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Abstract—Infrared small target detection is a challenging task
in which many researchers have made lots of achievements. While
the performance of single-frame (SF) detection is still limited due
to the lack of usage of multiframe (MF) continuous information,
many spatial-temporal detection methods have been developed.
However, most algorithms need to register the image or feed a
set of images as the input. Inputting a batch of group images
usually leads to large computations, which heavily affects their
real-time processing capability in resource-limited machines. To
tackle the problem, we propose a nonlocal multiframe network
(NLMF-Net) with only a few additional computations (no more
than 0.01 GFLOPs) compared to the SF baseline while achieving
significant performance improvements. The NLMF-Net correlates
features from grid cells with high confidence between current and
past frames. While most background grid cells are removed after
the SF processing, the MF feature fusion only focuses on a few
potential target grid cells, resulting in high computation efficiency.
The proposed vector length similarity module enlarges the dif-
ference between different grid cells and the non max similarity
suppression further suppresses the backgrounds during the fusion,
promoting the MF performance. The NLMF-Net can be readily
deployed on Jetson Nano at a speed of 20 FPS for 288 × 384
image processing or Mi Pad 2 with a speed over 35 FPS for 128
× 128 part image processing. Extensive experiments show that our
proposed method achieves state-of-the-art performance on three
datasets while maintaining high efficiency in a real-time processing
manner.

Index Terms—Convolution neural network (CNN), infrared
small target (IST) detection, real-time processing, spatial-temporal
(ST) fusion.

I. INTRODUCTION

INFRARED small target (IST) detection is an attractive task
since it is widely applied in many areas, such as airport

bird observation, unauthorized drone flight surveillance in urban
areas, and remote sensing of spacecraft reentry. It is important
for some scientific activities and urban safety. Over the past few
decades, many methods have been proposed to tackle the issue.
Due to the dim and shapeless characteristics of the ISTs, picking
out ISTs from various complex backgrounds is a continuing
challenge [1], [2].
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For decades, many researchers have published remarkable
works in IST detection [3], [4]. While single-frame (SF)
detection may cause many false alarms in low signal-to-clutter
ratio (SCR) or complex background images, multiframe (MF)
methods [5], [6], [7], [8] present a more stable and robust perfor-
mance by further leveraging spatial-temporal (ST) information.
These traditional algorithms are designed with mathematical
models and corresponding hyperparameters based on the prior
assumptions. That is, once hyperparameters are selected, they
can only work well on samples that satisfy the adopted prior
assumptions. If they are implemented in some other conditions
or evaluated based on datasets consisting of a large number
of images in various spots, these classical methods may fail.
And these ST tensors are typically sliced from multidimensional
data matrices with large sizes, which significantly increases the
computations for each processing.

Recently, with the development of deep learning methods ap-
plied in general object detection [9], [10] and segmentation [11],
many convolution neural network (CNN)-based IST detection
methods [1], [12], [13], [14] have been proposed. Some of
them dominate the community of IST detection due to their
strong learning ability and parameter self-adjustment during the
training procedure. Most MF networks for IST detection [15],
[16] also try to dig out more sequential features to achieve a
more stable and better performance. They try to fuse ST features
for IST detection and some remarkable performance has been
achieved. However, a set of problems for practical applications
still exist, which are given as follows.

1) While SF methods may be unable to distinguish some
unstable background clusters, a group of registered or
relatively static sequence images should be fed into the MF
algorithms for both traditional and CNN-based methods.
Direct feature extraction and fusion on batch images make
processing time consuming.

2) Static images are too rigorous for practical cases. Thus,
the registration process by scale-invariant features [17] or
some other methods is inevitable and costs some additional
time.

3) To balance the tradeoff between effectiveness and effi-
ciency, for existing methods, only a few frames are utilized
for each detection. That is, limited ST information is
adopted for fusion and these complex models cannot be
implemented on some source-limited machines.

To tackle the problem, we propose a nonlocal multiframe
network (NLMF-Net) for real-time IST detection in sequence
with ST information fusion in the feature field. The main
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Fig. 1. (a) and (b) Advantage of our proposed NLMF-Net for sequential
IST detection with high computational efficiency compared to current ones.
For current methods, a batch of group images (usually should be registered
or relatively static) would be fed into the model. However, such a large input
data inevitably harms real-time properties. In contrast, our model processes
the images one by one in real time. The ST fusion is applied in the feature
field and focuses on high-confidence grid cells with potential targets. While
the SF detection may fail to distinguish some backgrounds well, the MF fusion
between the current and past frames in the memory bank can further suppress the
target-similar background clusters. The movement of targets or camera platforms
would not cause noticeable effects. (c) Our proposed NLMF-Net equipped with
the MF strategy can consistently and effectively improve the performance of
the SF baseline on three datasets while increasing no more than 0.01 GFLOPs
computations. (a) Current Methods: Batch Image Input. (b) NLMF-Net: Feature
Correlation and Fusion in Feature Field. (c) Promotion of NLMF-Net based on
F1 evaluation of three datasets.

difference between our model and other methods is presented
in Fig. 1. Since segmentation-based methods [1], [14] are too
time consuming and cannot be applied on CPU-only or some
source-limited machines for real-time processing, we build the
NLMF-Net on the object level in a regression manner [2],
[9], [12]. Besides, ISTs are sparse on the spatial dimension.
Only features of a few grid cells with potential targets will
be considered during the ST fusion. Our model takes a single
real-time image as input and fuses ST features in a long-range
quickly. Moreover, thanks to the vector length similarity module
(VLSM) and non max similarity suppression (NMSS), unstable
target-similar clusters can be further suppressed, and the perfor-
mance increases compared to SF detection.

Contributions of this work can be summarized as follows.
1) Although there are some public datasets for IST detection

studies, most datasets are for SF detection research or
images in the datasets are synthetic or synthetic. Potential
gaps between real and synthetic images may hurt the
performance in real-world applications [18]. To alleviate

the data dilemma and verify our research, we construct a
training IST dataset and a test IST dataset, respectively.
They are not overlapped.

2) We propose a lightweight nonlocal (NL) ST feature fu-
sion framework, NLMF-Net. Input image registration
is unessential since the feature correlation and fusion
are only applied on high-confidence grid cells or image
patches picked out from the SF detection. The framework
promotes the performance on three datasets at the expense
of no more than extra 0.01 GFlops.

3) To avoid inaccurate or insufficient correlation between the
current and past frames, we propose the VLSM and NMSS
to preserve correct correlation and fusion during the NL
feature fusion process.

4) Experimental results based on our own and other public
datasets show that the proposed framework improves the
performance of SF detection obviously and outperforms
other methods with a much faster speed. Our model can
be readily deployed on CPU-only or resource-limited ma-
chines (e.g., Nvidia Jetson Nano and Mi Pad2).

II. RELATED WORKS

While the SF detection methods [4], [14], [19] fail to make
use of the temporal information among contiguous images and
cannot suppress some unstable clusters well, we mainly focus on
multiframe detection for ISTs in this article and all the methods
can be roughly divided into the traditional and CNN-based
methods.

A. Classic MF IST Detection

Just like some SF methods [19], local contrast (LC) and NL
self-correlation are also the most popular among MF methods
for IST detection. At each processing, a group of images should
be fed to them. As for LC methods, they usually split the task
to solve the spatial maps and the temporal ones, respectively.
Then, the last results can be obtained by fusing them just like ST
local contrast filter (STLCF) [5] and ST local difference measure
(STLDM) [20] algorithms. When it comes to NL methods,
the MF input tensors are transformed from the small batch of
sequence images. Although many optimization works have been
made to split the targets well from the backgrounds for MFs, the
low-rank and matrix recovery is usually implemented directly
on these MF tensors. The improved multimode weighted tensor
nuclear norm joint local weighted entropy contrast (IMNNL-
WEC) [6] and the sparse regularization-based spatial-temporal
twist tensor (SRSTT) [21] are the recent typical works that
perform better than some SF methods [22]. However, it takes lots
of time for the methods above and some others [23] to process
the matrix recovery especially when a group of images are fed.
Besides, traditional methods are based on prior assumptions and
can only work well on some prior-satisfied conditions. When
they are applied to evaluate a dataset with a large number of real
images in various scenes, they cannot perform as well as some
SF methods for both aforementioned and some others [24], [25]
sometimes.
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B. Lightweight Frameworks for Detection

Due to the limitations of classic methods, many researchers
began to solve the problem based on CNNs or transformers.
The authors in [1], [2], [13], [14], [26], and [27] performed
much better than classic methods even on a dataset that is not
overlapped with the training subset [2]. Although the deep-
learning-based methods showed powerful abilities in object
detection, it was a certain waste of computing resources for
smaller target detection by simply adopting general frameworks.
Excessively complex models will be detrimental to deployments
on terminals, such as applications in small drones, cars, robots, or
other similar scenes [28], [29]. For lightweight model building,
besides efficient structures, such as depthwise separable or group
convolution in some mobile networks [30], [31], it was common
to clip the unnecessary branches [12], [32], [33] or reuse some
backbones or modules [34] to make the models efficient. Espe-
cially for smaller objects or ISTs, many researchers also found
the importance of shallow features [2], [35], [36]. For example,
Sun et al. [35] designed a simple multireceptive field extrac-
tion (MRFE) module to further extract features with different
receptive convolutions. They thought the shallow layers were
suitable enough and the MRFE was light with only 12 layers.
Different from MRFE, some other researchers [2], [36] extracted
features from low to deep layers with a few convolutions. Widely
adopted residual direct skip and dimension concatenation made
the convolution combinations abundant, leading to features with
adequate receptive fields and properties while the computations
were controlled to small amounts. Although some SF networks
perform well in real time on GPU platforms, most of them usu-
ally focus on smaller general object detection but not extremely
small ISTs. The information of only an SF is still limited, which
means more progress can be made if MF cues can be utilized.

C. CNN-Based MF IST Detection

As for MF IST detection, most researchers designed specific
modules to further utilize temporal and spatial information.
Lin et al. [37] proposed a video IST detection network. The 3-D
cross-scale and fusion module connects features from different
scales during the encoding and decoding. Such contextual infor-
mation interaction leads to a better performance than some tradi-
tional methods. Yan et al. [15] connected a temporal multiscale
feature extractor and a spatial multiscale feature refiner in series.
Their spatio-temporal differential multiscale attention network
(STDMANet) is trained with a mask-weighted heatmap loss and
works better than some SF CNN-based methods [1], [26]. Dif-
ferent from the aforementioned networks that extract features di-
rectly on a group of sequence images, Du et al. [38] enhanced the
targets and suppressed the strong spatially nonstationary clutter
by an interframe energy accumulation enhancement mechanism.
Then, the feature extraction module extracts the ST information
and the last detection network predicts target positions among
thousands of regions of interest boxes. Because these methods
are designed to extract and enhance features based on a group
input image, it is usually time consuming for unit processing
just like MF traditional methods. Besides, the images should be
registered sometimes, which also costs some additional time.

Fig. 2. Framework of the MF IST detection based on NL ST feature fusion.
All patterns with light blue backgrounds denote modules in NLMF-Net, while
the others are data flow. Our NLMF-Net can further suppress the clusters that are
not continuous and maintain the confidence of true targets well by fusing the ST
information in the feature field. All the small image patches denote features of
the picked out grid cells in each SF. In the images, all the red boxes, blue boxes,
and green boxes denote the true target, SF results, and MF results, respectively.
The light blue lines are the boundaries of the grid cells.

To balance the performance and speed, they usually limit the
frames to make sure the models can be implemented on powerful
machines in real time.

III. METHODS

At present, most CNN-based MF IST detection methods
focus on how to extract and fuse features from the batch input
image. They are effective methods, but too time consuming and
not competent for operation in real time under some resource
constraints. We choose to capture the long range dependencies
by spacetime NL operation [39] among MFs. It is a transformer
style module and its various optimized versions can be applied
in classification [40], superresolution [41], segmentation [42],
[43], and so on. We can build space-time memory networks by
using the query, key, and value concept. The keys or features of
the current query frame associate and correlate with the ones of
past frames in the memory bank. Values of space-time fusion
can be read out by the matrix multiplication. Extracted features
from the same backbone can be associated with each other.
Features in the past frames are stored and fused with the current
frame instead of extracting them with limited batch frames
like [38].

The ST fusion of the NLMF-Net is based on the features
of high-confidence grid cells. As presented in Fig. 2 from the
bottom to the top, the SF network processes the current frame at
first. Since the SF detection results can be obtained, features of



XU et al.: REAL-TIME IST DETECTION WITH NL ST FEATURE FUSION 7891

high-confidence grid cells in the current frame are picked out. As
the process goes on, more features in a few past frames are picked
out and we can make a memory bank of past frames. Then,
high-confidence grid cells of the current frame will be correlated
with the ones in the memory bank. ST features can be aggregated
and fused after the weights of features in the memory bank are
obtained just as the feature aggregation examples presented at
the top of the light yellow box. Finally, the MF prediction will
be conducted on the ST features. High-confidence grid cells in
the current frame will be stored in the memory bank for the
following process.

Because the ST features are correlated, aggregated, and fused
based on the features of grid cells or small image patches, our
method does not need to register sequence images and fuse
features on a local part. The movement of camera platforms
makes few influences once the potential grid cells are picked
out during the SF processing.

A. SF Feature Extraction and Detection

SF detection is also competent in most cases. The most
difficult problem for SF detection is that it is nearly impossible
to distinguish the target-similar clusters by only one still image.
If the “false positive” metric is neglected, the SF network has
the potential ability to pick most targets out. So, we adopt
the multiscale and multilevel residual feature fusion network
(MMRFF-Net) [2] for the SF detection and simplify it to be
quicker. First, the inference speed is not only influenced by the
computations of the model. More processing steps usually mean
more time spent in some other computer operation such as data
access from some memory hardware. Besides, ISTs are small in
size. By drawing on the experience of infrared image observers,
we only need to consider the surrounding background area to
distinguish ISTs. Too large receptive fields may not be necessary,
either. Therefore, we remove a convolution layer of the block
in [2]. Both the global features and local features decrease by
1/4. Second, we replace the grid resample operations (GROs)
with max-pooling layers and a single 2 × 2 convolution layer.
One key point in [2] is that making full use of all scale features
is beneficial for performance. We choose to continue to adhere
to this rule and reduce some processing steps. We adjust all
features to the 1/8 scale by the max-pooling layers directly and
concatenate them on channel dimension. Then, the concatenated
features are adjusted to 1/16 scale by a 2 × 2 convolution layer
with the step set as 2, which can be fed to the decoupled head
for the last prediction in SF processing.

Because layers in each block decrease and no GROs are used
to further adjust features to a larger amount, the channels of
the last fused features decrease. Some previous experiments [2]
demonstrate that enough features are necessary for accurate
predictions. So, we increase the channels of the third block from
4 to 8 to preserve the amount of features. The default channels of
all blocks in our SF network are 2, 4, 8, and 8. Then, the channels
of output features are 6, 12, 18, and 18. The total channels of the
features before the 2× 2 layers are 66. We set the output channel
of the last 2× 2 convolution layer as 192 before the SF prediction
head. Finally, the decoupled head [2], [9] predicts targets at 1/16

scale by features with only 192 channels in dimension for each
grid cell.

B. Feature Correlation

ISTs are sparse in images. There are only several targets in an
image, which means only a few grid cells in which there are some
potential targets. If features of all the grid cells are considered
in the MF processing, the computations will be too large and
redundant. After the SF feature extraction and detection, the
confidence of all the grid cells can be obtained. We choose to
pick out the top N (the default value is 10 in our experiments)
grid cells with the highest confidence during the training and
testing. The following feature correlation and aggregation in the
ST fusion are conducted on these high-confidence grid cells.
Compared to other ST fusion for IST detection, our model can
correlate and fuse features in sequence for a large range without
introducing too many computations while others usually extract
and utilize a few frames for the balance between performance
and speed. Many background grid cells are neglected means the
computations can be controlled to a very small amount. If the
image resolution is H ×W , the grid cell size is G (16 in this
article), the frame number in the memory bank is T , and the
feature channel size is C, the computations can be decreased
from O(T (HW

G2 )2C) to O(TN2C). To be more specific, over
99.94% of computations can be removed if our model is applied
on 288 × 384 image processing. Besides, it is an NL processing
and there is no need to register the images. The image registration
is too time consuming. It is economical for our model to make
correlation and aggregation in the feature field, which ensures
the real-time processing of the network. The overall process can
be formulated as follows:

si,j =
qj · ki

|qj | · |ki| ·
(
1− |qj − ki|

|qj |+ |ki|
)
, si,j ∈ STN×N (1)

where si,j denotes the element in the correlation matrix S. It
describes the similarity value between the jth picked out grid
cell of the current frame and the ith one in the memory bank.
qj and ki represent the encoded features of corresponding grid
cells. More specifically, qj = θ(Fc) and qi = θ(Fmb). Fc and
Fmb denote features of the current frame and the ones in the
memory bank, respectively. si,j will be close to one if the grid
cells are similar or otherwise close to zero.

The feature correlation module is also presented in Fig. 3.
After SF processing, all the grid cells with high confidence
in the past frames will be stored in a memory bank. All the
extracted features will be fed to the same 1 × 1 convolution
layer to be encoded as queries of the current frame or the keys of
past frames. We avoid adopting the conventional QKV concept
directly and encoding queries and keys by the same convolution
operation. In other words, the query can be stored in the memory
bank as keys directly after completing the processing of the
current frame. During the testing, keys can be obtained from the
memory bank directly without additional computations, which
also contributes to reducing some computations.

After getting queries and keys, the similarity between each
query and each key should be obtained before the fusion. The
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Fig. 3. Structure of the feature correlation module. N denotes the constant
number of the grid cells with the highest confidence in each frame during the
training. T denotes the number of past frames in the memory bank. C denotes
the channel size of the features. θ denotes the 1 × 1 convolution layer, which
encodes all the grid cell features to the same implicit space.

Fig. 4. Definition of normalized similarity and the vector length similarity. q
andk denote the encoded feature vectors of grid cells in the current frame and past
frames, respectively. (a) Normalized Similarity. (b) Vector Length Similarity.

normalized similarity is the cosine function that has been widely
applied in [2], [44], [45], [46]. Because we continue to adopt
the self-contrast loss [2] and only the top N grid cells with
the highest confidence are kept for ST correlation after SF
detection, the normalized similarity values between these grid
cells are usually high (over 95% or even more). Then, the fused
ST features may consist of too many background components.
On the contrary, if we choose to calculate the nonnormalized
similarity, the difference will be too large. Only one grid cell
in the memory bank will be in response during the following
aggregation and fusion. To mitigate the problem, we propose
a simple VLSM, which is presented in Fig. 4. It takes both
the length and direction characteristics of the feature vectors
into consideration and will not be influenced definitively by the
length characteristics such as nonnormalized similarity. VLSM
enlarges the difference among grid cells properly and ensures a
more accurate aggregation during the ST feature fusion for those
grid cells in which there are potential ISTs.

Fig. 5. ST feature fusion. g is the same 1× 1 convolution that encodes features
to values. During the fusion, the influence of the background clusters will be
suppressed with NMSS within each frame. Only the features of continual targets
with the highest similarities in the frames will be aggregated and fused, which
promotes the performance.

C. ST Feature Fusion

In other works [39], [41], [42], the last aggregated features
are directly obtained by matrix production. It is not practicable
in our model for IST detection since the difference description
between the target grid cells and the background ones is enlarged
but not suppressed to zeros by VLSM. The aggregated features
may consist of quite a few parts of backgrounds if we follow
the conventional way [39], [41], [42]. To further suppress the
backgrounds, we propose an NMSS within each frame. It is
stable and consecutive for an IST to correlate one or two grid
cells. So for, a target grid cell in the current frame, there will
be no more than two correct grid cells to correlate and fuse in
most cases. We suppress the lower ones to zero directly and only
the highest and the second highest grid cells are kept left. The
whole process is presented in Fig. 5, which can be formulated
as follows:

Fst = cat (g (Fc) , g (Fmb)⊗ s (NMSS (MTN×N ))) (2)

where cat denotes the concatenation operation on channel di-
mension; g denotes the 1 × 1 convolution layer that converts
features to the same value space; ⊗ denotes matrix production;
NMSS denotes NMSS within each frame; Fst, Fc, Fmb, and M
denote the ST features, features of the current frame, features in
the memory bank, and correlation matrix, respectively; the size
of the correlation matrix is TN ×N ; T is the frame number
of the images stored in the memory bank; N is the number of
grid cells with the highest confidence in each SF; and s denotes
softmax operation with temperature hyperparameter [42], [43]
on column dimension as follows:

wi→j =
esi,j/γ∑
i

esi,j/γ
(3)

where si,j is obtained by (1) but not suppressed to zero by
NMSS; wi→j is the weight of the ith grid cell in the memory
bank for the jth fused feature in the current frame; and γ is
the temperature hyperparameter. The dimension of the fused ST
features is the same as the one in SF detection. So, we adopt the
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same decoupled head for the MF prediction. Features with ST
fusion will be fed to the MF head directly.

To present the computation influence more clearly, we com-
pute and summarize computations of the correlation and fusion
as follows:

FLOPsST = 2NC2 +
3

2
NC + 4TN2C + 13TN2 (4)

where both the feature correlation and fusion are considered;
N , T , and C denote the number of high-confidence grid cells in
the SF process, the number of frames stored in the memory
bank, and the feature channel, respectively. Although more
stored frames can increase the computations, the order of T
is only 1 and only two terms contain it. The main computation
contributions are from N and C. If the last prediction of the
fused ST features is considered, the influence of N and C will
be even enlarged. The additional MF computations will only
rise up from 0.008 GFLOPs to 0.014 GFLOPs if we increase
T from 20 to 100 based on our default settings. Relatively, if
N or C are doubled, the additional computations will increase
more since all terms contain them and some orders are two.
Besides, the last prediction based on the fused ST features is
also relevant to N and C. For building a lightweight MF model,
it is important to constrain N and C while maintaining the
performance. Default settings and corresponding analysis have
been presented in previous subsections.

D. Loss Function

The SF network and MF fusion network are independent.
They can be trained independently. In our experiments in
Section V, the MF process contains the SF and the NLMF part.
The overall loss function is as follows:

L = λ1 · LSF + λ2 · LMF (5)

where λ1 and λ2 denote the weight of SF and MF parts, respec-
tively; LSF is the SF detection loss, which is the same as [2]; and
LMF is the MF detection loss. It consists of only confidence loss
and regression loss, which can be simply described as follows:

LMF = αT · M
(
PT · BCE

(
C, Ĉ

))

+ αB · M
(
PB · BCE

(
C, Ĉ

))

+ αR · M
(
PT · CIOU

(
R, R̂

))
(6)

where BCE and CIOU denote binary cross entropy and
complete-IOU [47] loss functions, respectively; and PT and PB

represent whether there are targets in the grid cells or not. If there
is a target in the picked out grid cell, PT is 1 and PB is 0. If there
is no target, PT is 0 and PB is 1. C and Ĉ denote the confidence
groundtruth and the prediction for grid cells that are picked out
from the SF detection. R and R̂ denote the box groundtruth and
the prediction bounding boxes. M denotes the mean operation.
αT , αB , and αR denote the weight of each component in the
loss function.

IV. DATASET AND EVALUATION

A. Dataset Description

In this article, we mainly focus on ISTs in the sky. Although
synthetic images may also promote performance, we worry
about the gap between real and synthetic images [18]. So, we
only take real images for the first experiments (see Section V-B).
As mentioned before, real images in sequence are lacking. We
construct a training set and a test set from different cameras and
cases. There are 249 sequences in our training dataset (161 358
images and 196 303 ISTs). The image sizes in eight sequences
are 480 × 640, while others are 288 × 384. We name this
dataset IST sequence training set, simplified as IST-ST. There
are aircraft, planes, birds, and helicopter ITSs in IST-ST. The
model trained on such a large number of images can meet the
real-world application better. The test dataset consists of 26
sequences (16 404 images and 17 003 ISTs). All the images
share the same size as 288× 384 and they are captured by a static
camera. In this test dataset, all the planes, birds, and aircraft are
taken as targets. It is a static IST dataset and we name it IST-S.
In our work, we broadly define targets smaller than 16 × 16 as
ISTs. And over 99% of ISTs in our datasets are smaller than
6 × 6.

Besides, Sun et al. [35] shared a massive infrared small
target dataset (IRDST) with 85 real image sequences and some
synthetic images. To the best of our knowledge, it is the only open
dataset in which there are many real sequences and ISTs satisfy
our definition. Although IRDST is constructed by another team
and images are captured by other cameras, it is still consistent
with our datasets to some extent. It is more convincing to conduct
experiments on nonoverlapped datasets to evaluate both the
performance and robustness of all the models. So, we take the
85 real image sequences (40 656 images and 41 801 ISTs) as
the second test dataset. In IRDST, a few images are 742 × 992,
while all others are 480 × 720. More details can be referred
to [35].

IST detection is a challenging task. Not only will the weak
SCR of ISTs increase the difficulties, but the various shapes,
sizes, and backgrounds will also do. Some large models may
just overfit the training subset and perform well on the specific
cases. So, in the first experiment comparison of this article, we
train all the CNN methods on the same and only training dataset.
All methods including classic methods are evaluated on IST-S
and IRDST. All the datasets are not overlapped.

Besides, we conduct another experiment based on the open
SIATD [48]. It is a semisynthetic dataset consisting of 175
sequences for both the training and test subsets. It has been
widely adopted for comparison and analysis in [15], [26], and
[27]. The backgrounds are captured by a camera with 512 ×
640 resolution and all ISTs are synthetic. Targets in SIATD also
satisfy the definition in our work. Indeed, all synthetic targets
are smaller than 3 × 3. While potential gaps exist between
real and synthetic samples, CNN models in this experiment are
all retrained. In the official SIATD, both the training and test
subsets contain 175 sequences. After checking all the images,
we find that the 61st sequence in the test subset is broken. So
we remove it and there are only 174 sequences in the evaluation
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Fig. 6. Some examples from different datasets. Enlarged views of ISTs are
presented at the left-top corner. There are various targets and backgrounds in
the datasets for training and evaluation.

TABLE I
STATISTIC OF TARGET NUMBER FOR ALL DATASETS

of the NLMF-Net. They contain rich scenarios such as rivers,
buildings, vegetation, and cloud backgrounds. More details can
be referred to [48].

Some examples of all the datasets are presented in Fig. 6. The
statistics of the ISTs are presented in Table I and Fig. 7. Because
there is only position information in the labels of SIATD, we
set the target size in SIATD as 1 × 1 in the statistics. Validating
performances of models on several large and diverse datasets is
reliable and convincing.

B. Evaluation Methods

In this article, average precision (AP) [9] and receiver oper-
ating characteristic (ROC) [2] are adopted for the evaluation.
Following the evaluation in [2], we take AP3p25 in [2] as the
AP metric and name the corresponding ROC metric ROC3p25.
When evaluating ROC, if a bounding box is not a correct
detection, all the pixels in the box will be taken as false alarms
for the regression-based methods.

Fig. 7. Distribution of target size, SCR, image entropy, and local Sobel
gradients for all datasets. The average values are presented in the left top corner
or right top corner. All definitions can be referred to [2]. The training and test
subset of SIATD are consistent in distributions, while other datasets vary with
each other in the distributions. They are complex and vary in IST size and SCR
distributions.

Besides, we relax AP3p25 to AP3pOr50. For AP3pOr50, a
predicted bounding box will be taken as a correct detection
when: the Euclidean distance between the center of groundtruth
and the predicted bounding box is not larger than 3 and the
center of groundtruth is in the predicted bounding box, or the
intersection over union (IOU) between the predicted bounding
box and groundtruth is not smaller than 50%. When evaluating
methods based on AP3pOr50, predictions with lower IOU are
not taken as false detection when ISTs are very small. If ISTs
are larger, a successful detection only needs to satisfy the second
rule. The corresponding ROC metric is named ROC3pOr50.
Relatively, AP3p25 is a stricter metric demanding accuracy for
both center distance and bounding box size prediction while
AP3pOr50 may be more friendly for IST detection evaluation.

We also adopt the F1 score [15], [26], [27] to evaluate the
balance performance of the precision and recall. Because AP
evaluation can reveal the performance on the whole, we only
present the best F1 scores for all methods in this article. All
metric evaluation results will be presented in Section V.

V. EXPERIMENTS

A. Network Training and Settings

During the training of NLMF-Net, we train the SF part for
10 000 iterations before the MF training. A well pretrained
model can avoid incorrect feature correlation during the MF
training. During the MF training, the images are sampled from
249 sequences randomly in IST-ST. To increase the sample
combinations, images are selected from the original sequences
randomly with a random interval from 1 to 3. The short training
sample sequence varies the length from 2 to 15 randomly and
the sequence order may be reversed before each iteration. We
consistently crop the images to 240 × 320 randomly and make
sure that ISTs are in the cropped images during the training.
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TABLE II
EXPERIMENTAL RESULTS OF ALL METHODS

In a short training sample sequence, the crop positions of the
images are not the same. In other words, the backgrounds are
not aligned during the training no matter whether the original
sequences are captured in a static way or not. Other random data
augmentation such as image flip and gray stretch are the same
for a small sequence in each iteration. We train our NLMF-
Net for another 200 000 iterations by training the SF part and
the whole network alternately. The setting of hyperparameters
is usually flexible but follows some rules. For MF training,
the loss function contains both the SF and MF parts. Since
the loss of SF network backpropagates independently during the
alternating training, weight parameter λ1 in (5) is set lower than
λ2 during the MF alternate training. As for the weights in (6),
it is not difficult for regression-based models to locate targets
for the potential target grid cells. The main difficulty of IST
detection is to discriminate whether there is a target in the grid
cell. Besides, ISTs are sparse in images. Negative samples are
much more than positive samples even in the high-confidence
grid cells. To suppress backgrounds better, αB is usually set
higher. In our experiments, λ1 and λ2 are set as 0.1 and 1.0.
αT , αB , and αR are set as 0.1, 1.0, and 0.1, respectively. For
the temperature hyperparameter in (3), because the similarities
are normalized values to some extent, they are not larger than
1. To enlarge the weight of correct target grid cells, γ should be
assigned a smaller value and we set it as 0.02.

B. Comparison of IST-S and IRDST

In this subsection, we compare our model with several
state-of-the-art methods including adaptive scale patch-based
contrast measure (ASPCM) [3], the partial sum of the ten-
sor nuclear norm (PSTNN) [4], STLCF [5], STLDM [20],
IMNNLWEC [6], SRSTT [21], MDvsFA [13], ALCNet [14],
DNANet [1], MMRFF-Net [2], and YOLOX [9]. For fair com-
parisons, all classic and CNN methods are evaluated on an
i7-10850H (2.3 GHz) with a NVIDIA RTX2060 platform. Quan-
titative evaluation values are presented in Table II and typical
detection results are presented in Fig. 8. AP and ROC curves
based on 3p25 and 3pOr50 metrics are presented in Fig. 9. The

TABLE III
MEMORY REQUIREMENT WHEN MODELS ARE APPLIED ON CPU OR GPU

memory requirements for models when they are implemented
on CPU or GPU are presented in Table III.

Classic methods are designed based on specific priors. They
may work well on the prior-satisfied cases. However, too many
false alarms come out when they are implemented on datasets
with various cases for both LC and NL matrix recovery meth-
ods. Although some methods [5], [6], [20], [21] conduct the
processing on MFs, it is still too difficult for them to suppress
strong edges and segment the targets accurately even based on
the AP3pOr50 metric.

For CNN-based methods, ALCNet [14] performs best among
the segmentation-based methods due to the successful model-
driven framework. Simple wide channels in [13] or dense skip
feature fusion [1] cannot increase the performance and may lead
to bad influences on the generation. Although ALCNet achieves
high scores in the ROC metric, it still performs worse than
regression-based methods because of pixel-level false alarms.
These pixel-level false alarms are still very common just like
the circled clusters in the fourth example, which limits the
performance of AP and F1 evaluation. When compared with
YOLOX-series methods (regression-based), the NLMF-Net out-
performs a lot in IST-S and IRDST. Referred to Fig. 7, ISTs
in IST-S are smaller than the ones in IRDST. The first and
the second examples presented in Fig. 8 reveal that YOLOX
cannot distinguish small targets as well as NLMF-Net. It is
also demonstrated by the sharp drop of AP curves and gradual
increase of ROC when recall and false alarms ratio are small in
Fig. 9 on both datasets.
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Fig. 8. Detection results from different methods. The first and second examples are from IST-S, while others are from IRDST. All red boxes, blue boxes, and green
boxes denote groundtruth boxes, SF detection results, and MF detection results. “Ours-SF” and “Ours-MF” denote the simplified MMRFF backbone introduced
in Section III-A and the NLMF-Net, respectively. All blue and green boxes without any red boxes overlapped are false alarms for the corresponding methods.
Enlarged views around the true targets are shown at the left top corner, while typical false alarms are presented at other corners for all examples. Some but not all
false alarms of CNN methods are labeled by orange circles. Our NLMF detection method can pick most targets out and further suppress the backgrounds by fusing
ST features based on SF detection.

Fig. 9. AP and ROC curve of CNN methods. Classic methods perform much
worse than CNN methods. To show the performance of CNN methods clearly,
corresponding curves of classic methods are not presented. The positions of best
F1 scores are stared in AP curves. The NLMF-Net improves the performance
of SF detection and performs better than other methods. (a) AP curve of IST-S.
(b) AP curve of IRDST. (c) ROC of IST-S. (d) ROC of IRDST.

The NLMF-Net performs more balanced on both two datasets.
The simplified MMRFF [2] backbone extraction fuses features
from all scales and preserves the detection for ISTs with various
sizes in the SF detection. Although the SF detection process fails
to distinguish some nonstationary clusters, most of them are
further suppressed when ST features are fused. Some typical
examples are labeled by the orange arrows in Fig. 8. In these
examples, some clusters possess very high confidence in SF
detection. With only SF features, it is too difficult to distinguish

them. Anyway, these similar cluster pixels may be just true
targets in other cases. After correlating and fusing features
among high-confidence grid cells, the MF head outputs a more
accurate prediction for true targets and target-similar clusters.
All quantitative values in Table II and curves in Fig. 9 demon-
strate the validity of our NLMF-Net for increasing performance.
More importantly, our NLMF framework is implemented only
on high-confidence grid cells, which decreases the computations
a lot. Compared to the only SF detection, NLMF-Net only in-
creases computations by no more than 0.01 GFLOPs. It ensures
that our model can be applied for 288 × 384 image processing
at a speed of 47 FPS on CPU and 20 FPS on Jetson Nano.
Besides the platforms mentioned previously, NLMF-Net can be
also deployed on Xiaomi Mi Pad 2 (Intel Atom x5-Z8500 CPU)
at about 8 FPS for 288 × 384 images and over 35 FPS for 128 ×
128 part image processing when open neural network exchange
(ONNX) is adopted. In Table III, we also present the memory
requirements for CNN models when they are deployed on CPU
or GPU. The model initialization, pretrained model loading, and
inference process are considered during the memory statistics.
More specifically, the maximum memory difference for CPU or
GPU values between the beginning of the model initialization
and the end of the inference are recorded. The NLMF-Net only
needs a small memory for inference on both CPU and GPU.

C. Comparison of SIATD

In this experiment, we follow the official splitting of the
dataset and the evaluation metric [48]. Because NLMF-Net will
output the prediction bounding box size, we set the size of the
label as 1 × 1 for all ISTs during the training. All the targets are
smaller than 3 × 3 and most of them are just 1 × 1 by our rough
statistic. During the evaluation, only the center positions of all
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TABLE IV
EXPERIMENT RESULTS OF SIATD

predictions are fed to the official evaluation method. Results are
presented in Table IV.

When comparing with other state-of-the-art methods on
SIATD, only STDMANet performs better than us, while NLMF-
Net outperforms all other methods in F1 score. With NL ST
feature fusion, the performance of NLMF-Net is promoted.
In Table IV, only STDMANet and our NLMF-Net are MF
detection networks. STDMANet is a network that takes a batch
image as input. In its temporal multiscale feature extraction,
the output features are aggregated from three paths. Especially,
the input images should be aligned before the extraction by
scale-invariant feature transform [17], which also costs some
additional time. And the following dense convolutions lead to
large computations. Its success in the highest F1 scores owes
to the differential information, which can obtain the moving
cues of targets especially when ISTs are weak and ambiguous
with the backgrounds. By contrast, our NLMF-Net is an MF
network based on NL patches. Thus, our NLMF-Net may fail
to pick out some ambiguous targets but is much faster than
STDMANet (95.38F1 at 120 FPS with 2060TI versus 97.44F1
at 27FPS with 3090TI).

Anyway, most other methods mainly try to detect more targets
at the expense of many computations. NLMF-Net increases
the accuracy by adopting a few computations and achieves
the second-highest recall with the highest accuracy. Features
from all scales and levels with a few channels are enough for
IST detection. And NL ST feature fusion further increases the
accuracy by focusing on the grid cells with high confidence.
In Table IV, NL ST feature fusion improves the F1 score from
94.70% to 95.38% based on the official evaluation metric [48]. If
we evaluate based on our metric, NLMF-Net will improve the F1
score from 94.20% to 95.00%. Too deep layers or wide channels
are redundant for IST detection especially when targets are very
small just like the ones in SIATD. Even our SF part network can
easily beat other CNN methods except STDMANet with the
quickest speed. Based on SF detection results, our NLMF-Net
runs quicker than most other methods with the second-highest
F1 score on the open SIATD. Because source codes of some
methods [15], [27] are not open now and the other baselines are
trained by previous researchers, we only show some examples

Fig. 10. Two detection examples of NLMF-Net on SIATD. NLMF-Net sup-
presses the background better than the SF network by fusing ST features. A
typical background cluster is shown at the right-top corner. Some cluster sup-
pression examples are labeled by orange arrows. NLMF-Net further suppresses
some target-similar clusters and increases the accuracy of IST detection.

TABLE V
PERFORMANCE ON DIFFERENT DATASETS WHEN THE CONFIDENCE

THRESHOLD IS SET AS 0.9 FOR BOTH SF BASELINE AND NLMF-NET

of our NLMF-Net to present the superiority of NL ST fusion in
Fig. 10.

D. False Alarm Suppression of NLMF-Net

In previous subsections, we have presented some examples
of background clutter suppression. The quantitative results also
show that NLMF-Net can continuously increase F1 scores on
three datasets. In this subsection, more concrete results are
presented in Table V and Fig. 11 to show the powerful ability of
NLMF-Net to suppress background clusters.

In Table V and Fig. 11, only the top N (Default value is 10) grid
cells with the highest confidence are considered. Compared to
the SF baseline, NLMF-Net enlarges the confidence difference
by 15.5%, 113%, and 30.4% between targets and backgrounds
with high confidence. Although the average confidence values
for both targets and backgrounds are decreased, the background
ones are suppressed more obviously. By correlating, aggregat-
ing, and fusing ST features among MFs, NLMF-Net can make
a more accurate judgment for those target-similar clusters and
decrease the false alarms by 98.7%, 93.6%, and 96.7% on the
three datasets. On the whole, NLMF-Net promotes performance
a lot by suppressing false alarms at the expense of a small recall
decrease.

E. Ablation of NL Fusion

In this subsection, an ablation study of NL fusion is conducted.
Quantitative evaluation results are presented in Table VI. Models
with only the NL fusion strategy perform better than the SF
model. In particular, F1 values are promoted continually by
adding modules one by one. Although the AP and ROC may not
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Fig. 11. Confidence distribution of target and background clusters in several datasets. NLMF-Net decreases the average confidence of background clusters by
0.217, 0.615, and 0.270, while the average target confidences are decreased by only 0.078, 0.097, and 0.027, respectively. NLMF-Net increases the accuracy by
suppressing backgrounds. (a) Confidence distribution of IST-S. (b) Confidence distribution of IRDST. (c) Confidence distribution of SIATD.

TABLE VI
ABLATION OF NON-LOCAL FUSION. IN THIS TABLE, VLSM AND NMSS CONTRIBUTE A LOT TO THE PERFORMANCE PROMOTION OF NLMF-NET.

Fig. 12. How VLSM and NMSS promote the performance. The detection
results are presented in the left and enlarged views of the true targets in the
past ten frames are presented in the right. All red-purple and yellow boxes
denote the grid cells of the targets or clusters. If the contribution proportions
of the ST features are over 1%, the corresponding grid cells will be labeled by
red-purple boxes. In each grid cell, the ST feature contribution proportion is
printed at the left-top corner and the similarity is printed at the right-bottom
corner. All red, blue, and green boxes denote groundtruth, SF, and MF detection
results, respectively. VLSM and NMSS improve the feature correlation and
fusion, which contributes to the performance promotion.

be promoted in a few cases, the scores may be just influenced
by detection abilities when accuracy is lower. Anyway, a higher
F1 means a better balance between accuracy and recall.

In our experiments, VLSM can enlarge the difference between
true ISTs and target-similar clusters properly. With only normal-
ized similarity, the proportion of true IST weight in the last ST
features is usually low. A typical example is presented in Fig. 12.
Without VLSM and NMSS, the similarity values between true

TABLE VII
QUANTITATIVE STATISTICS OF VLSM EFFECT

targets and some target-similar clusters are usually high. The
weight of the feature contribution from the true targets is only
17%. Such a low value means the NLMF-Net cannot collect
enough and correct ST features from the consistent IST, which
makes the model trained not well. If the VLSM is applied, the
difference between different grid cells is enlarged obviously.
And the weight increases to 65%, too. To further suppress the
clusters in each frame, the NMSS helps increase the weight to
86%. Although some target-similar clusters still contribute to the
last fusion, enough correct features are collected to ensure a more
accurate and robust judgment for each high-confidence grid cell.
More quantitative and comprehensive statistics are presented
in Tables VII and VIII. By comparing the “Ratio of SIM,”
VLMS improves the feature correlation from 0.120 to 0.540
on IST-S and from 0.121 to 0.516 on IRDST. By comparing the
“Ratio of Weight,” NMSS further suppresses the backgrounds
and improves the feature fusion from 6.226 to 10.11 on IST-S and
from 3.344 to 4.960 on IRDST. On the whole, both the VLSM
and NMSS help improve the performance of NLMF-Net.



XU et al.: REAL-TIME IST DETECTION WITH NL ST FEATURE FUSION 7899

TABLE VIII
QUANTITATIVE STATISTICS OF NMSS EFFECT

Fig. 13. Four enlarged views of noisy examples. The frame interval of exam-
ples is small. A certain degree of noise is widespread. The main noises in IST-S
are fixed, while the ones in IRDST are random in most cases.

F. Noisy Robustness Analysis

Although great progress has been made in infrared imaging
technology in recent decades, a certain degree of nonuniformity
noises still widely exist. Some noisy examples are presented in
Fig. 13.

In this subsection, we synthesize noisy images based on IST-
S by adding random Gaussian noises directly. The additional
noisy standard deviation (std.) values are set as 0.01 and 0.02 in
the experiments. Only ALCNet and YOLOX-x are adopted for
comparison. Quantitative results are presented in Table IX and
corresponding curves are presented in Fig. 14. All the models are
adopted from Section V-B directly and not retrained by adding
heavier noises.

Deeper networks such as YOLOX-x are not competent for
smaller IST detection. YOLOX-x predicts targets by only deep
features, which limit their ability to detect smaller targets. Recall
curves presented in Fig. 15 reveal that it can perform better
when targets are larger. In Fig. 15, it seems that YOLOX-x
achieves higher recall values on smaller targets when noises are
heavier. It does not mean YOLOX-x performs better than itself in
heavier noisy cases. Noise will bury some background clusters
and targets at the same time. All methods drop their abilities to
pick more targets out by comparing AP curves between Figs. 9
and 14. The synthetic noises just bury the target-similar clusters,
and YOLOX-x achieves a relatively higher accuracy due to
fewer false alarms in some cases. It increases the accuracy
of YOLOX-x when recall is not high by referring to Figs. 9
and 14. Then, more successful detection results are counted
during the noisy recall statistics. Actually, the performance of
YOLOX-x also drops and YOLOX-x cannot distinguish smaller
targets and background clusters especially when they are not
larger than 4 × 4 for both original IST-S or synthetic noisy

Fig. 14. AP curve and ROC on noisy datasets. (a) AP curve of IST-S (noisy
std = 0.01). (b) AP curve of IST-S (noisy std = 0.02). (c) ROC of IST-S (noisy
std = 0.01). (d) ROC of IST-S (noisy std = 0.02).

Fig. 15. Recall curves when demanding accuracy is 85% based on IST-S.
ALCNet cannot achieve such a demanding accuracy and we present the recall
curve when the F1 scores are the highest. NLMF-Net is robust to a certain degree
of noise and performs well among ISTs with various sizes.

datasets. The other network ALCNet is a model-driven network
that combines deep learning and traditional priors. It preserves
the balance for detecting ISTs with various sizes but not as well
as NLMF-Net. Although ALCNet achieves high scores in ROC
metric, pixel-level false alarms limit its accuracy on object-level
detection.

By contrast, NLMF-Net performs better on the whole. Al-
though the performance is influenced by the noises, NLMF-Net
still preserves a good recall on smaller targets. Features from
all the scales help the model pick out true targets with various
sizes. And ST feature fusion makes the model more robust
to the background clusters especially when these clusters are
not stable. The attention should be drawn that the performance
of NLMF-Net tends to decrease more if noises are too heavy.
MMRFF [2] backbone fuses both shallow and deep features.
When the network cannot detect some small targets by taking
full use of only deep features, shallow features may help the
model to work it out. However, shallow features are not robust
to noises. When heavier noises are involved, not only will the
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TABLE IX
PERFORMANCE ON NOISY DATASETS

Fig. 16. Some ambiguous examples. The failures are labeled by red circles,
while some target-similar clusters are labeled by light blue circles. It is difficult
for SF methods or modules to distinguish such ambiguous targets and some
stable clusters.

smaller targets become weaker, but also the shallow features may
be also heavily influenced. It may even drop the performance on
larger targets. That is, NLMF-Net can tolerate a certain degree
of noise, which has been presented in Fig. 13. If more noises are
added, performance for both smaller (not larger than 4 × 4) and
large targets will drop down for our NLMF-Net.

G. Limitation Analysis

Though the performance of NLMF-Net is promoted by the
ST feature fusion, there are still many other cases that the
NLMF-Net cannot deal with. First, the performance of NLMF-
Net highly relies on SF detection. NLMF-Net cannot deal with
images when targets are ambiguous with backgrounds and re-
searchers even cannot make a quick and correct judgment. The
NL feature fusion is based on the grid cells with high confidence
that are picked out by the SF network. In other words, if the
extremely weak targets cannot be found by the SF network, they
will be neglected in the following MF detection. Some examples
are presented in Fig. 16. The other case has been also illustrated
in Fig. 15 that our NLMF-Net cannot tolerate too heavy noises
such as deeper networks [9], [14]. Heavier noises will harm the
shallow features for SF prediction, which is not beneficial to the
MF feature correlation and fusion.

Although the performance of NLMF-Net is limited by the
SF detection and it cannot tolerate too heavy noise, NL ST
feature fusion increases the accuracy obviously. And current
imaging technology is sufficient to ensure a good image quality
without too much noise. At least, NLMF-Net performs best in
the original IST-S and IRDST with a quick speed compared to
other methods. On the whole, NLMF-Net is practical and runs

quickly to deal with IST detection and suppress the unstable
clusters well.

VI. CONCLUSION

In this article, we propose an NLMF-Net for IST detection
in sequence. The NLMF-Net fuses MF features by focusing on
the high-confidence grid cells, while over 99.94% of redundant
and ineffective features are neglected. The MF processing only
introduces no more than 0.01 GFLOPs, which ensures real-time
processing on resource-limited machines. Besides, the VLSM
enlarges the difference between targets and background clusters.
The NMSS further suppresses the weight of background clusters.
They improve the feature correlation and fusion among grid cells
between current and past frames. Based on the three datasets,
NLMF-Net enlarges the confidence difference between targets
and backgrounds by 15.5%, 113%, and 30.4%, which increase
the accuracy and improve the performance by 2.81, 7.17, and
0.68 for F1 evaluation when compared to the SF baseline. Exten-
sive experimental results demonstrate the balanced performance
of the proposed network compared to classic and other CNN
methods for both accuracy and speed in practical scenes.
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