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Joint Exploitation of Coherent Change Detection and
Global-Context Capturing Network for Subtle
Changed Track Detection With Airborne SAR
Jinsong Zhang , Member, IEEE, Mengdao Xing , Fellow, IEEE, Wenkang Liu , Member, IEEE,

and Guangcai Sun , Senior Member, IEEE

Abstract—Change detection is a crucial remote sensing (RS) ap-
plication because it can locate the interesting changed regions and
provide corresponding time-series information with multitemporal
RS images acquired in the same region. Synthetic aperture radar
(SAR), with the advantages of all-day and all-weather conditions,
can achieve high-resolution imaging from long operation distances.
Moreover, the coherence imaging characteristics of the SAR system
cause the attained complex-value images to be more sensitive to
ground surface features. Traditional intensity-based change de-
tection methods merely use the intensity difference between mul-
titemporal images; thus, the results only reflect the significant
landmark changes, such as seismic disasters and flood disasters.
In this article, we use the coherent imaging characteristics of the
SAR complex images to detect very subtle changes, such as vehicle
tracks and footprints. Specifically, coherent change detection based
on amplitude and phase generates a difference image utilizing
the repeat-pass repeat-geometry SAR images, while the global
attention-based convolutional neural network achieves automatic
subtle change track extraction from the difference images. The
experimental results based on our measured airborne SAR data
demonstrate that our proposed method reduces the sensitivity of
the detectable changed region from the meter level to the centimeter
level, further providing our method with the ability to detect very
subtle changes, such as vehicle tire tracks or footprints by human
activities. This subtle change detection capability can be used for
the search and rescue of vehicles and personnel lost in the field.

Index Terms—Coherence change detection (CCD), convolutional
neural network (CNN), synthetic aperture radar (SAR), UNet.
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I. INTRODUCTION

R EMOTE sensing (RS) is a long-range and contactless
sensing approach that can be used to observe interesting

regions based on airborne or spaceborne systems. Introducing
popular data-driven deep-learning (DL) methods into RS image
analysis has achieved intelligent and efficient processing. The
typical DL methods for RS image analysis include object detec-
tion, scene classification, cloud detection, and especially change
detection [1], [2].

Different from optical or spectrum measurements [3], [4],
the result of synthetic aperture radar (SAR) is a complex-value
image that can be decomposed as the intensity fraction and
phase fraction; here, the intensity fraction reflects the reflectivity
of landmarks and the phase fraction represents the targets’
electromagnetic scattering characteristics [5]. The SAR-based
change detection method can be divided into incoherent change
detection (ICCD) and coherent change detection (CCD). The
ICCD methods use the intensity component of SAR complex
images as input, and the input images need to be the standard
Level-2 images within radiometric and geometric correction,
such as the Sentinel-1 L2 product [6].

Unlike ICCD methods, CCD methods use both intensity and
phase fractions to generate the differences [7], [8]. However,
this requires strict repeat-pass repeat-geometry imaging. Specif-
ically, the reference image for the region of interest is acquired
during the first pass. Later, after a few hours or days of subtle
changes to the track, a slave image is acquired for the same region
using the same imaging geometry. Once the repeat-pass image
pair is acquired, preprocessing strategies, such as resolution har-
monization and geometric correction, are implemented before
utilizing a complex-valued coherence estimator, such as max-
imum likelihood estimation, to generate the difference image
between image pairs. The coherence value of the generated dif-
ference image falls within the range [0, 1]. A coherence value of
0 indicates whole decorrelation, while a coherence value of 1 in-
dicates whole correlation. The detectable sensitivity of the CCD
method to subtle changes is related to the working frequency
and image resolution. The Sentinel-1 system, with a wavelength
of 5.6 cm in the C-band, can utilize the CCD method for urban
building monitoring with meter deformation [9]. In contrast, an
airborne millimeter-wave SAR system can detect subtle tracks
with centimeter deformations [10]. While the spaceborne CCD
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Fig. 1. Difference image by ICCD and CCD for the Sandia airborne data.

can share a stable imaging orbit and imaging parameters, the
airborne CCD can detect subtle changes but is easily affected by
imaging geometry. The purpose of this article is to demonstrate
the ability of an airborne millimeter system to detect vehicle
tracks or footprints resulting from human activities [11]. We
selected a Sandia SAR dataset comprising two complex-valued
images [10]. Fig. 1 depicts the difference images generated using
the intensity-based ICCD method and the complex-valued-based
CCD method. Interestingly, the CCD method detected vehicle
tracks that were overlooked by the ICCD, which demonstrates
that CCD can extract weaker changes compared to ICCD.

SAR CCD is generally divided into three stages: image reg-
istration, coherent estimation, and differential image extraction.
The main purpose of the image registration stage is to generate
repeat-pass SAR images with good coherence. The coherent
estimation stage utilizes a complex coherent estimation operator
to invert and extract the difference between amplitude and phase
information through energy accumulation. The difference map
analysis stage uses image analysis or postprocessing to extract
regions of interest changes from the difference map affected by
clutter and interference and achieves automatic target recogni-
tion.

The registration process of SAR CCD is similar to that of
interferometric SAR (InSAR) image registration: both are given
complex image pairs, and the pixel offset between the sec-
ondary image and the main image is obtained through two steps
of coarse registration and fine registration. The subpixel-level
registration results are achieved through interpolation of the
secondary image. According to the different data used, SAR
complex image registration algorithms can be divided into two
categories: geometric registration and image registration [12].
Geometric registration is based on the geometric relationship
between the sensors and ground points during InSAR imaging
[13]. The image registration is based on the data information
contained in the SAR complex images and usually uses the
method of image window matching to calculate the registration
offset of control points.

CCD coherence estimation needs to consider both the in-
tensity and phase information because the track deformation is
usually weak and cannot be extracted from the intensity differ-
ence [14]. Modeling the paired images as a jointly circular, zero

mean Gaussian vector, the most classical coherence estimator is
defined as follows [15], [16]:

γ̂c =

∣∣∣∑N
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∗
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k=1 f
∗
kfk ·∑N
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where fk and gk are the complex-valued pixels of the master
image and slave image, respectively, ∗ means the conjugate
operation, and N is the scale of the local window, usually 7× 7 or
9× 9. Replacing the multiplication operation in the denominator
of (1) with an addition operation, the Berger estimator is more
stable and demonstrates better performance in a certain con-
dition [17]. Focusing on improving the contrast of the changed
regions and background regions, the complex reflectance change
detection (CRCD) metric is proposed to distinguish the change
regions from low clutter-to-noise ratio areas [18]. In addition,
the estimator-fused coherent and noncoherent estimation can
effectively distinguish significant changes and subtle changes,
further improving the visibility of the coherence image [19].

The change pixel extraction from a difference image can be
viewed as a semantic segmentation task that classifies each pixel
as interesting changes or cluttered change pixels [20]. Different
from ICCD methods, the interesting areas, such as track regions
in the CCD task, are usually weak and small-scale, which drasti-
cally increases the difficulty of track detection [21]. Quach et al.
[7] used an explicit objective function based on the Bayesian
information criterion to find the curves in the difference images.
Kuny et al. [22] analyzed the vehicle track detection performance
of different data augmentation strategies based on the classical
UNet structure. Based on these methods, we also proposed the
multiple statics contributing to the compressed UNet method
focusing on the few track samples [23], and the spatial feature
enhanced UNet and adaptive augmentation to improve the track
detection performance [24]. In summary, the track detection
network also needs to be improved by focusing on the special
features of different tracks, such as footprints and vehicle tracks.

A novel framework that fuses SAR CCD and DL models is
proposed to detect subtle tracks in SAR images. First, we create
an airborne SAR track detection dataset that includes six large-
scene image pairs covering diverse terrains and tracks. Each
image pair comprises two complex-valued repeat-pass repeat-
geometry images, and tire tracks and footprints are arranged in
some locations during data acquisition. Next, to preprocess the
images, we consider the azimuth resolution difference between
paired images caused by natural factors and execute resolution
correction. We then represent the two-step coregistration to
achieve subpixel-level image registration, and a difference image
is generated based on the complex-value coherence estimator.
After, we propose a global-attention-based detection network
that uses the UNet structure as the basic detection network and
involves the transformer structure and group spatial layers to
capture special track features, such as parallel distribution and
long continuity. Finally, we compare our proposed method with
popular detection networks to validate its effectiveness, and the
experimental results demonstrate that our proposed method can
extract not only vehicle tracks and footprints from images of
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Fig. 2. Three study areas and SAR images acquired by our airborne CCD system.

various terrains but also reflect the time sequences of human
activities. In summary, our main contributions are as follows.

1) We create a subtle track detection dataset from our air-
borne SAR system, containing six large-scene complex-
value image pairs of different human activities in multiple
terrain backgrounds.

2) We construct a track detection framework by fusing SAR
CCD and a convolutional network. The CCD in our frame-
work includes resolution correction, two-step coregistra-
tion, and complex coherence estimation, and can steadily
generate the track pixels between the paired images under
complex flight conditions and terrain backgrounds.

3) We develop a global context capturing network (GCCN)
by integrating our proposed group spatial convolution
module (GSCM) into the transformer-based pixelwise
TransUNet, which can achieve subtle track detection under
complex backgrounds with high recall and precision.

The rest of this article is organized as follows. The measured
experimental data are provided in Section II. The processing
diagram or proposed track detection is shown in Section III.
Section IV contains the experimental results, while Section V
provides the extended results. Finally, Section VI concludes this
article.

II. STUDY AREA AND DATA

Three regions of China of Baotou, Tacheng, and Zhangjiakou
were selected to validate the proposed track detection method.
As shown in Fig. 2, these regions cover different topographies.
The Baotou region has soft and hard sand as its main terrain,
with sparsely distributed shrubs. We arranged some vehicle
tracks and footprints in this region to validate the track detection
performance. The Tacheng region has intermittent mountainous
terrain with a gravel ground surface. We also arranged some
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TABLE I
WORKING PARAMETERS OF OUR AIRBORNE CCD SYSTEM

vehicle tracks and footprints in this area. Since gravel is usually
hardening, the left tracks were even weaker, which could better
validate the detection method. Finally, the Zhangjiakou region
hosted the snow events of the 2022 Beijing Winter Olympic
Games, with snow land as its main ground surface; the result
from this area could validate the detection performance on this
special surface. In summary, we arranged different tracks in
these regions with various backgrounds. Due to the differences
in topography and scene arrangement, the tracks left human
activity would show different characteristics, which could bet-
ter demonstrate the superiority and robustness of the different
methods.

Table I presents the working parameters of our airborne CCD
system. The system operates at a carrier frequency of 35 GHz
(Ka band) with a wavelength of 8.6 mm, which maximizes the
phase sensitivity of the CCD methodology [8]. The system is
capable of achieving an azimuth and range resolution of 0.3 m,
which remains relatively constant across different imaging ge-
ometries and scenes.

Fig. 2 shows the imaging results for each region, with one
image selected for each. Optical images confirm that the SAR
single look complex (SLC) images accurately reflect the real
landcover of these regions, covering an area ranging from 3 km2

to nearly 10 km2. The images were acquired in 2021 and 2022.
Table II provides a detailed description of the flight route and
image acquisition. For region (a) of Baotou city, we arranged
two flight routes, and each route was acquired in two passes.
For example, the two passes of the north-to-south route were
acquired at 19:27:36 and 20:17:51 on September 10th, 2021.
Since these two images were acquired from the same route, they
shared the same imaging geometry and were combined into an
image pair with a time interval of 50 min for CCD processing.
During this interval, two offload vehicles were driven across
the sand with complicated routes, such as curved paths and
intersections, leaving double-row tire tracks in the sandy ground.
The axle width of the vehicles was approximately 1.8 m, and the
wheel width was approximately 0.25 m. Moreover, two people
also left foot tracks in the imaging region with careless walking
routes. Photos of the left vehicle track and foot track are shown
in Fig. 3. Both the vehicle track and foot track were continuous,
with the vehicle track usually double-row and the foot track
usually single-row. According to our rough statistics, the depth
of these tracks was approximately a few centimeters, which was
a very low deformation for SAR images and could better validate

Fig. 3. Footprint and vehicle tracks in our experiments. (a) Foot tracks.
(b) Vehicle tracks.

the effectiveness of our detection method. Notably, during the
track arranging process, we used a handheld GPS to record the
location of the tracks and recorded them as the ground truth in
the subsequent experimental results. We also arranged the flight
route from east to west, and the acquired images formed the
image pair with index 2.

For region (b) of Tacheng city, under the flight route from
southwest to northeast, we acquired three images from three
passes, maintaining the same imaging geometry. Since every
two images could form an image pair, we obtained three image
pairs with the indices of 3, 4, and 5 in this region for track
detection. We also arranged some vehicle tracks and footprint
tracks in this region during each pass interval. For region (c)
of Zhangjiakou city with a snow surface, we arranged the flight
route from east to west and only arranged the vehicle tracks in
this region. Two-pass images were acquired in region (c) and
combined into image pair 6.

Notably, the temporal interval between these image pairs
was a few hours, which ensured entire coherence between the
image pairs while highlighting the decorrelation caused by track
deformation due to human activities [8], [15]. Our proposed
network-based detection method belonged to supervised learn-
ing, which required training data to optimize the detection model
and testing data to validate the detection performance. We used
the image pair with indices 1 and 5 as the training samples, while
the image pairs with indices 2, 3, 4, and 6 were used as the testing
samples. More details regarding the data samples are provided
in the experimental section.

III. PROPOSED METHOD

In this section, divided into the training and testing stage, the
complete flow is proposed starting from the preprocessing of
the SAR CCD data and ending with the detection network, as
shown in Fig. 4.
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TABLE II
DESCRIPTION OF THE FLIGHT ROUTE AND IMAGE ACQUISITION

Fig. 4. Processing diagram or proposed track detection method.

A. Azimuth Resolution Correction for Improving Coherence

In contrast to traditional ICCD methods that use standard SAR
L2 data as input [9], our method utilizes SLC data for subtle
track detection. In a spaceborne-based CCD system, the imaging
system has a stable running orbit and flight speed, which are
not easily affected by the surrounding environment. As a result,
the acquired image pairs from different times have the same
azimuth and range resolution. However, for an airborne system,
the key problem is that the airplane velocity can be affected
by weather conditions during the imaging period, resulting in
different azimuth resolutions for images acquired at different
times [25].

Specifically, the imaging geometry of the spotlight mode is
shown in Fig. 5, where h is the flight altitude and v is the average
flight velocity along the preset route. During the acquisition time,
the track region is covered by the antenna footprint with the
aircraft moving. The theoretical imaging slant range resolution
ρr is defined as c/2Br, where c is the light speed and Br is the
devised bandwidth. For the SLC image in CCD processing, the

Fig. 5. Geometric model of the airborne SAR CCD system.

range spacing resolution is c/2Fr, where Fr is the frequency
sampling rate higher than Br. Thus, the range resolution of the
repeat-pass images always remains the same under the identified
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flight path. The theoretical azimuth resolution ρa is λ/2Δθ for
our CCD system in stripmap mode, where λ is the wavelength
and Δθ is the beamwidth. According to the definition of ρa, the
azimuth resolution is not affected by the velocity. Specifically,
the azimuth spacing resolution that determines the characteris-
tics of CCD images is v/PRF, where PRF is the pulse repetition
period. Thus, when the average flight velocity changes due to
weather factors, the azimuth resolution also varies between SLC
repeat-pass images, resulting in decreased coherence between
the paired images and heavily affecting the final detection re-
sult [25], [26]. Under these circumstances, we need to unify
the azimuth resolution of repeat-pass images according to the
respective average flight speedv.

More specifically, assuming that the average speed velocity
for the first pass and the second pass is v1 and v2, respectively,
and the corresponding azimuth resolution is ρ1r and ρ2r , we
choose the low values of ρ1r and ρ2r as the baseline resolution
and then use the ratio v1/v2 to adjust the image with higher
resolution to the baseline resolution using the frequency-domain
interpolation method. With this processing, the azimuth reso-
lution difference can be suppressed, and the entire coherence
between paired images is also improved [8]. Notably, the topo-
graphical phase caused by radar position changes needs to be
removed with a DEM or accurate topography for spaceborne
CCD systems. However, for an airborne CCD method, the flight
path of repeat-pass images can be kept consistent by controlling
the airplane platform. Thus, in this article, we do not consider
the topographical phase.

B. Image Coregistration and Coherence Estimation

Similar to the procedure in InSAR processing, accurate coreg-
istration of image pairs is essential for generating the difference
image in CCD methods [27]. Although the identical imaging
geometry of repeat-pass images can be ensured by strict flight
routes, slight horizontal position deviations can lead to subtle
deformations between the image pairs [15], [28].

According to the matching accuracy, the coregistration
method can be divided into two processes: coarse coregistra-
tion at the pixel level and fine coregistration at the subpixel
level. The coarse coregistration attempts to achieve matching
of repeat-pass images at one or two pixel accuracy, which
includes offset searching and image shifting. Specifically, in our
difference image generation process, the SLC image acquired
at the first pass is assigned as the master image, and the other
image is assigned as the slave image. Then, offset searching
is implemented based on the cross-correlation of the image’s
intensity fraction, and the peak of the correlation map reflects
the offset [28], [29]. By utilizing the global offset to shift the
slave image, the master image and slave image are coregistered
at the pixel level.

Since the phase identity between repeat-pass images highly
affects the complex coherence, fine coregistration for subpixel-
level accuracy is essential. One constant offset is not adequate for
resampling the slave image due to the topographic relief; thus,
the polynomial transformation is usually utilized to fit the offset
variants between selected tie points when the orbits and digital

Fig. 6. Downsampling pyramid for improving coregistration accuracy.

elevation model are not available [8], [30]. However, when
the landmark backgrounds are complicated, the coregistration
accuracy is easily affected by tie points, further affecting the
track detection performance. To achieve accurate coregistration
with subpixel accuracy, the extended flow optical Lucas–Kanade
(LK) iterative (eFolki) method is utilized in this article; this
method does not require tie points or polynomial regression
in the registration process [31], [32]. More specifically, given
the master image I1 and slave image I2 defined on a 2-D
support S ∈ R2 with coarse coregistration, the dense optical
flow, which is the displacement between paired images, is
defined by u : x → u(x) ∈ R2. The local-based LK approach
tries to minimize u(x) over a local window centered on x as
follows:

J (u, x) =
∑
x′∈S

ω (x′ − x) (R (I1) (x
′)−R (I2) (x

′ + u (x)))
2

(2)
where ω is usually a square (2r + 1)× (2r + 1) window pa-
rameterized by radius r. R(I) is a rank function as follows:

R (I) (x) = # {x′ : x′ ∈ SR (x)with |I (x)| > |I (x′)|} (3)

where SR(x) is a neighborhood of pixel x. Here, the rank func-
tion can significantly compress signal dynamics and enhance
the robustness to the repeat-pass flight route. In addition to the
introduction of the rank function for improving the coregistration
accuracy, multiple local windows with scales from 8 to 32 at an
interval of 4 are introduced to increase the convergence in the
optimization process.

Moreover, to find the displacements with various scales,
downsampling with a Gaussian filter of input image pairs is
performed with different sampling rates, as shown in Fig. 6. In
the optimization process, the pyramid with the lowest resolution
is initially optimized with an initialization flow of 0, and the
other pyramids utilize both the previous estimation result and
the corresponding image pairs. There are six levels in our pyra-
mid; thus, the lowest resolution is 1/64 of the original images.
Using the final wrap matrix as input, the frequency interpolation
method is performed to transform the slave image to the value
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Fig. 7. TransUNet-based global context capturing network for track detection.

of the master image. After, we can obtain the final paired images
with subpixel coregistration [31].

In addition to the estimator in (1), there are also other typical
estimators, such as the Berger estimator and CRCD estimator
[17], [18]. These estimators can improve the coherence accuracy
under specific conditions, such as the Berger estimator used for
images with identical intensity [17] and the CRCD estimator
considering the clutter-to-noise ratio; however, the estimator
in (1) still performs with the best stability for different back-
grounds. Therefore, we still use the estimator in (1) to attain the
coherence estimation.

C. Subtle Track Extraction With Global Context Capturing
Network

Given the difference image patch x ∈ RH×W with a scale of
H ×W , the task in this section is to predict the pixelwise track
detection result with size H ×W [33]. Both H and W are set to
512 pixels. Among the CNN-based detection methods, the UNet
structure consisting of an encoder module and decoder module
has been widely used, especially for pixelwise classification
tasks [34]. However, convolution layers with a local receptive
field cannot effectively model the global features and long-range
relation of the input image. Fig. 7 shows one difference image
patch of our track detection, and the vehicle tracks and footprints
have long continuity that may span the entire image. Under
these circumstances, if the original CNN-based UNet is still
used as the detection network, the global context is disregarded,
and the final result may be interrupted and considered to be
unsatisfactory. Recently, the transformer structure has drawn
much attention for its powerful global feature modeling capacity

and superior transferability for downstream tasks [35]. By uti-
lizing the CNN structure to capture high-resolution information
semantic features, the transformer structure can be used to
leverage global context, and TransUNet has succeeded in the
semantic segmentation field [36]. Thus, in this article, we also
use TransUNet as the main detection framework and utilize the
GSCM to further extract the global context of subtle track to
improve the detection performance. The entire framework of
our GCCN is shown in Fig. 7.

1) CNN-Transformer as an Encoder for Global Feature Ex-
traction: For the input image, our GCCN initially uses four cas-
caded convolution modules and downsampling layers to extract
features on different levels [36]. The size of the final feature maps
is 32 × 32, and the feature map number is 1024. By performing
image sequentialization and patch embedding with a convolution
layer with a kernel size of 1 × 1, we can obtain the embedded
patch vectors as follows:

z0 =
[
x1
pE;x2

pE; · · · ;xN
p E

]
+Epos (4)

wherex is the image patch,E is the patch embedding projection,
p is the patch size,Epos is the position embedding vector to utilize
the patch information, and N is the patch number, setting and set
as 1024 in this article. Then, the transformer module is combined
with L layers of multihead self-attention and multilayer percep-
tron and blocks [35], [36]. The lth layer is defined as follows:

z′l = MSA (LN (zl−1)) + zl−1 (5)

zl = MLP (LN (z′l)) + z′l (6)
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Fig. 8. Proposed GSCM for capturing global context passing.

where LN means the layer normalization layer and zL with a size
of 1024 × 768 is the final embedded feature of the input image.
Afterward, the embedded feature is reshaped and convoluted
with a kernel size of 1 × 1, which generates 512 feature maps
with 32 × 32. The final embedded feature maps not only cover
the high-dimensional semantic features of the CNN but also
absorb the global context of the transformer module.

2) Group Spatial Convolution for the Message Passing of
the Feature Map: Through the feature extraction of the CNN
and transformer modules, feature maps with multiple levels are
effectively extracted. The decoder module is shown in Fig. 7, and
the skip-connection combined with different upsampling layers
gradually recovers the size of the feature maps to the original
image size. For the last conversion layer, the convolution with
1×1 transforms the feature maps into final detection results. In
the decoder module, we introduce the GSCM into the feature
mapping layer to improve the global context capturing ability.
The detailed structure of our GSCM is shown as follows.

Our proposed GSCM consists of four cascaded modules:
GSCM_D, GSCM_U, GSCM_R, and GSCM_L, according to
the convolution direction of downward, upward, rightward, and
leftward, respectively. The original spatial-CNN (SCNN) can
improve the detection performance by achieving global feature
passing with four cascaded convolution modules [37]. However,
the SCNN computation complexity is strongly related to the
size of the feature maps, such as W and H in Fig. 8; thus, it is
more appropriate for the information to pass in the last feature
maps of the encoder module. In regard to the feature passing of
intermediate feature maps, which are usually large scale, such as
128 × 128 or 256 × 256 pixels, too many duplicate convolution
layers lead to considerable computational resource waste.

The main goal of our GSCM is to maintain effective comput-
ing speed on the basis of increasing global information passing.
The original SCNN utilizes the convolution kernel with w × 1
or 1× h to transform the slice with W× 1 or 1×H, where w and
h are the width and height of the kernels, respectively, and W
and H are the width and height of the input slices, respectively.
In our GSCM, the kernel size is set as w × s or s × h, while
the slice size is W × S or S × H, as shown in Fig. 8. More
specifically, for the GSCM_D module, the slice of the input 3-D
feature map X is denoted as Xk with a size of S × W, where

k = 1, 2, . . . , H/S, and the convolution kernel K has a size of s
× h. The convolution results of Xk are as follows:

X′
k = Xk + f (Xk−1 ∗K) (7)

where f is the rectified linear unit and ∗ means the convolution
operation. X′(with superscript ’) denotes the slice that has
been updated. Notably, all convolution kernels in one GSCM_D
shared the same weights across all slices. With the above steps,
for the feature maps with a size of 256 × 256 and number of
128, the convolution layers decrease from 128 to 128/S, thus
improving the entire computational efficiency. For the three
groups of feature maps in Fig. 8 with sizes of 256 × 256, 128 ×
128, and 64 × 64, the kernel dimension s and slice dimension
S are set to [1], [3], [5] and [1], [4], [8], respectively. Utilizing
the above settings, the global context can be captured while
maintaining a low computational complexity. With proposed
GSCM network, the particularity of subtle tracks like long
continuity of human footprint and parallel distribution of vehicle
tracks can be effectively captured, and the detection performance
can also be improved.

3) Loss Function for Network Optimization: For the optical
image segmentation task, the cross-entropy (CE) loss is usually
used as the optimization target, which is defined as follows:

LCE = − [y log ŷ + (1− y) log (1− ŷ)] (8)

where y is the label for one pixel and ŷ is the corresponding
predicted value, which is usually activated by the sigmoid
function for two-class classification and the softmax function
for multiclass classification. The CE loss can provide a very
stable optimization convergence in the training process for the
difference segmentation task. However, the track detection in
this article has the problems of fewer training samples and
unbalanced sample distributions of different classes, while the
traditional CE loss may not be able to suppress them [38]. Thus,
the dice loss is introduced as follows:

Ldice = 1− 2 |X ∩ Y |
|X|+ |Y | (9)

where X and Y are the classification result and label, respectively,
and | · | is the element number. Dice loss computing the union
and intersection cannot only suppress the unbalanced sample
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Fig. 9. One result including (a) master image, (b) slave image, (c) difference
image, (d) and labeled images.

distribution but also improve the global classification perfor-
mance. According to the above analysis, the combination of CE
loss and dice loss is taken as the final optimization loss

Ltotal = LCE + Ldice. (10)

IV. EXPERIMENTS

A. Training Dataset Description and Accuracy Assessment

1) Sandia Dataset for the Pretraining of Detection Model:
The Sandia National Laboratory released a public SAR CCD
dataset for the first time [10]. This dataset was collected by a
Sandia test platform on February 14, 2006, in New Mexico. It
consists of two flights, each containing 32 spotlight SAR images,
providing 32 image pairs with a size of 1754 × 3000 pixels
that can be used for CCD applications. During the acquisition
interval, a car was driven in the region, leaving parallel tire
tracks on the ground [39]. The image pairs in this Sandia SAR
dataset are uncalibrated and not coregistered, which can be used
to validate the effectiveness of our coregistration method.

Since Sandia does not provide the ground truth for these
images, we manually annotated the vehicle track label based
on our measured CCD data. We utilized our proposed method to
process these images, including coregistration and coherence
estimation. The two processing results are shown in Fig. 9.
The master image and slave image in each pair show nearly
identical intensity and surface distribution, making it impossible
to find the subtle track directly from the intensity difference.
However, within the coregistration and coherence estimation, the
generated difference image highlights the vehicle track region
and suppresses the background region. In addition, the vehicle
track in the difference image shows characteristics, such as
continuity and parallelism, which remain consistent with those
in our measured CCD data. The labeled images show the track
region based on our manual annotation, where 1 indicates the
vehicle track and 0 indicates an unrelated background region.

Although the Sandia dataset provides vehicle track data sim-
ilar to our experimental settings, it only contains vehicle tracks
and not footprints. Furthermore, the system parameters and

working modes of Sandia differ from those of our airborne
system, which may impact the final track detection results.
Therefore, we utilized the Sandia data as a pretraining dataset to
optimize the GCCN for vehicle track detection [40]. Specifically,
we adjusted the final classification layer of GCCN to one channel
for vehicle track detection and utilized the Sandia data to obtain
a well-trained detection model. We then utilized the well-trained
weighting parameters, with the exception of the last layers, to
initialize the final detection model with three channels in the
final layers of GCCN for the detection of both vehicle tracks
and footprints. Compared to the random initialization or transfer
from other detection tasks, this pretraining strategy not only
utilizes the track feature in the Sandia dataset but also maximizes
the dependencies between the two detection tasks.

2) Entire Procedure for Our Airborne CCD Experiments: To
fully learn the structure and features of subtle tracks in various
regions and terrains, two of our CCD image pairs (pair 1 and pair
5) were selected as the training data. Table II shows the details
of the selected pairs. The unprocessed image pairs were used to
test the entire procedure of our method. The primary image pairs
and corresponding difference images are shown in Fig. 10. The
intensity difference between paired images was very weak, and
it was difficult to directly detect the track. By using our proposed
resolution correction, coregistration, and coherence estimation
methods, the difference images were accurately generated, as
shown in the figure. Notably, the vehicle tracks showed conti-
nuity and parallelism, while the footprints had continuity and
a more random direction; this result indicated that our method
attained the accurate coregistration of the images and coherence
estimation. However, some decorrelation pixels existed in the
generated difference images due to terrain occlusion and tem-
poral position changes caused by random vegetation swing [15].
In addition, the tracks were discontinuous and inhomogeneous
from a local perspective due to differences in track shape, depth,
and surface characteristics. Moreover, we provided annotated
ground truth for each image pair based on the track distribution
in the difference images and our experimental records, as shown
in Fig. 10; the blue and yellow regions indicate the vehicle track
and footprint, respectively.

Due to the limitations of computational memory and re-
sources, the original large images cannot be directly used as input
for the detection networks. Therefore, the difference images and
their corresponding annotation images were cropped into slices
of 512 × 512 pixels with a 50-pixel overlap. This overlap helps
the network learn the integrity of the track region. With this
processing, we obtained 1603 images and their corresponding
labeled images for network training.

3) Model Implementation Details and Evaluation Metrics:
In this article, all experiments were conducted on a local server
with an Intel(R) Xeon (R) Gold 6130 CPU, 1 NVIDIA Titan
RTX, and Windows 10 operating system. The PyTorch frame-
work was utilized to implement the detection network. During
the training process, stochastic gradient descent was used with
an initial learning rate of 0.01 and momentum of 0.9 to optimize
the combination loss (11). The batch size was set to 6, and the
epoch number was set to 150. To improve the training dataset’s
diversity, the images and corresponding labels were augmented
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Fig. 10. Training data generation result and corresponding ground truth.

with flipping and rotation. To quantitatively assess the perfor-
mance of our proposed detection network and other comparison
methods, the detection precision, recall, and F1-score were used
as metrics [41], which are defined as follows:

precision = TP/(TP + FP) (11)

recall = TP/(TP + FN) (12)

F1 = 2 · precision · recall/(precision + recall) (13)

where TP and TN are the correctly detected track pixels and
background pixels, respectively, and FP and FN are the incor-
rectly detected track pixels and background pixels, respectively.
Since there are two classes of tracks to detect, the above evalua-
tion metrics are computed for each class, and the average metric
area is also described in the experimental results.

B. Results of the Proposed Entire Procedure

Utilizing our proposed method to process the testing images
shown in Table II, we can attain the corresponding detection
results, as shown in Fig. 11. To validate the effectiveness of res-
olution correction and image coregistration, we initially provide
the interference phase image between the repeat-pass images.
The interference phase images contain the interference phase
fringes between the paired images, and a clearer interference
phase fringes correlate to a better coregistration accuracy [42].
We also provide the difference image generated by the coherence
estimation, and a brighter difference image correlates to a bet-
ter coregistration accuracy and coherence estimator. Moreover,
we further provide the track detection results obtained by our
proposed detection method.
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Fig. 11. Detection results from our proposed method on the testing dataset.
(a) Track detection results in the sandy region of Baotou city. (b) Detection result
in the mountainous region of Tacheng. (c) Detection results in the snowy region
of Zhangjiakou.

From the results shown in Fig. 11, the proposed method
successfully corrects the resolution and performs accurate coreg-
istration and coherence estimation for all tested regions; this is
demonstrated by the clear interference phase images and bright
difference images. It is noticeable that the phase jumps in the in-
terference phase of Fig. 11(a) caused by cropping and splicing in
the registration process does not affect the track detection result.
Moreover, our proposed detection network effectively extracts
vehicle and footprint tracks with high precision and recall rates
for all regions. Specifically, for the sandy region of Baotou city,
the interference fringes in the phase image are very clear, and the

TABLE III
DETECTION RESULTS ON THE TRAINING DATASET

brightness of the difference image is very high, indicating the
significant preservation of coherence. The detection results for
the mountainous region of Tacheng city show that our proposed
method can accurately detect footprint tracks on hillsides and
vehicle tracks on flat roads between valleys. The results for the
snowy region of Zhangjiakou city indicate that despite the heavy
interference of vegetation, our proposed detection network can
still extract the vehicle track in the flat snowy region. Overall,
these results demonstrate the effectiveness and robustness of
our proposed method for detecting tracks in different regions
and terrains.

C. Detection Results Comparison of the Different Methods

After validating the effectiveness of our proposed preprocess-
ing strategies, such as resolution correction, image coregistra-
tion, and coherence estimation, the key problem is to extract
track regions with high precision. To compare the detection
results from different network-based methods, we evaluated the
performance of some typical UNet-based detection methods,
including UNet [34], UNet++ [43], LinkNet [44], DeepLabv3
[45], CUnet [23], SCNN [24], and TransUNet [36]. LinkNet
consists of encoder and decoder layers, while the UNet structure
has an effective encoder and decoder module that is widely used
in semantic segmentation tasks. The UNet++method adds more
flexible skip connection layers between the encoder and decoder,
increasing the information passing ability. DeepLabv3 uses the
atrous spatial pyramid pooling module to capture multiscale
context information. Cunet utilizes a compressed Unet to de-
crease the weighting parameters and SCNN constructs the spa-
tial convolution to improve the global information fitting ability.
Finally, TransUNet combines CNN and transformer structures
to leverage the global context for semantic segmentation. We
evaluated the precision, recall, and F1 score of each method on
the training and testing datasets to compare their performance.

1) Quantitative Results From the Different Methods: Ta-
ble III shows the detection results obtained by the different
methods on the training dataset. LinkNet achieves the highest
F1 score for vehicle tracks, while our proposed method attains
the highest F1 score for footprints and the highest average F1
score. These results indicate that our proposed method has a
strong capability to fit well to the track detection dataset.

Table IV provides the detection results obtained by the dif-
ferent methods on the testing dataset. The detection precision,
recall, and F1 score of all comparison methods decreased with
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TABLE IV
DETECTION RESULTS ON THE TESTING DATASET

TABLE V
DETECTION RESULTS BY THE PROPOSED GCCN ON EACH PAIR OF THE

TESTING DATASET

different content on the testing dataset than on the training
dataset. TransUNet achieves a higher average F1 score of
59.54% compared to other methods. Among these methods,
our proposed GCCN achieves the highest F1 score for vehicle
tracks, footprints, and average score. In particular, the average
F1 score reaches 62.06%, which is 2.52% higher than that of the
TransUNet method. Thus, our proposed method exhibits better
detection performance than the other methods.

In addition to the results on the entire testing dataset presented
in Table IV, we also provide the results obtained by our proposed
GCCN method on each image pair of the testing data in Table V.

As shown in Table V, our proposed method achieves a higher
detection accuracy and precision for Baotou city, which is cov-
ered by sandy regions, than for Tacheng with hilly terrain and
Zhangjiakou with snowy conditions. These results demonstrate
that tracks in sandy regions are more easily detected. Moreover,
the performance of vehicle track detection is much higher than
that of the footprints. This occurs because the changed pixels
of vehicles are visually prominent and easier to distinguish than
those of footprints.

Besides the entire detection results of our proposed detec-
tion framework, we also give the results of each component
in Table VI. For the baseline method without any azimuth
resolution correction, the precision, recall rate, and F1 score are
very poor. With the resolution correction, the average F1 score
is improved from 39.25% to 55.77%, which demonstrates the
resolution correction is much an essential step for airborne SAR
system under unideal flight conditions. Meanwhile, the image
coregistration with optical flow also improves the detection
performance. Especially, the proposed GSCM incorporated with
TransUNet achieves the highest F1 score for vehicle track and
footprint. Through above analysis, the effectiveness of each
components in our detection framework have been verified.

TABLE VI
EXPERIMENTAL RESULTS OF EACH COMPONENT OF THE PROPOSED

METHOD (%)

2) Visualization Results From the Different Methods: To fur-
ther understand the detection performance of different methods,
we show the results of image pair 2 in Fig. 12. For the master
image, the ground truth reflects the vehicle tracks and footprints
in the difference image. Although UNet, UNet++, LinkNet, and
DeepLabv3 can accurately extract most tracks, some decorrela-
tion regions are incorrectly classified as track regions, and some
vehicle tracks are also misclassified as footprints. In comparison,
TransUNet detects these tracks with high accuracy. Furthermore,
our proposed GCCN method not only extracts more tracks
with higher accuracy but also effectively distinguishes between
vehicle tracks and footprint tracks. Therefore, the visualization
results demonstrate that the well-trained GCCN can effectively
extract high-dimensional features from the input images.

V. DISCUSSION

As the sequence of passes is consistent with the sequence
of human activities in our outfield experiment in Tacheng city,
the track detection results between different passes can reflect
the actual human activities during that period. To observe the
entire human activity during data acquisition, the automatic track
detection results are superimposed onto the generated digital
surface model (DSM) image [46], as shown in Fig. 13; this
accurately reflects the relationship between the terrain back-
ground and human activity tracks. The results are centered on
one sheepfold, and the first three images show the detection
results, while the last optical image obtained by our optical
camera shows the complicated terrain environment, including
valleys, peaks, and flat ground in this region.

From the results of passes 1–2, human activity footprint
tracks and vehicle movement tracks are observed on the roads
between valleys. From the results of passes 2–3, human activity
tracks, such as climbing and descending mountains, are present,
while vehicles leave unilateral movement tracks. In addition,
pass 1–3 result combines the tracks in pass 1–2 and pass 2–3
and includes the complete process of human climbing and de-
scending the mountain. Therefore, through the aforementioned
time-series-based DSM detection results, more representations
of the human activity process can be obtained. This produces
rich and prior information for the determination and prediction
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Fig. 12. Detection results from the different methods.

Fig. 13. Detection results over the DSM image of the Tacheng region.
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of human activities, such as providing destination references for
the search and rescue of lost personnel.

VI. CONCLUSION

In contrast to traditional RS methods employing image in-
tensity domain change detection for identifying large-scale
geophysical alterations, such as floods and earthquakes, our
proposed method fully exploits the coherence imaging capa-
bilities of airborne SAR. Utilizing a CCD technique based
on a joint amplitude-phase approach, our method effectively
enhances the accumulation of subtle differences and constructs
a global attention network for the automatic extraction of the
subtle change tracks. The process unfolds as follows: initially,
a dataset for subtle track detection is assembled across various
terrains and temporal phases, utilizing airborne radar systems
and ground personnel activities. To tackle the instability is-
sue inherent to repeat-pass data from airborne platforms, a
processing flow with the incorporation of the azimuth resolu-
tion correction, two-stage subpixel registration, and complex
coherence statistics is proposed. This approach facilitates the
robust extraction of the difference values from the repeat-pass
complex images. In view of the global continuity and locally
sparse distribution characteristics of subtle tracks, group spatial
convolution is integrated into the transformer-based TransUNet
model, enabling the efficient extraction and recognition of subtle
change tracks in intricate terrain environments. Experimental
results demonstrate that our proposed method exhibits strong
detection performance for a range of human activity tracks,
such as vehicles and footprints, across diverse terrains, including
sandy, mountainous, and snowy areas. Therefore, this method
can be extensively applied in environmental monitoring and
urban planning contexts, delivering more comprehensive and
accurate data support for human activities.
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