclidean distance contrast loss that combines contrast learning
within the framework of metric learning, such that the distance
between the source image and its rotated image embedding vector
in the metric space is closer than any other image, thus endowing
the model with a certain degree of rotation invariant. Meanwhile,
the global correlation map is generated by multilayer fusion, under
whose guidance the features of each layer are fused to improve the
feature extraction capability of the model and to reduce the loss in
the image flow process. Extensive experiments based on two public
RS datasets show that the method achieves better performance
compared to other methods.

Index Terms—Deep neural network, feature fusion, metrics
learning, remote sensing (RS) image retrieval, rotation invariant.

I. INTRODUCTION

IN RECENT years, with the continuous development of
satellite observation technology in recent years, millions of

remote sensing (RS) images have been sent back to massive
databases via various satellite remote sensors [1]. Meanwhile,
due to the large amount of geographic scene information con-
tained in RS images, there are significant difficulties in process-
ing. Therefore, much research on image processing has focused
on RS images. Some of the most common methods among them
are target recognition and detection [2], [3], [4], image classi-
fication, image retrieval [5], etc. In this article, we investigate
image retrieval based on RS images. The goal of image retrieval
is to search large databases accurately and efficiently for specific
information based on user requirements, returning all images
similar to a provided reference image [6], [7].
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Content-based remote sensing image retrieval (CBRSIR),
as a branch of remote sensing image retrieval, has become
increasingly popular in the RS community. In general, CBRSIR
mainly consists of two components: feature extraction and
similarity measurement [8]. Feature extraction focuses on
extracting representative features from RS images, while
similarity measurement measures the similarity between the
query image and the target image to identify the most similar
image from the database.

Most traditional feature extraction methods rely on manually
designed features that are constructed by applying color, texture,
or histograms of oriented gradient descriptors to the image.
However, the use of manually designed features cannot accu-
rately describe RS scenes because RS images are complex and
contain a wealth of content and detailed information, which often
leads to inferior retrieval results. Advancements in deep learning
have led to the widespread adoption of convolutional neural
networks (CNNs) for extracting high-level semantic information
from RS images through an end-to-end manner [9], [10], [11].
CNNs utilize extensive training data, layer convolutional and
pooling operations to produce feature maps at various scales.
These maps encapsulate the image’s features at different levels,
from high-level semantics to low-level spatial details [12], [13].
However, as more layers are added to the network, more im-
age information is lost as images move through the network.
This bottleneck effect in many deep models often results in
feature maps that might lack crucial shape or texture details,
consequently leading to a diminished perception of detail in the
features and degraded retrieval performance.

In contrast to natural images, RS images are captured by
airborne or satellite-based sensors, and different projection di-
rections can result in the same object appearing at different
rotation angles in RS images. However, the features extracted by
the CNN are not rotation invariant, which is problematic. For this
scenario, we would like the trained CNN model to possess some
rotation invariant capability, such that the retrieval results rank
the rotated image of the query image higher than other similar
images. Deep metric learning (DML) uses labeled images as
input for end-to-end network training to extract representative
features by enhancing intra-class compactness and inter-class
separability. The approach has been successfully applied to RS
image retrieval tasks [14], [15], [16]. In general, DML explores
the relationships between sample pairs by constructing a metric
space. However, information retention between sample pairs is
typically heavily dependent on the construction of the sample
pairs, and as more samples are trained, the training process
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becomes longer and converges slower. In recent years, proxy-
based DML [17], [18], [19] has garnered a lot of attention due
to factors like its fast convergence and low time complexity. The
method assigns some learnable proxy points to each class to rep-
resent the overall features of that class. During network training,
input samples are attracted to locations close to the proxy points
of the same class to generate a meaningful embedding space.

Inspired by this, we utilize proxy-based DML to effectively
learn deep embedding and steer network optimization toward
creating a hierarchical metric space. This space preserves local
structural integrity among RS images. Specifically, we propose
a feature fusion module (FFM) that leverages the hierarchical
extraction of information from backbone networks to generate
a global correlation graph. The global correlation graph is used
to guide the supervision of feature fusion at each layer, thereby
reducing information loss, maximizing the use of features at
different scales and levels, and enhancing the model’s ability to
extract features. After that, we design a proxy-based Euclidean
distance contrast loss such that samples from the same class are
closer to the proxy point of that class in the metric space, and
the distance between an image and its rotated image embedding
vector is closer than that of any other image. The main contri-
butions of this article can be summarized as follows.

1) To fully integrate information between different layers,
we propose a FFM that utilizes a global correlation graph
to fuse features from each layer. This module improves
image feature extraction and strengthens the interaction
between features across different layers.

2) We propose a proxy-based Euclidean distance contrast
loss for network training. By employing this contrast loss,
we minimize the distance in the metric space between
the source image and its rotated image embedding vector,
compared to all other images. This allows the model to
be endowed with certain class discriminative ability and
rotation invariance at the same time.

3) The proposed method is evaluated on two public datasets,
and the results show that the method achieves 98.07%
and 99.49% mAP on UCMD and PatternNet respectively,
which is better than other existing methods.

II. RELATED WORKS

A. Content-Based RS Image Retrieval

In recent years, deep learning has received considerable at-
tention within the RS community. The hierarchical structure of
CNNs can model extremely complex nonlinear functions and
automatically learn the hyper-parameters of the CNN during
training. As CNN models can extract high-level semantic fea-
tures from images, these extracted features have been widely
applied in CBRSIR. To depict the semantic content of RS scenes,
extensive research has been conducted. For example, Zhou et al.
[20] retrained mainstream CNN models for RS scenes, and ex-
perimental results demonstrate that their retrieval performance
is noticeably superior to that of traditional techniques. Yu et al.
[21] introduced a novel light-weighted nonlocal semantic fusion
network based on hypergraph structure for CBRSIR, which
is better to understand the global features of RS images with

fewer parameters and less computation. A series of experimental
results show the method achieves optimal retrieval performance.
Hou et al. [22] proposed an attention-enhanced end-to-end dis-
criminative network to effectively capture salient features in
RS images. Xu et al. [23] developed a sketch-based RS image
retrieval framework to search for images in RS databases based
on hand-drawn sketches. Chen et al. [24] proposed a new deep-
significance smoothed hashing algorithm to focus on the local
fine-grained features and saliency information for drone images.
Zhao et al. [25] obtained finer-grained multiscale features and
achieved a larger receptive field by incorporating the proposed
multiscale residual blocks, and the proposed multicontext atten-
tion modules increase the perceptual field by aggregating contex-
tual information along channels and spatial dimensions. Exper-
imental results show that this method achieves excellent results.

However, the number of labeled samples in the RS domain
is relatively small compared to large-scale natural image
datasets (e.g., ImageNet), which hinders the learning of CNN
models. Li et al. [26] generated unsupervised features by
designing unsupervised networks and fusing multiple features of
an image for retrieval. Tan et al. [27] proposed a deep contrastive
self-supervised hashing to learn precise hash codes by
developing a new loss function using unlabeled images. Sumbul
et al. [28] used a self-supervised approach to model the mutual
information between different modalities, preserving intermodal
similarity and eliminating intermodal differences. Liu et al. [29]
proposed a lightweight similarity-based model, SBS-CNN,
which uses multiple CNN models to pseudo-label unlabeled RS
images by transfer learning. In addition, a new loss function was
proposed to obtain compact features by taking into account the
sequential relationship between categories. Experiments show
that this approach achieves promising retrieval performance.

B. Proxy-Based DML

DML focuses on finding appropriate similarity measures be-
tween data pairs to maintain the required distance structure.
In particular, contrast loss [30] explores the distance between
two samples. It separates pairs from different classes in the
embedding space while bringing pairs from the same class
closer together. Triple loss [31] explores distances between three
samples, each comprising a positive sample, a negative sample,
and an anchor point. Triple loss aims to learn an embedding
space where the similarity of negative pairs is lower than that
of positive pairs by giving a margin. Song et al. [32] argued
that for either contrast loss or triple loss, it is challenging to
fully examine paired relationships between small batches of
samples. To take into account the relationship between a similar
pair and several different pairs, they proposed a lifted structured
loss. Wang et al. [33] proposed multisimilarity loss that fully
considers the three similarities of sample pair weighting and
combines the two iterative steps of sampling and weighting.
Song et al. [34] focused on the correlation between single-source
and cross-source data samples and proposed a hashing-based
DML method, which elaborated a label-based semantic loss and
a hash-based metric loss to classify the extracted features and a
decision-level fusion strategy was used to further improve the
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classification results, which yielded excellent results. However,
the majority of twinned samples produced by pair-based metric
learning methods may contain a considerable number of highly
redundant or uninformative samples. In addition, choosing too
many samples for network training can result in excessive time
consumption, slow convergence, and significantly lower model
performance.

Proxy-based DML has been an emerging approach in
recent years. The method initializes the proxy using network
parameters and optimizes the proxy as the network parameters
are optimized. Movshovitz-Attias et al. [18] proposed the first
proxy-based loss proxy-NCA, which significantly reduces
training time by allowing similar samples to be clustered
together and different samples to be separated based on
assigning a proxy to each category. Yuan et al. [35] proposed
a compact proxy-based deep learning framework designed
with a compatible two-metric loss function to optimize the
embedding space distribution and enhance the network’s robust
generalization ability. Liu et al. [36] used a prototype network
to study the classification of hyperspectral images by extracting
spectral spatial features to reduce uncertainty in sample
labeling, and experiments showed that better results were
obtained compared to conventional semi-supervised methods.

In this study, we utilize proxy-based metric learning to acquire
distinctive features, offering improved efficiency in network
training compared to the prevalent sample-based metric learning
techniques. However, the effectiveness of the proxy-based net-
work is substantially influenced by the choice of a suitable metric
and loss function. To address this, we integrate contrast learning
within the metric learning framework and devise a proxy-based
contrast loss leveraging the Euclidean distance metric. This
approach enables the concentration of similar image features
around the agent points corresponding to their respective classes,
while also aligning with our requirement for an embedding space
with a hierarchical structure.

C. Multiscale Feature Representations

Deep learning has achieved excellent performance in almost
all areas of computer vision. Due to its ability to fully explore the
high-level semantic information of images, this method is very
popular in the field of image retrieval. Many CNN-based models
attempt to learn the deep semantic information of an image to
further improve retrieval performance. However, deep semantic
features do not include finer details such as an image’s shape,
texture, or color, which can compromise retrieval performance.
To address this problem, many researchers have investigated
multiscale feature representation. Lin et al. [37] proposed a
top-down feature pyramid structure based on learning multiscale
features for target detection through lateral connections. Ron-
neberger et al. [38] proposed U-Net by adding jump connections
between the corresponding layers of the encoder and decoder on
FCN. Hou et al. [39] introduced short connections in the jump
layer structure of HED to address the scale space issue. However,
they simply combine high-level features with low-level features,
which inadequately extracts features. Zhao and Wu [40] used
pyramidal feature attention networks to fuse multiscale

features to generate saliency maps. Mari et al. [41] adopted a
transformer-based approach to enhance the multiscale feature
map information extracted by the backbone and achieve good
retrieval performance. Chu et al. [42] employed a multiscale
visual attention mechanism to extract features, combined it
with the product quantization method, reduced dimensionality,
and reduced the computational cost of retrieving RS images.
Song et al. [43] proposed a DFFN model for fusing different
levels of outputs, extracting more discriminative features of
hyperspectral images, and improving classification accuracy.

Inspired by these approaches, we believe that combining
multiscale features from different levels of CNNs can enhance
the performance of image retrieval. Our method deviates from
traditional approaches by adopting a multilayer fusion strategy,
utilizing features from multiple layers to create a global correla-
tion map. This approach takes into account the complementarity
and contextual associations between diverse layers. Guided by
the global correlation map, we selectively extract the portions
of the feature maps from each layer that are rich in information
and those that facilitate interlayer interactions. Subsequently,
we exploit this interactive data to merge the characteristics
of each layer, thereby minimizing informational loss. In the
experimental part, it is verified that our method has favorable
performance.

III. METHOD

To make full use of low-level features and high-level semantic
features to generate more meaningful image representations, we
propose a novel proxy-based feature fusion proxy-based feature
fusion network (PBFFN) network. In addition, we introduce a
new DML loss function to generate rotationally invariant RS
image features, which addresses the rotationally variant problem
from a DML perspective. The proposed approach consists of two
main components: 1) a backbone CNN model for extracting deep
fusion features and 2) a new DML loss for training this model
in a rotation-invariant manner. Later, we will describe all these
components in detail.

A. Network Architecture

In CNN-based network architectures, there is a notable loss
of information as images pass through the network. Therefore,
in order to fully leverage features from both higher and lower
layers, minimize information loss, and enable the network to
generate more meaningful image representations, we adopt a
multilayer fusion strategy to integrate them. We adopt a deep
neural network to extract features from the different layers of
the image. Since ResNet effectively addresses the issue of deep
network degradation, we adopt it as the backbone of our network
architecture. The PBFFN network architecture is shown in Fig. 1.
Accounting for variations in input image resolution, we resize
the input image to 256× 256 pixels, to preserve more fine details
of the image while enhancing the robustness of batch processing.

We define X = {x1, x2, . . . , xN} as the set of input RS
images in each batch, where N represents the size of the
batch. The corresponding labels for these images are given by
Y = {y1, y2, . . . , yN} , where yi ∈ {1, . . . , C}, and C is the
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Fig. 1. Proposed PBFFN diagram. First, corresponding convolution operations are performed on the features extracted from layers 2, 3, and 4 of the network,
and then enter the FFM module for feature fusion guided by the global correlation map M. The fused features undergo the global average pooling operation and
then enter the metric space through an FC layer for learning. Finally, we introduce a classification layer and a jointly embedding layer to train the network model.
Two loss functions will be employed to train the network.

Fig. 2. (a) Global correlation map M . The “LAP” and “GAP” denote the layer average pool and global average pool, respectively. (b) Feature decomposition
module. (c) Feature update module (FUM).

total number of categories in the dataset images. To enhance
the utilization of multiscale multilevel features, inspired by
the article by Dai et al. [44], we adopt a global correlation graph
to guide the feature fusion process at each level. The specific
process is shown in Fig. 2(a). First, to ensure that multilevel
features have the same channel dimensions at different heights
and widths, we apply 1 × 1 convolution operations on the input
image X successively at layers layer2, layer3, and layer4 within
the backbone network, and then obtain the convolved features
L2, L3, and L4. Subsequently, L4 is up-sample using bilinear
interpolation and fused with L3, and adopts the same operation
to fuse L2. Finally, layer average pooling and global average
pooling operations are applied to obtain the global correlation
map M

M = L2 ⊕ (UP (L3 ⊕ UP ( L4;L3) ;L2)) /3×H ×W (1)

where H and W represent the length and width, respectively,
UP(x; y) refers the up samplingx to the same size asy by bilinear
interpolation, and ⊕ denotes the summing element values. We
view the computed M as a global correlation map between
features at each level.

After obtaining the global correlation graph M , we enhance
the feature representation by interactively combining M with
features from different layers using the global correlation map
as guidance. We consider that a portion of the features in each
layer contains rich information specific to that layer, while others
are less informative and are only used for information exchange
between layers. Therefore, we refer to the features containing
rich information as the high-relevance features of the layer and
the others as the low-relevance features of the layer. In order to
obtain these two types of features, we first need to obtain their
weight values. The specific structure is shown in Fig. 2(b). Here,
Li is the input to the module, and i ∈ {2, 3, 4}. First M and Li

perform a concatenation operation to interact with each other,
and then they sequentially pass through a 1× 1 convolution
layer, batch normalization (BN) layer, and to keep the output
between [0,1], we use a Sigmoid activation function to obtain
the weights Wh = {Whi}4i=2 of the highly correlated features.
The above process can be expressed as

Wh = φ (BN (conv (Concat (Li,M)))) (2)
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where Concat() denotes the concatenation operation, conv
denotes the convolution operation to change the number of
channels of the features, BN denotes the BN operation, and
φ() denotes the Sigmoid activation function. Based on this,
we acquire the high relevance weight Wh. Subsequently, we
perform a reverse operation on Wh by using a matrix with
all elements 1 to subtract Wh to obtain the low-relevance
feature weights Wl. Finally, we multiply Li with the high
relevance feature weight Wh and the low relevance feature
weight Wl to obtain the corresponding high relevance fea-
ture Fh = {Fhi}4i=2 εℛC×H×W and the corresponding low
relevance feature Fl = {Fli}4i=2 εℛ

C×H×W , respectively.
In order to fully fuse the high- and low-correlation features

obtained for each layer, we further interactively update the
fused features to obtain the new high-correlation features Nh =
{Nhi}4i=2 and the new low correlation features Nl = {Nli}4i=2.
The specific module structure is shown in Fig. 2(c). Specifically,
for layer4, we take the low correlation features Fl4 and high cor-
relation features Fh4, pass them through a 1 × 1 convolutional
layer and the ReLU activation function, respectively. After the
channel-level concatenation operation, a global average pool op-
eration and an squeeze-and-exaction operation are performed to
obtain the channel weightsW . Subsequently, We multiplyW by
Fh4 and Fl4 to obtain the new high- and low-correlation features
Nh4 and Nl4, respectively. Furthermore, to fully leverage the
connection information within the low-correlation features, for
layer2 and layer3, we update the low-correlation feature Fl of
this layer by concatenating and convolving it with the Nl of
the next layer, the same operation is then performed with the
high-correlation features of that layer. Finally, we discard the
low-correlation features Nl that only serve as information link-
ing, and then up-sample and concatenates the high-correlation
features Nh of each layer to obtain the final multilevel fused
features Fm. The above-mentioned process can be summarized
as follows:

Fm=Concat (Nh2,UP (Concat (Nh3,UP (Nh4;Nh3)) ;Nh2)).
(3)

Subsequently, we apply the obtained Fm through average
pooling, reduce the dimensions using a FC layer, and then
enter the metric space for learning. Furthermore, we introduce
a classification layer to optimize the model for training.

B. Loss Function

In order to make the whole framework end-to-end trainable
while satisfying the retrieval requirements, the loss function
needs to meet three criteria.

1) The loss function must be derivable for both CNNs and
proxy.

2) The loss function is optimized to ensure that the embed-
ding features of the image are close to the proxy of its
corresponding class while maintaining a distance between
proxies of different classes.

3) The source image and its rotated image are closer to
each other in the embedding space than other images. To
address the mentioned requirements, we propose a proxy-
based Euclidean distance contrast loss function LPEDC.

For metric learning, two different metric functions, Euclidean
distance and cosine similarity, are commonly used to measure
the similarity between two vectors. Euclidean distance is a
measure of the straight-line distance between two points in a
multidimensional space; the larger the Euclidean distance, the
less similar the two points are, whereas cosine similarity is more
concerned with the directional difference between the vectors. In
order to construct a metric space with a hierarchical structure, we
use the Euclidean distance function as a metric function, which
more intuitively reflects the distance between the embedding
features of the image and the class proxy from the scale size.

Intuitively, in the embedding space, instance feature points
are often scattered on a low-dimensional manifold. On this
manifold, if an instance feature is closer to a proxy in space
than other features, then the instance should be assigned to the
class represented by that proxy. We use the probability between
each instance feature vector and its proximity proxy to design
the proxy-based Euclidean distance loss LPED.

Initially, we utilize the Euclidean distance between the feature
vectors of an image and the proxy points to predict the correct
class. Moreover, the probability that a feature is correctly classi-
fied P (X ∈ Ci) is positively correlated with the distance from
the image sample to its corresponding proxy point

P (X ∈ Ci) ∝ −‖f (X; θ)− p‖2i2 (4)

where pi represents the category Ci to which the proxy cor-
responds and θ is a parameter of the model. It is important to
note that for each category we set only one proxy point for
calculation. The classical cross-entropy (CE) loss is expressed as
LCE (P ) =

∑m
i=1 −yilogP , where m is the number of training

in a batch yi is the one-hot label of xi and P indicates the
probability of an input sample belonging to a specific class.
Similarly, we normalize the nonzero sum of distance-related
probabilities to

P (X ∈ Ci) =
exp

(
−α ‖f (X; θ)− p‖2i2

)

∑C
n=1 exp

(
−α ‖f (X; θ)− p‖2n2

) (5)

where C is the number of categories, i.e., the number of proxy
points, α is a hyper parameter that controls the distance scale
constraint. We then place this probability function into the loss
function LPED as follows:

LPED = − log (P (X ∈ Ci))

= − log

⎛
⎝ exp

(
−α ‖f (X; θ)− p‖2i2

)

∑C
n=1 exp

(
−α ‖f (X; θ)− p‖2n2

)
⎞
⎠ . (6)

With this loss function, we can easily compute and optimize
the network. The distance of each feature vector to its correct
class of proxy points is decreasing.

In addition, in order to ensure that the model has a certain
degree of rotation invariance and the embedding space has a
certain level of hierarchy, it is vital to ensure that source images
and their rotations are closer to each other than to similar
category images in the same metric space. Contrast learning
forces positive sample pairs to be similar to different negative
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sample pairs. This approach is commonly used in unsupervised
learning tasks [45], [46], and effectively groups instances under
their respective labels. It treats different augmentations of the
same sample as positives, while others are considered negatives.
Inspired by this, we consider the source image and its rotated
image as one class, and the remaining images and their rotated
images are assigned to other classes. This approach enables
us to perform binary classification exercises for each training
batch, alleviating the difficulty of training. By incorporating
unsupervised ideas, we can improve the model training process
for learning rotation invariant image properties. Specifically,
given a set of input images X = {x1, x2, . . . , xN} , we use
a randomly chosen rotation angle to generate the corresponding
rotated images X̂ = {x̂1, x̂2, . . . , x̂N} . We consider (xi, x̂i)
as positive sample pairs and (xi, x̂j)(i �= j) as negative sample
pairs, all of which come from the same batch. Based on this
framework, we design a contrast loss function LC

LC =
1

N

N∑
i = 1

(
�
(
xi, X̂

))
(7)

l
(
xi, X̂

)
= − log

exp
(

S(xi,x̂i)
τ

)

∑N
n = 1(n�=i) exp

(
S(xi,x̂n)

τ

) (8)

where S(i, j) denotes the cosine similarity of features i, j, and τ
denotes the temperature coefficient. Thus, the final proxy-based
Euclidean distance contrast loss function LPEDC is, where δ is
the penalty factor

LPEDC = LPED + δLC . (9)

To further enhance the classification accuracy, we add a
classification layer as a branch to increase the model’s ability to
distinguish between different classes. We use the cross-entropy
loss LCE. Finally, the total loss function is defined as

Ltotal = λLPEDC + ξLCE (10)

where λ, δ, and ξ are the penalty parameters in order to better
balance the individual losses.

IV. EXPERIMENT

To evaluate the effectiveness of our proposed PBFFN frame-
work, several experiments are conducted in this section. First,
we introduce the experimental dataset and the experimental
environment. Second, we present the implementation details of
the experiments. Finally, we present the experimental results and
provide a detailed analysis.

A. Dataset and Settings

There are two public commonly used RS image datasets in
our experiments UCMD and PatternNet.

1) The UCMD [47] is a public, free dataset of RS imagery.
The dataset is manually extracted from the USGS National
Map Urban Area Imagery series of large images. It has 21
images of different land-use categories, each containing
100 images. The image pixel size is 256 × 256 and the
spatial resolution is 0.3 m.

2) The PatternNet [20] is a high-resolution RS image dataset
for large-scale image retrieval. The dataset images are
derived from Google Earth imagery or the Google Maps
API for US cities. It contains a total of 30 400 images
divided into 38 categories, each with 800 images of 256
× 256 pixels in size, each with a spatial resolution of
0.062–4.693 m.

In order to compare the effectiveness of different retrieval
methods, we need to use evaluation criteria that are commonly
employed in this field. We adopt mean average precision (mAP)
and P@k as evaluation criteria. Higher values of mAP and P@k
indicate better performance. Specifically, given a number of
query images of Q, the value of mAP can be calculated by the
following equation:

mAP =
1

Q

Q∑
r=1

AP (r) (11)

where AP denotes average precision and is defined as

AP =
1

R

K∑
k=1

P (k) r (k) (12)

where P (k) denotes the precision of the first k images retrieved,
r(k) is an indicator function that specifies whether the kth image
is relevant to the query image: the value is 1 if it is relevant to the
query image and 0 if it is not. K denotes the number of images
retrieved and R is the number of ground-truths retrieved.

In general, the precision of a retrieval is the ratio of correct re-
trieval results to the retrieval results obtained. We use P@k as an
auxiliary performance measure, which represents the precision
when the number of returned results is K. It can be calculated
by the following equation, where Rk(r) represents the number
of images associated with the query image in the first k images
retrieved

P@k =
1

Q

Q∑
r = 1

Rk (r)

k
. (13)

We use a pretrained ResNet50 network as the backbone
architecture to extract the depth features of the image, and
then fine-tune its parameters using our designed RS dataset and
loss function with the aim of better addressing our retrieval
requirements for RS images. In addition, to enhance the gen-
eralization performance of the model and mitigate overfitting,
we normalize the input images and randomly apply color aug-
mentation, Gaussian blurring, and pixel noise operations. The
penalty coefficients of the loss function λ, ξ, and δ are set to 0.5,
1, and 1, respectively. The initial learning rate is set to 0.0005
and decays by 50% after every 30 epochs. The optimizer for the
experiments is set to Adam, where β1 is 0.9 and β2 is 0.999.
The batch size for training is set to 32. Each class is assigned
one proxy, which is initialized as the centroid of the class
embedding.

The hardware environment for this experiment is Intel Core
i7-7700 CPU@3.60 GHz, NVIDIA GeForce GTX 1080Ti
12G RAM.
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Fig. 3. Effects of different penalty coefficient on mAP. (a) Effect of λ on mAP. (b) Effect of ξ on mAP. (c) Effect of δ on mAP.

B. Experimental Result

In this section, we will present the findings of our experi-
ments on UCMD and PatternNet and conduct an analysis of
the obtained results. For UCMD, we split the training and test
datasets in a 1:1 ratio, randomly selecting 50% of the images in
each class for training and using the remaining 50% for testing.
For PatternNet, we split the training and test datasets in a ratio
of 8:2.

1) Penalty Coefficient Analysis of the Loss Function: As
shown in (9) and (10), our loss function has three penalty
coefficients, i.e., λ, ξ, and δ. Specifically, λ and ξ are used
to control the contribution of the image feature similarity
information and the overall semantic information to the objective
function, respectively. δ is used to control the contribution of the
distance between the source image and its rotated image to the
image feature similarity. We designed a series of experiments for
analyzing the effects of all the above-mentioned parameters on
the retrieval results, and it should be noted that when analyzing
one parameter, the other two parameters are set to fixed values.

The ultimate outcomes of our experimentation are presented
in Fig. 3. Specifically, Fig. 3(a) illustrates the evolution of
mAP values as the λ parameter increases across two datasets.
The graph reveals that as λ < 0.5, the mAP value experiences
an upward trajectory. Conversely, as λ continues to rise, the
mAP value demonstrates a descending trend. On the UCMD
dataset, the retrieval performance hits the lowest point when
λ = 2. Therefore, based on these observations, our proposed
method yields satisfactory retrieval results for all datasets when
λ is set to 0.5. Fig. 3(b) depicts the fluctuation of mAP values
corresponding to increasing values of ξ on both datasets. It
becomes evident that for both datasets, the peak mAP value
is attained when ξ = 1. In addition, Fig. 3(c) showcases the
variation of mAP values in response to escalating δ values on
both datasets. Apparently, across both datasets, the mAP value
reaches its highest point when δ = 1, and the change in mAP
value appears relatively smooth and consistent. In conclusion,
after careful consideration, we have opted to set the penalty
coefficients as follows: λ at 0.5, ξ at 1, and δ at 1.

2) Impact of Embedding Vector Size on Retrieval Perfor-
mance: For the convenience of subsequent experiments, we first

TABLE I
MAP VALUES OF DIFFERENT EMBEDDING SIZES WITHIN UCMD AND

PATTERNNET

investigated the impact of different embedding sizes{32, 64,
128, 256} on the model retrieval performance. The experimental
results are shown in Table I. Our model follows the same trend on
both the UMCD and PatternNet datasets, with the mAP values
increasing with embedding size and achieving the highest value
at an embedding dimension of 128. Subsequently, the mAP
value decreases again when the embedding dimension increases
beyond 128. In addition, we observe that there is a greater
variance in mAP values on the UCMD dataset compared to the
PatternNet dataset. For example, when the embedding size is
128 on UCMD, the mAP value is 98.07%, which is 10.08% (32),
1.39% (64), and 1.99% (256) higher than the other embedding
sizes. On PatternNet, meanwhile, the mAP value is 99.49% when
the embedding size is 128, which represents an increase of 0.76%
(32), 0.54% (64), and 0.13% (256) over the other embedding
sizes. The possible explanation for this observation is that the
UCMD dataset is small and has a limited number of training
samples, which results in a stronger impact of embedding size
on subsequent retrievals. Conversely, the PatternNet dataset is
larger with a rich variety of categories and contains a significant
amount of data from the same category. This makes changes
in embedding size have relatively little impact on subsequent
retrieval performance. Therefore, we ultimately decide to set
the model embedding length to 128.

3) Comparison Experiments With State-of-the-Art Methods:
To validate the effectiveness of the model proposed in this article,
we conduct additional comparisons to evaluate its performance
relative to existing methods. The comparison methods we em-
ployed are ResNet-50, Transformer [48], Swim-Transformer
[49], FMT-RAN [50], ST-RAN [50], FAH [51], DHPL [52],
DHCNN [53], and AHCL [54], respectively. FMT-RAN trains
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TABLE II
COMPARISON OF UCMD WITH STATE-OF-THE-ART METHODS

the subsequent layers to be rotation invariant by feeding the input
image into the pretrained VGG and rotating the feature map gen-
erated by its last pooling layer generated by four different angles.
ST-RAN retrieves objects of arbitrary angles by introducing an
STN module, using the original image as input to generate an
affine image that matches a rotated image, and finally, the RAN
module is used to learn rotation-invariant feature representa-
tions simultaneously. FAH consists of two modules, DFLM and
AHLM. It enhances retrieval quality by extracting dense features
from the image. DHPL is a proxy-based hash retrieval method,
which combines hash learning with metric learning. DHCNN
retrieves similar images and classifies semantic labels within
the same framework, which utilizes CNN to extract features
and convert them into compact hash codes through a hash
layer. All six aforementioned methods were designed for RS
image retrieval tasks. AHCL generates hash codes for query and
database images in an asymmetric manner and uses the semantic
information of each image and the similarity information of pairs
of images as supervisory information to train the deep hash
network, which improves the representation of deep features
and hash codes. Transformer is a sequence model that relies
on attention mechanism. And swim-transformer was developed
to address limitations introduced by Transformer in computer
vision. It adopts a hierarchical architecture for adapting images
of different scales and utilizes a sliding window approach to
enable linear-complexity attention computations. To ensure a
fair comparison, we established a unified feature vector length
of 128 for each model and trained them under identical training
conditions.

The experimental results are shown in Tables II and III.
Based on the experimental data, it can be observed that PBFFN
network model achieves the most excellent performance both
on the UCMD and PatternNet datasets. On the UCMD dataset,
the PBFFN model exhibits the best mAP value of 98.07%,
which is 0.80% (AHCL), 2.42% (FAH), 2.99% (DHCNN),
3.76% (DHPL), 4.38% (Swim-Transformer), 10.31% (FMT-
RAN), 13.76% (Transformer), and 16.2% (ST-RAN) higher
than the comparison methods, respectively. We argue that the
performance of the ST-RAN model relies on the quality of
the affine image generated after passing the image through the

TABLE III
COMPARISON OF PATTERNNET WITH STATE-OF-THE-ART METHODS

STN module. However, the network model of this method is
more challenging to train and will cause poor quality in the
generated affine images, resulting in unsatisfactory final retrieval
results. In addition, we also argue that the transformer model
is particularly prone to overfitting due to its large number of
parameters, leading to unsatisfactory performance when dealing
with small datasets. Compared to these approaches, our method
demonstrates good performance by using proxy points to capture
the overall characteristics of each category and incorporating
contrast loss, which leads to a more compact arrangement of
similar images in the metric space and more consistent P@K.
On the PatternNet dataset, our method achieves 99.49% mAP,
0.21% (FAH), 0.83% (DHPL), 1.01% (AHCL), 1.25% (Swim-
Transformer), 1.76% (FMT-RAN), 1.98% (Transformer), 2.68%
(DHCNN), 4.21% (ResNet-50), and 9.69% (ST-RAN) higher
than the comparison models, respectively.

To visually illustrate the retrieval capabilities of our method
using the dataset, we display selected examples of the retrieval
outcomes in Figs. 4 and 5. For each dataset, we randomly select
an image as a query object and acquire the retrieval results by
sorting the similarity measurements between the query object
and the target image. The query image is presented in the first
column, whereas the remaining columns display the retrieved
results. Images within red bounding boxes symbolize incorrect
retrieval results. Restricted by space, we only present the top 10
retrieval results. For UCMD and PatternNet, we summarize the
numbers of correct results within the top 40 and top 100 retrieval
results, respectively. These examples underline the effectiveness
of our method.

Besides the overall results, we also calculate the mAP values
for the different semantic categories. Due to table size con-
straints, we only display the results of five methods. The exper-
imental results are shown in Tables IV and V. We can observe
that our method is almost significantly better numerically than
other methods, and has stable performance in most categories.
On the UCMD dataset, our method performs slightly worse in
the categories “dense residential,” and “medium residential,” but
the mAP values still reach 92.16% and 83.46%. In some complex
categories, such as “baseball diamond,” and “sparse residential,”
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Fig. 4. Retrieval examples within UCMD through different methods.

Fig. 5. Retrieval examples within PatternNet through different methods.

TABLE IV
MAP VALUES OF EACH INDIVIDUAL CATEGORY FOR THE UCMD DATASET

THROUGH DIFFERENT METHODS

our method has a clear advantage. For example, the mAP value
of our method for “baseball diamond” is 99.69%, whereas other
methods have mAP values ranging from 92.73% to 97.12%.
On the PatternNet dataset, our model performs better and more
consistently than other methods. Our method is slightly inferior
to FAH in terms of “closed road,” “nursing home,” and “sparse
residential.” Moreover, our method achieves better performance
in the categories of “intersection,” “tennis court,” “ferry ter-
minal” categories. Taking “ferry terminal” as an example, our
method improves the mAP values by 2.97% (FAH), 3.26%
(AHCL), 6.58% (DHPL), and 11.21% (FMT-RAN) respectively.
These results demonstrate that our method is effective for the
CBRSIR task.

In addition to the quantitative metrics, retrieval efficiency is
also an important factor when designing a retrieval algorithm.
We conduct a comparative analysis of the proposed method
and other methodologies, with a particular focus on retrieval
time. Given that the model training phase is an offline procedure
that requires only a one-time execution, the time investment for
various models is deemed reasonable. Our primary considera-
tion here lies in assessing the time expenditure associated with
retrieving images through these models. Specifically, we carry
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TABLE V
MAP VALUES OF EACH INDIVIDUAL CATEGORY (20 CATEGORIES) FOR THE

PATTERNNET DATASET THROUGH DIFFERENT METHODS

out ten experiments for each method, randomly selecting 50
images to serve as the query set and retrieving the top 100 images
from the dataset. The final result is determined by calculating
the average value of these experiments.

The experimental results are shown in Table VI. We can find
that the hash retrieval methods are generally faster than other
methods for retrieval, in which the retrieval time of the AHCL
method on both datasets is much lower than that of other meth-
ods, which may be due to the fact that this asymmetric strategy
method has some effectiveness on hash code learning. Although
our proposed method is not as fast as the retrieval speed of hash
retrieval methods, it still achieves 0.2257 s (UCMD) and 0.3176 s
(PatternNet), which is acceptable in terms of time performance.
Besides, our method has high retrieval accuracy, which, taken
together, verifies the effectiveness of the proposed method.

4) Ablation Study: In this section, ablation experiments are
conducted to investigate the contributions of individual compo-
nents in the PBFFN model. In particular, the proposed PBFFN
network is composed of two key components: the FFM module
and the proxy-based Euclidean distance contrast loss. Specifi-
cally, the proxy-based Euclidean distance contrast loss LPEDC

consists of LPED and LC . Therefore, we propose the follow-
ing methods for ablation experiments: ours (withoutLC ), ours
(withoutLPED), ours (without LPEDC), ours (without FUM), ours
(without FFM), ours (without FFM and LC), and ours (without
FUM and LC). The first five models lack the components LC ,
LPED, LPEDC, FUM, and FFM. The latter two models represent
the lack of FFM, LC components and FUM, LC components,
respectively. Then we select mAP as a metric to numerically
evaluate these methods, and the final experimental results are
shown in Tables VII and VIII.

The results clearly indicate that our PBFFN method not
only achieves superior performance but also shows that each
of its components contributes positively to the overall retrieval
effectiveness. Specifically, compared to the model without the
FFM module, the model with the FFM module increases mAP
by 3.78% and 1.27% on UCMD and PatternNet, respectively.
This indicates that the FFM module enhances the model’s ability
to extract image features and improves retrieval performance.
Furthermore, for the FFM module, incorporating the FUM
module versus not incorporating it leads to an increase in mAP
of 2.17% and 0.93% on UCMD and PatternNet, respectively.
Compared to the model without LC , adding LC leads to an
increase in mAP of 0.50% and 0.38% on UCMD and PatternNet,
respectively. In addition, compared to the model without LPED,
adding LPED causes an increase in mAP of 1.76% and 0.79% on
UCMD and PatternNet, respectively. We observe that adding
LC and LPED individually both enhances the final retrieval
results to some extent. Furthermore, when we combine the two,
using proxy-based Euclidean distance comparison loss LPEDC,
it is encouraging to observe that mAP increases by 2.72% and
1.69% on UCMD and PatternNet, respectively. This result is
superior to using either loss function alone, highlighting the
effectiveness of our proposed loss function. We also discover
that our method, without the use of LC , yields superior results
when compared to the other ablation techniques. This is likely
because LC aims to enhance compactness between the source
image and its rotated version within the same class metric
space. Meanwhile, LPED intends to bring the features of images
belonging to the same class closer to their respective proxy
while increasing their separation from proxy of differing classes.
Therefore, adding LPED alone has better retrieval performance
than adding LC alone. Meanwhile, our method without FFM
achieves a performance enhancement of 0.127% compared to
our current approach without both FFM and LC on UCMD.
In addition, our method without FUM attains a performance
boost of 0.282% compared to our current method without both
FUM and LC . This indicates that LC plays a significant role in
enhancing retrieval performance.

We also investigate the impact of different feature fusion on
retrieval performance. Specifically, we reduce the number of
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TABLE VI
COMPARISON OF RETRIEVAL TIME (IN SECONDS) OF DIFFERENT METHODS

TABLE VII
RESULTS OF THE ABLATION EXPERIMENT ON UCMD

TABLE VIII
RESULTS OF THE ABLATION EXPERIMENT ON PATTERNNET

feature fusions and select different combinations of convolu-
tional layer features for fusion. The experimental results are
shown in Tables IX and X. We find that the combination of con-
volutional layer features L3 and L4 achieves better results than
other combinations. On UCMD, this combination is 0.062% and

TABLE IX
RESULTS OF FUSING DIFFERENT FEATURES IN FFM ON UCMD

TABLE X
RESULTS OF FUSING DIFFERENT FEATURES IN FFM ON PATTERNNET

0.84% higher than the other two combinations, respectively. On
PatternNet, this combination is 0.121% and 0.203% higher than
the other two combinations, respectively. This may be because
the deeper features extracted by the backbone network help
improve the retrieval performance of the model. Our method
utilizes three layers of features, L2, L3, and L4, for fusion.
Although it improves the complexity of the network to some
extent, it can achieve better results than ablation methods.

These findings indicate that the FFM module enhances feature
learning capabilities, while LPEDC causes a more compact em-
bedding of similar images in the metric space, and the proposed
method is effective.

5) Verification of Rotation Invariant: In this section, we
conduct experimental analysis to investigate whether rotated
images’ deep embedding lies adjacent to each other in the em-
bedding space, i.e., whether the model exhibits a certain degree
of rotation invariance after training. To present the experimental
results more intuitively, we first rotate the images in the retrieval
database by different angles (90°, 180°, 270°) to create a new
retrieval database. For the new database, we randomly select one
image per category as the query object and obtain the retrieval
results by ranking the similarity measure between the query
object and the target image. We will provide some retrieval
examples showing the top-10 images retrieved from this new
database. As both FMT-RAN and ST-RAN are used to extract
rotation invariant features in the above comparison experiments,
with FMT-RAN performing better than ST-RAN, we utilize
FMT-RAN as our comparison method.

The experimental results are shown in Figs. 6 and 7. Based on
the figures, we observe that the FMT-RAN method on UCMD
does not fully prioritize the rotated images of the source images
in the retrieval results for the query images belonging to the
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Fig. 6. Top-10 search results on the expanded UCMD dataset.

Fig. 7. Top-10 search results on the expanded PatternNet dataset.

categories “airplane,” “freeway,” and “overpass.” In addition,
retrieval errors are detected in the results for query images from
some categories. When it comes to PatternNet, the FMT-RAN
method does not fully prioritize the retrieval of the rotated
images of the source image for the query images in the categories
“baseball field” and “overpass.” In contrast to the FMT-RAN
method, our proposed method not only retrieves the correct
image in the new database but also prioritizes the retrieval of the
rotated image of the source image. Therefore, we conclude that
our method not only enhances the feature extraction capability
of CNN models to enable them to effectively handle RS image
retrieval tasks but also endows the model with some rotation
invariant ability.

V. CONCLUSION

In this article, we propose a novel PBFFN framework for the
retrieval of RS images. RS images contain rich structural and
textural information, but this information may be lost during
the piping of images through a deep network, leading to fea-
tures that inadequately characterize the images and degrading
retrieval performance. To address this issue, we introduce a FFM
that applies a hierarchical fusion strategy to merge high- and
low-level features, thus reducing the loss of image information
during the feedforward pass of the network. In addition, we inte-
grate metric learning by utilizing proxy to represent class-level
feature embedding, which enhances intraclass compactness and
interclass separability by gauging the similarity between sample
features. To adapt to this proxy-based training mechanism, we
design a loss function that gives the model a certain degree of
rotation invariance and class discrimination ability. We validate
the effectiveness of the proposed method through comprehen-
sive experiments conducted on two publicly available RS image
datasets.

In our work, there are still several limitations that need to
be overcome. For example, only one proxy point is selected to
represent each category, the feature extraction of the model lacks
a certain degree of interpretability, and a large amount of labeled
data is required for model training. In future work, we aim to
enhance the interpretability of the feature extraction process
within the model, and further optimize the loss function, refer
to existing hash methods, and use unsupervised hash methods
to train the network.
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