IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

All-Season Liquid Soil Moisture Retrieval
From SMAP
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Abstract—In cold regions, the coexistence and interconversion of
liquid water and ice in frozen soils have important implications for
energy partitioning and surface runoff at the Earth’s surface. Pas-
sive microwave remote sensing is crucial for the global monitoring
of soil moisture (SM). However, current research on SM focuses
mainly on unfrozen soil conditions. Limited studies have been
conducted on variations in soil liquid water content throughout
the freezing season. This article investigated the potential use of
brightness temperature observations from the Soil Moisture Active
Passive (SMAP) satellite for retrieving all-season liquid SM. The
single-channel algorithm and the Zhang-Zhao dielectric model,
which was specifically developed for freezing and thawing soils,
achieved successful retrieval of liquid SM in both frozen and thawed
soils, even when snow cover was present. The results indicate
improved spatial coverage (during winter) and consistent spatial
patterns in SM compared with the SMAP products. Validation at
17 SM networks suggests that the retrieved all-season liquid SM
effectively captures the dynamic characteristics of each region with
an average bias of 0.011 m3/m?, an average unbiased root mean
square error of 0.056 m3/m?, and an average correlation coefficient
of 0.76. The additional retrieval of unfrozen water content during
the freezing season would enhance the monitoring and understand-
ing of the hydrological cycle and energy balance in cold regions.

Index Terms—Liquid water content, microwave remote sensing,
soil moisture active passive (SMAP), soil moisture (SM).

Manuscript received 4 December 2023; revised 16 February 2024; accepted
13 March 2024. Date of publication 28 March 2024; date of current version
19 April 2024. This work was supported in part by the National Key Research
and Development Program of China under Grant 2021 YFB3900104, and in part
by the National Natural Science Foundation of China under Grant 42201393.
(Corresponding author: Tianjie Zhao.)

Chi Wang, Na Yang, and Huazhu Xue are with the School of Surveying
and Land Information Engineering, Henan Polytechnic University, Jiaozuo
454000, China (e-mail: 212104020011 @hpu.edu.cn; yangna@hpu.edu.cn;
xhz@hpu.edu.cn).

Tianjie Zhao, Zhiqing Peng, Jingyao Zheng, Panpan Yao, and Xiaowen Gao
are with the State Key Laboratory of Remote Sensing Science, Aerospace
Information Research Institute, Chinese Academy of Sciences, and Uni-
versity of Chinese Academy of Sciences, Beijing 100101, China (e-mail:
zhaotj@aircas.ac.cn).

Jinmei Pan and Jiancheng Shi are with the National Space Science Center,
Chinese Academy of Sciences, Beijing 100190, China (e-mail: shijiancheng
@nssc.ac.cn).

Hongbo Yan is with the Guilin University of Technology, Guilin 541004,
China.

Peilin Song is with Xi’an Jiaotong University, Xi’an 710049, China.

Yuei-An Liou is with Hydrology Remote Sensing Laboratory, Center for
Space and Remote Sensing Research, National Central University, Taoyuan
320317, Taiwan (e-mail: yueian@csrsr.ncu.edu.tw).

Digital Object Identifier 10.1109/JSTARS.2024.3382315

, Senior Member, IEEE, Huazhu Xue

, Zhiqing Peng “, Jingyao Zheng,
, Peilin Song ", Yuei-An Liou"”, Senior Member, IEEE,
, Fellow, IEEE

I. INTRODUCTION

OIL moisture (SM) is the total water content in the soil,
S which exists in liquid, solid, and gaseous forms. Soil freezes
when its temperature falls below 0°C. However, due to surface
tension and solutes in the SM, water in the frozen soil always
remains in a certain amount of liquid state [1]. This liquid form
of water is called unfrozen water. In seasonal frozen ground,
unfrozen water and ice coexist, and their interconversion, known
as freeze-thaw changes, affects hydrological, ecological, infras-
tructural, and climatic feedbacks, as well as having far-reaching
impacts on the global carbon cycle and climate dynamics. The
large energy-water transitions associated with surface freezing
and thawing alter heat distribution in the soil, leading to complex
interactions between the soil and the surrounding air. When
water freezes, it releases latent heat to the surrounding area,
causing a localized temperature increase [2]. Conversely, when
ice thaws, it absorbs heat from its surroundings, resulting a
decrease in temperature. These energy-water transformations
play a crucial role in shaping various environmental processes.
In addition, the hydraulic conductivity of frozen soil can be
significantly reduced, resulting in different patterns of flow
production and sink, which in turn change the characteristics
of the wider regional water cycle [3], [4]. Monitoring changes
in unfrozen water and freeze-thaw in surface soils is crucial to
characterize hydrological changes in frozen soils under climate
change scenarios.

Ground-based SM observations provide a precise under-
standing of unfrozen water and freeze-thaw alterations in
soil [5]. However, current region-specific ground-based obser-
vation networks face significant spatial heterogeneity, making
them inadequate for global or regional monitoring of unfrozen
water and freeze-thaw changes in soil distribution characteristics
[6].

Microwave remote sensing technology obtains soil surface
information by measuring reflected, scattered, and radiated
microwave signals. Microwave signals can be used to infer
the liquid water content and freeze-thaw state of the soil
[7], [8]. Following the successful deployment of the Soil Mois-
ture and Ocean Salinity (SMOS) [9], [10] and Soil Moisture
Active Passive (SMAP) [11], [12] satellites, SM products have
been progressively utilized in a variety of hydrological and
ecological studies. Simultaneously, this has also contributed
to the research boom in monitoring surface soil freeze-thaw
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alterations through L-band passive microwave remote sensing
[11]. The greater penetration of the L-band will greatly simplify
the interpretation of areas with important vegetation [1]. How-
ever, current SM products, such as SMOS and SMAP, do not
provide sufficient information on changes in the water content
of frozen soil. In addition, freeze/thaw products are effective in
identifying whether surface soil in a given area has experienced
a freezing or thawing event, but fail to provide insight into
temporal changes in the distribution of liquid water in frozen
soils [13].

The availability of microwave remote sensing tools for moni-
toring unfrozen water in frozen soils is limited, mainly because
the current soil dielectric constant models are not applicable
to frozen soils. These models developed by Dobson et al. [14]
and Mironov et al. [15] are only applicable to SM retrieval in
nonfrozen soils. In recent years, there has been a gradual rise in
dielectric constants modeling during freeze-thaw transitions to
aid the remote sensing of seasonal frozen ground characteristics.
Schwank et al. [16] conducted a preliminary validation of the
four-phase hybrid dielectric constant model originally proposed
by Birchak et al. [17] to assess its applicability. In addition,
Mironov worked on the dielectric modeling of seasonal frozen
ground. The authors in [18] and [19] investigated the phase tran-
sition process of different types of water in clay and evaluated
the dielectric properties of wet bentonite samples at positive and
negative temperatures. The authors in [20] and [21] developed
a temperature-dependent multiple relaxation spectral medium
model based on their measurements of organic matter-rich soil
samples. In 2017, Mironov et al. [22] developed a model based
on a single frequency using dielectric measurements from three
representative soils collected from the Yamal Peninsula. More
recently, Mironov et al. [23] developed a dielectric model ap-
plicable to both unfrozen and frozen mineral soils found in the
Arctic tundra. However, Mironov’s model exhibits a discontinu-
ity during the freeze-thaw transition, where it assumes that all the
water in the soil is either freezing or thawing [24]. Zhang et al.
[25] proposed an innovative approach that combines the Dobson
model with the correlation between unfrozen water content,
specific surface area (SSA), and soil texture. This improves the
simulation accuracy of the model.

Zhao et al. [26] introduced a novel parametric approach to
establish the correlation between unfrozen water, soil temper-
ature, and initial SM. Wu et al. [27] validated the new scheme
using dielectric measurements from six types of soil samples.
This model is now referred to as the Zhang-Zhao model. Recent
developments in the dielectric modeling of frozen soils have
facilitated the retrieval of liquid water content, which also allows
the retrieval of SM during periods of soil freezing.

This study is based on a zero-order approximation microwave
radiation transmission model (7-w) [28]. The single-channel
algorithm (SCA) is used in conjunction with the Zhang-Zhao
dielectric model to retrieve the unfrozen water content from
SMAP observations. The accuracy is evaluated over 17 global
SM observing networks. In Section II, this article presents the
data of brightness temperature and the ground measurements.
The methodology of the radiative transfer model and SM re-
trieval algorithm implemented in this study are described in

8259

Section III. Section IV presents the results and the discus-
sion of the shortcomings, as well as the directions for the
future expansion of this study. Finally, Section V presents
conclusions.

II. DATA
A. Brightness Temperature

This study uses brightness temperature (TB) data provided
by the SMAP products (L3_SM_P) with a spatial resolution of
36 km. The data can be downloaded from the National Snow
and Ice Data Centre (NSIDC)'. Only ascending orbit data were
used. For this study, TB observations from SMAP satellites were
selected for the periods from January 2017 to December 2017
and from January 2020 to December 2020.

B. In-Situ SM Data

Ground measurements of SM serve as a benchmark. Incor-
porating this validated data into the evaluation process allows
the determination with a high degree of confidence whether our
methods accurately reflect real-world conditions. It also allows
to identify any potential biases or limitations in the methods,
and to make necessary adjustments and improvements. These
data come from the International Soil Moisture Network [29],
the United States Department of Agriculture watersheds, and
the National Tibetan Plateau Data Center [30]. SM networks
are distributed across regions with different climatic conditions,
temperature ranges, precipitation patterns, and seasonal fluctu-
ations. The networks also cover different types of land cover,
with multiple soil types taken into account in their design.
These networks play a critical role in validating and refining
data obtained through remote sensing technologies [31], [32].
Fig. 1 shows the global distribution of these sites. The base map
data are from Natural Earth.> Table I presents the details of the
soil moisture networks selected for this study, including their
center’s latitude and longitude, climatic conditions, and location
by country or region.

C. Other Data

Sand and clay fractions for soil dielectric modeling were
obtained from the Global SoilGrids database (SoilGrids250m)
[33]. Several ancillary datasets from the SMAP product
(L3_SM_P) were also used, including surface soil temperature
(T s ), single scattering albedo of vegetation (wy,), and vegeta-
tion water content (VWC). Land cover types are based on the
International Geosphere-Biosphere Programme (IGBP) [34].

Snow density (pspow), temperature of snow layer (Tspou)s
and snow depth (Sgepn) data were obtained from ERAS - Land
Hourly Snow Data [35]. Snow density data were excluded by
setting thresholds, dropping snow depths less than 3 cm, and
snow layer temperatures greater than 0°C (indicating wet snow).

![Online]. Available: https://nsidc.org/data/smap/smap-data.html.
2[Online]. Available: https://www.naturalearthdata.com/downloads/50m-
raster-data/50m-natural-earth-1/.
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Fig. 1. Location of in-situ SM validation sites.
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TABLE I
DETAILS REGARDING THE SELECTED IN-SITU SM NETWORKS

Site name Location Cl"‘.“ate Center coordinates Sensor Data period used
regime numbers

Maqu China Cold 33.88°N,102.13°E 10 2017/01/01-2017/12/31
Naqu China Polar 31.49°N,92.07°E 34 2017/01/01-2017/12/31
Pali China Arid 27.95°N,89.19°E 8 2017/01/01-2017/12/31
SMN-SDR China Cold 42.00°N,116.00°E 33 2020/01/01-2017/12/31
SMN-WDL China Cold 35.18°N,93.14°E 10 2020/01/01-2017/12/31
FMI Finland Cold 67.368°N,26.633°E 14 2017/01/01-2017/12/31
HOBE Denmark Temperate 56.074°N,9.334°E 25 2017/01/01-2017/12/31
Oznet-Kyeamba Australia Temperate 35.26°S,147.456°E 6 2017/01/01=2017/12/31
Oznet-Yanco Australia Semiarid 34.87°S,146.13°E 11 2017/01/01=2017/12/31
REMEDHUS Spain Temperate 41.31°N,5.38°W 20 2017/01/01-2017/12/31
TERENO Germany Temperate 50.5°N,6.33°E 4 2017/01/01=2017/12/31
Fort-Cobb USA Temperate 35.34°N,98.57°W 14 2017/01/01-2017/12/31
Little-Washita USA Temperate 34.88°N.98.08°W 19 2017/01/01-2017/12/31
South-Fork USA Cold 42.44°N,93.44°W 20 2017/01/01—-2017/12/31
St.-Josephs USA Cold 41.449°N,85.011°W 10 2017/01/01—2017/12/31
Reynolds-Creek USA Arid 43.188°N,116.748°W 18 2017/01/01—-2017/12/31
Walnut-Gulch USA Arid 31.72°N,110.05°W 27 2017/01/01—2017/12/31

Sensor numbers refer to the maximum station of a network in the validation period.

III. METHODS
A. Microwave Emission Models

Microwave emissions at the Earth’s surface are influenced by
factors, such as the atmosphere, surface cover (including vegeta-
tion and snow), and surface roughness. In particular, the effects
of vegetation and snow on microwaves are highly complex,
as they can exhibit strong absorption and scattering properties
within them. For accurate SM retrieval, algorithms typically
focus on separating the interactions between the soil and the
surface cover of vegetation or snow. At L-band, the atmosphere
and dry snow are relatively transparent to microwaves, and their
effects can be ignored. Therefore, the observed total TB can be

simplified as follows [27], [36]:

TBP = LsoilVp (1 - Tsoil,p)
+ (1 - wp) (1 - ’Yp) (1 + 'Yprsoil,p) T, (1

where p is the polarization. w, is the single scattering albedo. v,
is the vegetation transmissivity (v, = exp(—7,/ cos ), 0 is the
angle of incidence relative to nadir, for SMAP, where § = 40°).
T. and Ty,;; are the effective canopy and soil temperatures,
respectively. Assuming thermal equilibrium between the vege-
tation and soil, their values can be assumed to be approximately
equal to Teyy. Teoir,p is the reflectivity at the rough soil surface
as a function of the incidence angle just above the soil boundary
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and the roughness of the reflecting interface [37], [38], [39].
Tsoil,p = Rsoil,p . Hp (0) (2)

where [441,p 1s the soil specular reflectance from a flat surface.

2
— f— ] 2
Rsoil,H (0) = o (0) = S?ng (9)
cos (0) + /&, — sin” (0)
()~ Ve —s’ (O)|
Ruvity (6) = €, COS Ep s?n2 3)
e cos (0) + /e, —sin” (0)

where 6 is the incidence angle relative to nadir. ¢, is the relative
permittivity. In cases where there is no snow cover on the soil
surface, 6 = 0277, (for SMAP, where 0207, = 40°), ¢, = =il
(€qir = 1). If the soil surface is covered with snow, the snow
layer is transparent for L-band because dry snow has a minimal
absorption that can be neglected. In addition, the small scat-
tering at the interface of the snow layer can also be neglected.
Therefore, we consider the snow layer as a single layer, and the
soil and air layers as semi-infinite spaces. The layering effect
of the snow is not explicitly considered. We mainly consider
the refractive effects of the snow on the incidence angle and
the relative permittivity. For this time, the propagation angle

(0 = 0279 inside the snow is a function of the incidence angle

(05100 = 40°) [40].
sin (6%
SPov = arcsin 10 (05 mow) 4)
Esnow (psnow)
£ = Esoil (5)
Esnow

Esnow 18 the complex dielectric constant of the snow cover, which
is a function of the snow density (psnow) [40].

Esnow =

14 1.5995 - psnow + 1.861 - (psnow)”

0g-cm™3 < Psnow <04 g- cm ™3

(0.99913 - (1 = panow/0.917) + panow/0.917 - 1.4759)

Psnow > 0.4g-cm™3

(6)

To better understand this process, we have created a forward
soil-snow-canopy emission model in the L-band, as shown
in Fig. 2.

In this study, a simple parameter called Hj, is used to represent
the effect of roughness at different angles of incidence [41]. The
formula is as follows:

H, = A, -exp (Bp-m2+Cp-m) (7)
m = s/l ®)
Ap,Bp,Cp=a-0*+b-0+c )

where s is the root mean square height, [ is the correla-
tion length, and m is defined as the slope. 6 is the in-
cidence angle relative to the nadir of the ground surface.

Snow free conditions 6 = 6%", snow covered conditions

soil?
§ = gsnow
- Ysoil
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Fig. 2. Schematic diagram of the transmission process of microwave emis-
sions on the surface of the Earth. (a) Snowless conditions. (b) Snow-covered
conditions.

B. Zhang-Zhao Model

The dielectric constant of frozen and thawed soils using the
Zhang-Zhao model is calculated as follows [25], [27]:

1+ % (E,a — 1) + mf;éﬁ; —my; T >0°C

S
’

ol = § 1+ % (58"‘ - 1) + mfleﬁ‘u — My
+mvi5/ﬁ — Myss T < 0°C
(10)
" _ ﬂ” "
Etgtal =y, Elg (11)

where &’ and €” are the real and imaginary components of the
complex permittivity. The subscripts s, lw, and ¢ refer to solids in
the soil, liquid water, and ice, in that order. py, is the bulk density.
ps 1s the specific density. m,, is the volumetric water content of
the soil. The subscript [ refers to liquid SM. The « is the shape
factor constant. We made further modifications to the parameters
(soil temperatures = 0 °C, o = 0.85, soil temperatures < 0°, o =
0.56) using global soil texture data based on Wu et al. [27]. m,,
is the unfrozen water expressed as follows [26]:

(CKATers) (12)

Myy = My min + (mv,mam - mv,min) - €

My, mage 18 the total water content in the soil. My 4y 1S the
fraction of water that is permanently unfrozen when the soil
freezes, also known as the maximum bound water content [21].

M min = (0.0016 + 0.0017 - C'L) - (1 412472 eu> .

13)

The Zhang-Zhao model introduces an SSA representing the
soil surface tension to determine the parameter K. According to
the physical meaning of the unfrozen water content equation,
the value of K depends on the applied freezing rate of soil liquid
water. Soils with a high SSA have an increased amount of bound
water and a reduced amount of free water. The particles in the
soil have a strong bond with the bound water, resulting in a
slower freezing rate compared to the free water. Therefore, it
can be observed that soils with a high SSA tend to freeze at
a comparatively lower temperature and have a slower freezing
rate. Based on the above-mentioned physical definition, K and
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Fig. 3.

SSA [42] are determined in the form of a power function as
follows:

K=a-SSA®
SSA =0.042 + 4.23CL + 1.12SL — 1.16SD

(14)
s)

where CL, SL, and SD represent the percentages of clay, silt,
and sand, respectively.

C. Single-Channel Algorithm

In the SCA, the TB is first converted to emissivity using the
surface temperature [43].

etotal _ TBP

. 16
P Test (16)

Emissivity is commonly thought to be affected by both vege-
tation and surface roughness. We first consider eliminating the
influence of vegetation through the single scattering albedo(wy,)
of vegetation and the vegetation transmittance(~y,,).

The y,, is a function of the 7. The 7 depends on the VWC [44].

a7
(18)

The b, parameter is obtained from the parameter table of the
IGBP class lookup algorithm in ATBD [43]. 0 is the incidence
angle relative to nadir (for SMAP, where 6 = 40°).

By rearranging Equation (1), the effects of vegetation are
eliminated using the single scattering albedo and optical thick-
ness of vegetation. The emissivity €4, of a rough surface can
be calculated using the following formula [43]:

Vp = exp (—7p/ cos )
T, =b, - VWC.

total 2 2
ey =14+, Fwp —wp -,

Yo+ W Yo~ Wp

19)

€soil,p =
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Global liquid SM maps of monthly average. (a) March. (b) June. (c) September. (d) December.

The reflectivity of the soil surface (r4;,,) can be obtained by
subtracting the reflectivity from 1.

(20)

Tsoil,p = 1- €s0il,p

At this point, the effective reflectance of the ground is in-
fluenced by both the surface roughness and the angle. This
influence is eliminated by the roughness parameter (H,(6))
and the specular reflectance of the soil (Rsoir (0, /) is
obtained.

Tsoil,p

. 21
H, (0) @b

Rsoil,p =

The roughness parameter H, () should be considered in

two scenarios. Snow free conditions 6 = #%7, snow-covered

conditions 6 = 0:79*. Using the Fresnel equations, the relative

dielectric constant of the soil can be obtained.

2
soil,H
oy — a2 + \/(&2)2 — 4sin? (9) . cos2 (9) . (al) ) (a2) o

2cos? () - (al)

where al = (1 — w/RSQiLV)Q, a2 = (1+ \/RSOiLV)Q. Snow-

less conditions 0 = 037, €501 = €. P - €qir, SNOW-covered

conditions 0 = 039", €50i1 = €r,P * Esnow-
With the complex dielectric constant of the soil, the liquid
SM content can be obtained through a soil dielectric model. All

results in this article are based on the SCA-V algorithm.
IV. RESULTS AND DISCUSSION

A. Global Spatial Distribution of Retrieval Results

To assess the spatial and temporal reliability of the liquid
SM retrieval results, global-scale SM maps were generated for
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some months of 2017, including March (spring), June (summer),
September (autumn), and December (winter). These maps illus-
trate the monthly mean values of liquid SM (Fig. 3).

In particular, liquid SM was retrieved in regions with sea-
sonally frozen ground and permafrost, such as the mid- to
high-latitude regions of Eurasia and North America, as well as
the Tibetan Plateau region of China [12].

Seasonal variations in SM are evident in the northern parts of
North America and Siberia. In winter, SM is low due to low tem-
peratures and snowfall, resulting in soil freezing in most areas.
In spring and summer, SM increases due to rising temperatures,
soil thawing, and increased precipitation. SM then decreases
slightly in autumn compared to summer. In the Mediterranean,
summers are characterized by scorching and dry conditions with
minimal rainfall.

There is a decrease in SM during the summer, which then
recovers in the winter due to increased precipitation. Arid and
desert regions, such as the Sahara Desert in Africa and the
Australian Outback, experience persistently dry conditions and
have low SM. Due to minimal rainfall and significant evapotran-
spiration, SM remains consistently low and fairly stable. The
Amazon Rain Forest region of South America experiences high
levels of rainfall throughout the year, resulting in consistently
high levels of SM. During the summer and autumn months in
Central Africa, regions north of the equator experience higher
levels of precipitation due to the influence of the Indian Ocean
monsoon. As a result, these regions have higher SM. In contrast,
areas t south of the equator have lower SM. This phenomenon
is gradually reversed during the spring and winter, with precip-
itation patterns shifting southwards. Consequently, SM content
increases in locations south of the equator, while areas north of
the equator become increasingly arid. The retrieval algorithm
used in this study is not only applicable to seasonal frozen
ground and permafrost zones, but also to other climatic zones.
It is capable of capturing their general trends and the dynamics
of SM.

Fig. 4. shows the global distribution of the number of SM
retrievals in each grid over the course of a year, using 2017
as an example. Typically, our annual dataset contains more
than 200 retrievals. SMAP retrieves SM on average 150 times
per year. However, in the northernmost regions of Eurasia and
North America, as well as on the Tibetan Plateau in China, the
occurrence of SM is less frequent, largely due to the flagging of
frozen soils.
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Number of SM retrievals over each grid in one year (2017). (a) New retrieval. (b) SMAP.

B. Validation Using In-Situ Measurements

Time series and scatter plots of the retrieved SM are shown
in Figs. 5-7. Statistical indicators for the 17 sites are shown
in Table II. The measured value at the site is represented by
the black line. The green dots represent the retrieved values
after accounting for the effect of snow, while the black circles
represent the retrieved values without accounting for the effect
of snow. Our aim is to assess the reliability of the retrieved SM
data in comparison to ground-based observations, as well as their
ability to accurately capture the variations in liquid SM content
over different seasons.

There are five SM validation networks in China (Maqu, Naqu,
Pali, SMN-SDR, and SMN-WDL). Among them, Maqu, Naqu,
Pali, and SMN-WDL are located in high altitude areas (third
pole). The results in low temperatures which pose a challenge
to the liquid SM retrieval algorithm. The average duration of
successful retrieval in these regions reached 180 days.

The Maqu network was established in the semiarid region
on the eastern edge of the Qinghai Plateau in Tibet [45]. This
region is featured by variable rainfall and warmth in summer,
and drought and cold in winter. The annual precipitation is
close to 600 mm. The occurrence of freeze-thaw cycles is
common when wetness is high in winter and spring. With a
higher SM, the contrast between in situ and retrieved became
more pronounced during summer and autumn. Associated with
a higher SM, the increase in errors may be caused by rain and
land management, which can affect soil emissivity early in the
growing season.

The Naqu network was located in a cold, semiarid climate
zone with aridity [29]. Between October and March, the site
experienced a freeze-thaw cycle, resulting in a gradual reduc-
tion of liquid moisture in the soil as it froze. From December
to March, the soil froze completely and remained in a stable
state. As the temperature rises and the soil gradually thaws
by April, the moisture content of the soil begins to increase
as a result of the melting of the ice. The results of our re-
trieval slightly underestimate the amount of water in the soil,
but they accurately represent the variations in freezing and
thawing.

The Pali network is located in the flat terrain surrounding Pali
town in Yadong county, while Pali town is located in the Yadong
valley of the Himalayas [46]. This area has a hilly environment
with mostly bare ground and sparse grasses covering the land.
The average altitude in this region is 4486 m and the annual
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Fig. 5.

temperature is —0.2°C. SM, which remains stable throughout
the year, is largely determined by rainfall, although there are
some minor variations.

The SMN-WDL network is located in the western part of
the Tibetan Plateau, which has a typical mountain climate.
In summer, the area is characterized by high humidity and
rainfall, while in winter it is dry and cold [47]. The average
annual temperature in the region is —5.1°C. From October,
the topsoil begins a regular freeze-thaw cycle, which is com-
pleted between December and March. During this freeze-thaw

SM validation with time-series plot and scatter plot for each in-situ network. (al) Maqu. (b1) Naqu. (c1) Pali. (d1) SMN-SDR. (e1) SMN-WDL. The time
series plot contains snow density (kg/m®) as shown on the right axis (gray bar).

period, SM decreases steadily and remains at a relatively low
level. After April, the soil gradually melted, its liquid wa-
ter content increased, and the effects of irrigation and rain-
fall began to show in the changes in the soil’s liquid water
content.

The SMN-SDR network is located in the agricultural and
pastoral mix of Hebei Province and Inner Mongolia [48]. In this
region, there are different land types such as grassland, cropland,
and bare soil. During winter, there is a decrease in SM at this
site, where moisture is consistently low. SM begins to increase
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Fig. 6.

SM validation with time-series plot and scatter plot for each in-situ network. (al) FMI. (b1) HOBE. (c1) TERENO. (d1) South-Fork. (e1) Reynolds-Creek.

The time series plot contains snow density (kg/m®) as shown on the right axis (gray bar).

during the transition from winter to spring, and flora expansion
is evident during the growing season.

At the FMI site in Finland, which is characterized by a long
period of soil freezing [49], SMAP has no SM data during the
freezing period. The SMAP product provides approximately 150
days of effective SM data per year. In comparison, our retrieval
results yield approximately 350 days per year. Ignoring the effect
of snowpack leads to an underestimation of SM.

Despite the correlation of only 0.666 between our re-
trievals and the in-situ data, the annual variations of SM

were revealed. Even the changes in unfrozen SM during the
frost season were effectively captured, showing a high de-
gree of agreement with the in-situ observation. Compared to
SMAP and sites, our results from June to October are slightly
overestimated.

The estimated SM was compared with in-situ measurements,
with an R value of 0.76. The unbiased root mean square
error (ubRMSE) was 0.056 m*/m?, and the total bias was
0.011 m3/m?, indicating an underestimation of the SM con-
tent. For networks with periods of freezing temperatures, our
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TABLE II
STATISTICAL VALIDATION RESULTS AT 17 SOIL MOISTURE NETWORKS

New retrieval SMAP
Network N Bias RMSE ubRMSE R N Bias RMSE  ubRMSE R
(m¥m?) (m¥m? (m¥m?) (m¥m*) (m¥m? (m’m?)
Maqu 181 0.076 0.116 0.087 0.838 144 0.092 0.098 0.033 0.857
Naqu 181 -0.036 0.075 0.065 0.948 126 0.011 0.060 0.059 0916
Pali 181 -0.023 0.030 0.019 0903 150 -0.015 0.032 0.028 0.910
SMN-SDR 204 -0.044 0.064 0.046 0.582 148 -0.015 0.056 0.054 0.370
SMN-WDL 181 -0.018 0.039 0.034 0.947 106 0.065 0.033 0.056 0.882
FMI 353 0.094 0.127 0.085 0.666 136 0.074 0.067 0.031 0.222
HOBE 268 0.098 0.125 0.078 0.858 256 0.027 0.051 0.043 0.852
Kyeamba 182 0.052 0.103 0.089 0.725 182 0.055 0.084 0.064 0.740
Yanco 182 -0.005 0.058 0.057 0.604 182 0.035 0.062 0.051 0.635
REMEDHUS 180 -0.045 0.059 0.038 0.680 180 -0.019 0.042 0.037 0.691
TERENO 223 0.071 0.093 0.060 0.736 219 0.011 0.050 0.048 0.721
Fort-Cobb 181 -0.038 0.053 0.036 0.871 180 -0.020 0.035 0.029 0.878
Little-Washita 181 -0.019 0.036 0.030 0.876 180 -0.002 0.024 0.024 0.879
South-Fork 177  -0.028 0.084 0.079 0.479 159 -0.007 0.069 0.069 0.483
St.-Josephs 179 0.083 0.118 0.084 0.637 161 0.066 0.080 0.046 0.812
Reynolds-Creek 188  -0.039 0.059 0.044 0.841 157 -0.027 0.052 0.044 0.849
Walnut-Gulch 185 0.003 0.023 0.023 0.791 185 0.032 0.042 0.026 0.787
Overall 200 0.011 0.074 0.056 0.760 167 0.021 0.056 0.044 0.735
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Fig.7. Joint density scatter plot of measurement SM (x-axis) against retrieval
SM (x-axis).

retrievals show a better correlation than SMAP. The variation of
SM with seasonal changes is evident from the results.

C. Spatial Distribution of Unfrozen Water Content

Given the verified moderate-to-high accuracy, the global spa-
tial distribution of the annual mean value of unfrozen water
content at soil temperatures below 0°C in 2017 was determined
(Fig. 8). Also, scatter density plots of temperature and SM were
drawn (Fig. 9).

Soil freezing below 0°C has a major effect on the distribution
and content of unfrozen liquid water in the soil. This phe-
nomenon is particularly evident in places above 30°N latitude. In
these regions, the annual average unfrozen water content remains

at a relatively low level, with most parts registering less than
0.2 m*/m?>.

Fig. 9 provides a better understanding of the correlation
between soil unfrozen water content and soil temperature.
The freezing process begins when the soil temperature falls
below 0°C. As the ambient temperature decreases, the soil
undergoes a phenomenon where significant amounts of water
freeze, resulting in a reduction in the unfrozen water content.
As a result, the remaining unfrozen water reaches a state of
equilibrium.

The observed shift is of remarkable magnitude, especially
over the temperature range from freezing to —5°C. However,
even at very low temperatures, such as —30°C, the soil contains
only a minimal amount of unfrozen water.

This study provides a reliable solution for retrieving the un-
frozen liquid water. It also serves as a guide for future monitoring
of liquid water content in permafrost and seasonal frozen ground
regions around the globe.
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D. Discussion

Over the past few decades, the cost and convenience of
SM measurement equipment have improved significantly due
to the advent of electromagnetic measurement technology and
the rapid progress of the semiconductor industry. Significant
progress has been made in the measurement of SM.

Existing technologies suitable for frozen soils include time
domain reflectometry (TDR) and nuclear magnetic resonance.
TDR is used to determine the total dielectric permittivity of
the soil. This value is based on the velocity of the transverse
electromagnetic wave. It is currently widely used to measure
SM content [50]. TDR is one of the most popular techniques
used to measure SM content. The dielectric constants of soils
with different water contents differ significantly [51]. A number
of factors can interfere with the sensor’s estimation of the permit-
tivity in frozen ground, including moisture content, ice content,
soil structure, and bulk density [52]. In addition, TDR tends to
use fixed empirical parameters to convert the measured dielectric
permittivity to liquid water content. Due to the difference in
molecular structure and state, there is a difference in dielectric
constant between free and bound water. It may not account for
the difference in dielectric constants between these, or it may
ignore the presence of ice in the soil. Therefore, it will theo-
retically give an equivalent liquid water content instead of the
true unfrozen water content, although the difference may not be
significant. Strictly speaking, the results of in-situ measurements
are not sufficient to validate the retrieval inference of unfrozen
water content, which can only be regarded as a point of reference
in this article.

In this study, the retrieval of all-season liquid SM revealed
that ignoring the effect of snow accumulation leads to an under-
estimation of liquid SM. This is consistent with the findings of
Lemmetyinen et al. [53], who found that ignoring the influence
of snow can result in a 35% reduction in the estimations of the
local soil dielectric constant, a parameter closely related to SM
content. Consequently, an underestimation of the soil dielectric
constant will inevitably lead to lower estimates of the liquid
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SM. In a previous study, Kumawat et al. [54] addressed the
problem of estimating SM of unfrozen soil under snow-covered
ground in the United States using the SNODAS snow density
dataset. Concurrently, we extended this idea by estimating the
liquid SM under both frozen and unfrozen soil globally, using
the ERAS5 LAND snow density data. Our new validation efforts,
using data from FMI sites, showed that snow densities above
200 kg/m? can lead to an underestimation of liquid SM by
more than 20%. It is important to note that our study did not
directly evaluate the accuracy of the snow density data. The
direct impact of snow density accuracy on liquid SM retrievals
remains unexplored in our research. Therefore, accurate global
snow density measurements are crucial for future studies, which
should aim to retrieve snow depth, snow density, and liquid SM
simultaneously, requiring a satellite mission endowed with both
multiangular and multifrequency capabilities.

V. CONCLUSION

Monitoring global shifts in liquid SM beneath both unfrozen
and frozen soils can significantly improve the understanding of
SM variations in both seasonal frozen ground and permafrost.
In this study, we propose an all-season liquid SM retrieval
method using SMAP L-band brightness temperature data. This
method incorporates the Zhang-Zhao dielectric model, applica-
ble to frozen/thawed soils, into a single-channel SM retrieval
algorithm, exploiting the penetration capability of L-band into
vegetation and dry snow. Our approach successfully retrieved
liquid SM across different seasons on a global scale, highlighting
discernible differences in SM patterns between seasonal frozen
ground and permafrost. It is also found that the omission of
snow cover can lead to an underestimation of liquid water
content. Validation results based on in-situ networks around
the world confirmed the high accuracy of the method. Despite
these achievements, the study was limited to an SCA, and the
applicability of the Zhang-Zhao model to other SM retrieval
methods needs to be further investigated.
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