
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024 7957

A Novel Remote Sensing Spatiotemporal Data
Fusion Framework Based on the Combination of

Deep-Learning Downscaling and Traditional
Fusion Algorithm

Dunyue Cui , Shidong Wang , Cunwei Zhao , and Hebing Zhang

Abstract—Traditional remote sensing spatiotemporal data fu-
sion algorithms generally use upsampled low-resolution images
(MODIS) to be fused with high-resolution images (Landsat); this
makes both images less spatially consistent and many hybrid image
elements in low-resolution images, so uncertainty errors propa-
gate into the fusion results. To address this issue, we propose a
framework for combining deep-learning-based super-resolution
techniques with traditional spatiotemporal fusion methods. By
reconstructing low-resolution images using super-resolution im-
age reconstruction techniques, we obtain low-resolution images
with more spatial details and better spatial consistency with high-
resolution images. These reconstructed images are then fused using
spatiotemporal fusion methods. In this study, we selected flexible
spatiotemporal data fusion (FSDAF) and residual channel attention
network (RCAN) to carry out a detailed study to prove the effec-
tiveness of this kind of framework. That is, a new RCAN-FSDAF
model is developed. After testing, RCAN-FSDAF has the following
advantages: First, the band reflectance predicted by RCAN-FSDAF
is closer to base reflectance than FSDAF, DMNet, and GAN-STFM,
as shown by greater correlation and smaller error. Second, RCAN-
FSDAF better decomposes image elements among heterogeneous
features and more accurately identifies boundaries between differ-
ent features and changes in land-cover type. Third, high spatial
and temporal resolution NDVI data obtained by the inversion of
the prediction results of RCAN-FSDAF are more accurate. The
framework developed in this study can be extended to other spatial
and temporal data fusion applications.

Index Terms—Data fusion, reflectance, super-resolution
techniques.
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I. INTRODUCTION

R EMOTE sensing data observed by different satellite sen-
sors have different temporal, spatial, and spectral resolu-

tions [1], and high resolution in one mode may not imply high
resolution in another. High temporal resolution remote sensing
data, such as MODIS data, can have a temporal resolution of
up to 1 d and a spatial resolution of up to 250 m. Such data
are widely used by researchers due to their frequent revisiting
and wide scanned area and have been used for a long time in
applications, such as large area vegetation monitoring [2], crop
yield estimation [3], and weather monitoring [4]. However, the
low spatial resolution leads to a lack of definition in observing
small surface features [5]. Single multispectral panchromatic
satellite data products with long time series and high resolution
(such as the Landsat satellite series, 16 d, 30 m) can be used
in fine-scale studies of some regions, but the low temporal
resolution and poor data quality disrupt temporal continuity and
reduce overall coverage, which limit their application [6]. The
support of high spatiotemporal resolution remote sensing data is
needed for fine-scale studies of crop and forage yield estimation,
disaster monitoring, and the surface dynamics of heterogeneous
areas in specific regions and at specific times. Spatiotemporal
data fusion techniques for multisource remote sensing data
combine the detail of high spatial resolution remote sensing
data with the temporal variation of high temporal resolution
remote sensing data to generate high-resolution spatiotemporal
data [7], [8]. Five types of fusion techniques are commonly
used: weighted function-based fusion models, mixed image
element decomposition-based fusion models, dictionary pair
learning-based fusion models, combinatorial fusion methods,
and neural-network-based fusion methods [9].

Gao et al. [10] developed a spatiotemporal adaptive reflection
fusion model (STARFM) in 2006. It was the first spatiotemporal
data fusion model to weigh fused data. The data fusion of re-
mote sensing data was achieved by extracting spectrally similar
neighboring information from the two types of data being fused
and calculating weights for the surface reflectance of the central
pixel. This approach was good for regions with homogeneous
surface properties [9]. It performed badly in the fusion of data
for heterogeneous areas and areas with land-cover changes
because it did not accurately separate features from mixed
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image elements and, therefore, did not properly differentiate
features and was prone to patchiness. Zhu et al. [11] developed
an enhanced spatiotemporal adaptive reflection fusion model
(ESTARFM) to improve the STARFM algorithm; it introduced
conversion coefficients to mediate between the reflectances of
coarse-resolution images and fine-resolution images. The model
significantly improved the retention of spatial details and the
accuracy of prediction for heterogeneous landscapes. Zhukov
et al. [12] developed a multisensor multiresolution technique
(MMT). It was the first method to fuse images for different
times and spatial resolutions and also the first fusion model
based on mixed image element decomposition. Many subse-
quent studies improved on MMT. For example, Gevaert and
García-Haro [13] isolated changes in coarse pixels to predict
changes in end elements and used Bayesian theory to constrain
the predictions and produce more accurate results. Huang and
Song [14] developed the sparse representation-based spatiotem-
poral reflection fusion model (SPSTFM). This was probably
the first model to include dictionary learning techniques from
image super-resolution in spatiotemporal data fusion. The model
learned correspondences between high- and low-resolution im-
ages to predict high-resolution images for particular dates. The
model accurately detected physical changes and land-cover type
changes, but it was unstable and produced inaccurate predictions
for highly heterogeneous regions [9]. Zhu et al. [15] developed
a flexible spatiotemporal fusion model (FSDAF) that introduced
the use of combinatorial fusion methods. This approach com-
bined two or more different fusion methods and leveraged the
advantages of each method to produce better fusion results.
FSDAF used unsupervised classification to determine categories
and then calculated low-resolution and high-resolution images
of predicted land-cover changes and transformations. The model
applied to heterogeneous landscapes and could process more
spatial details than other methods. Many researchers, in China
and elsewhere, have recently used deep-learning techniques in
spatiotemporal data fusion. Song et al. [16] developed a method
of spatiotemporal satellite image fusion based on a deep con-
volutional neural network. The key concept was similar to that
underlying single-pair SPSTFM, but the researchers replaced
dictionary pair learning with deep convolutional neural network
learning and used a nonlinear model and a super-resolution
model to learn the mapping relationships between the two
kinds of data (MODIS data and Landsat data). The predicted
images were treated as transition images, and the fusion model
was used to improve the fusion results. Tan et al. [17], [18]
proposed DSTFN and EDSTFN in 2018 and 2019, respectively,
which utilize convolution to extract key features from the input
data, change the size of the low spatial resolution image using
the inverse convolution, and fuse the features extracted in the
high spatial resolution image and the low spatial resolution
image with the help of an equation that takes into account the
change in ground cover in time. Li et al. [19] proposed DMNet
in 2020, which combines dilation convolution and multiscale
mechanism. Dilated convolution extends the receptive field of
the convolution kernel, which is favorable for the extraction of
small detail features, and the multiscale mechanism can extract
the contextual information of the image at different scales, which

makes the image details richer. Tan et al. [20] introduced con-
ditional generative adversarial network and normalization tech-
niques into the remote sensing spatiotemporal fusion problem to
alleviate the strong temporal dependence between the reference
and predicted images in the existing fusion model; GAN-STFM
model is proposed and achieved better results. These show
better performance compared with traditional methods, such as
FSDAF.

Research into spatiotemporal data fusion of remote sensing
images has made great progress until now, and many novel
accurate spatiotemporal data fusion methods have been pro-
duced. We found in our literature survey that most traditional
spatiotemporal data fusion methods relied on general resampling
to upsample input data. However, there are more mixed pixels in
heterogeneous areas and areas with changing land-cover types
than in homogeneous areas; upsampling based on difference
or reconstruction does not accurately decompose mixed pixels,
and high-resolution images have poor spatial consistency with
low-resolution images. In the conventional fusion methods, this
leads to poor predictions of the boundaries between features.
The accuracy of spatiotemporal data fusion depends largely on
the accuracy of the input data, so an improved or innovative input
data downscaling method can improve the performance of most
spatiotemporal data fusion methods; for example, the authors in
[21] and [22] produced good results, and Li et al. [23] proposed
a MODIS strip noise cancelation strategy for spatiotemporal
fusion methods, which better improves the accuracy of the fusion
results. In addition, we found that compared with traditional spa-
tiotemporal fusion methods, the deep-learning-based spatiotem-
poral fusion algorithms bring more noise to the image fusion
process and ignore the advantages of traditional spatiotemporal
fusion algorithms in terms of image element unmixing and
land-use type change prediction. However, deep-learning-based
methods have greater efficiency and generalization capabilities.
So, considering the advantages of each, we found a new frame-
work for combining the deep-learning-based super-resolution
techniques used in deep-learning-based fusion methods with
traditional spatiotemporal methods. For deep-learning-based
super-resolution techniques, the more widely used ones mainly
include channel-based attention mechanism, second-order atten-
tion mechanism, pixel-based attention mechanism, transformer
self-attention mechanism, and multiscale large kernel-based
attention mechanism. Typical examples of each of them are
SRCNN proposed by Dong et al. [24] and residual channel
attention network (RCAN) proposed by Zhang et al. [25], (pan
sharpening in closed-loop regularization and modality-aware
feature integration for pan sharpening) proposed by Zhou et al.
[26], [27] and CUCaNet proposed by Zheng et al. [28], SwinIR
proposed by Liang et al. [29], and MAN proposed by Wang et al.
[30].

In this study, to solve the issue of spatial inconsistency
between the upsampled low-resolution images and the high-
resolution images, reduce the impact of hybrid image elements
and uncertainty errors on fusion results. We propose a frame-
work for combining deep-learning-based super-resolution tech-
niques with traditional spatiotemporal fusion methods. FSDAF
in the traditional spatiotemporal approach and RCAN in the
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Fig. 1. Flowchart of RCAN (photograph referenced from Zhang et al. article [25]).

channel-based attention mechanism are selected to carry out
a detailed study to prove the effectiveness of this kind of
framework. That is, we developed an innovative RCAN-FSDAF
model. RCAN-FSDAF has the following advantages. RCAN
first learns the mapping relationship between high-resolution
and low-resolution images and is trained to reach the optimal
peak signal-to-noise ratio (PSNR). The trained RCAN can then
downscale the low-resolution images, enable the downscaled
low-resolution image to have higher spatial consistency with the
high-resolution image, and FSDAF fuses spatiotemporal data.
High spatiotemporal resolution data with higher accuracy and
more spatial details are thereby produced. To critically evaluate
and assess the reliability and applicability of the new framework,
the deep-learning-based DMNet and GAN-STFM method is
introduced as a comparative method and is tested in detail on
three trials.

II. MATERIALS AND METHODS

A. RCAN Downscaling Method

An RCAN is a deep-learning network used in super-resolution
image reconstruction. It was developed by Zhang et al. [25] and
it performs better and produces better super-resolution images
than other networks. Low spatial resolution images contain both
low-frequency information, which is flatter, and high-frequency
information, which is relatively full of edges, textures, and
other details. RCAN improved on super-resolution reconstruc-
tion techniques that use a residual network by introducing the
residual channel attention (CA) mechanism. Interdependencies
between channels adaptively adjust channel characteristics and
ignore much of the low-frequency information, thus improving
the performance of the network [31]. Fig. 1 shows the overall
structure of RCAN. The four principal components of RCAN
are a single-layer convolution for extracting shallow features, a
residual-in-residual (RIR) module for extracting deep features,
an upsampling module, and a reconstruction module. Convo-
lution kernel size is 3 × 3, RIR is the most complex module
and includes ten residual groups (RGs) and ten long jump
connections. Each RG includes 20 residual channel attention
modules (RCAB) and 20 short jump connections. RCAB is the
CA integrated into the residual module. The RIR reaches a depth

of over 400 layers, the other layers are single convolution layers
or pixel alignment layers.

For the specific training settings, the learning rate set for
RCAN in this study was 1e-8, the patch size was set to 192,
the activation function used a rectified linear unit, and the L1
loss function was used as the optimizer by default.

B. FSDAF Spatiotemporal Fusion

Zhu et al. [15] developed an FSDAF approach in 2016.
FSDAF requires only one high-resolution image and two low-
resolution images to capture gradual and abrupt land-cover
type changes to accurately predict high-resolution images in
heterogeneous regions. The high-resolution image at time t1 is
classified to obtain the weight fc of each feature class contained
in each low spatial resolution image, which is calculated by

fc (xi, yi) = Nc (xi, yi) /m (1)

where c denotes the feature class, Nc(xi, yi) is the number of
high-resolution images (xij , yij) corresponding to feature cate-
gory c in the low spatial resolution image element (xi, yi), and
m is the total number of high-resolution images corresponding
to (xi, yi) in the low spatial resolution image element.

The n (n > l) image elements for which the ground-cover
type has not changed from time t1 to t2 are selected and the
time change ΔF (c) of each band is obtained by linear spectral
decomposition using

ΔC (xi, yi) =
l∑

c=1

fc (xi, yi)×ΔF (c) (2)

where l is the total number of categories obtained by unsuper-
vised classification. The predicted value of change in FTP

2 over
time for each band is given by

FTP
2 (xij , yij) = F1 (xij , yij) + ΔF (c) . (3)

Although high-resolution images at time t2 (time-varying pre-
dicted values) are produced, FTP

2 does not accurately represent
the predicted results when changes occur within a land-use
class or when the type of ground-cover changes. The algorithm,
therefore, introduces a residual R(xi, yi) to represent the differ-
ence between the base value and the predicted value FTP

2 . The
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parameter R(xi, yi) is given by

R (xi, yi) = ΔC (xi, yi)

− 1

m

⎡
⎣ m∑
j = 1

FTP
2 (xij , yij)−

m∑
j = 1

F1 (xij , yij)

⎤
⎦ . (4)

The algorithm introduces a thin slab spline function that is
used to calculate the spatially varying prediction FTP

2 at time t2
as follows. The basic thin plate spline function (TPS) is defined
by

fTPS (x, y) = a0 + a1x+ a2y +
1

2

N∑
i−1

bir
2
i logr2i (5)

N∑
i = 1

bi =
N∑
i=1

bi xi =
N∑
i=1

biyi = 0 (6)

r2i = (x− xi)
2 + (y − yi)

2. (7)

When
∑N

i = 1 [C2(xi, yi, b)− fTPS−b(xi, yi)]
2 reaches a

minimum, the coefficients in the equation are optimized, and
after optimizing the parameters in the TPS function, the pre-
dicted values of the spatial variation of each high-resolution
image element are predicted by

FSP
2 (xij , yij) = fTPS (xij , yij) . (8)

Assigning the residuals to the corresponding high spatial
resolution image elements within each low spatial resolution
image element is key to increasing the accuracy of temporal
prediction. The algorithm is designed with a new weighting
functionCW(xij , yij) to better assign the residuals. The specific
method is

CW (xij , yij) = Eho (xij , yij)×HI (xij , yij)

+ R (xi, yi)× [1−HI (xij , yij)] (9)

where HI (xij , yij) = (
∑m

k=1 Ik)/m ; Ik= 1 when high-
resolution image element k in a moving window belongs to
the same class as the central image element; otherwise, Ik = 0.
HI ranges from 0 to 1, and larger values indicate a more
homogeneous study area. Normalizing the weightCW(xij , yij)
gives W(xij , yij), and the residual assigned to high-resolution
image element k is r(xij , yij), given by

W (xij , yij) = CW(xij , yij) /

m∑
j=1

CW(xij , yij) (10)

r (xij , yij) = m× R(xi, yi)×W(xij , yij) . (11)

Summing the distribution residuals and the changes over time,
the total change in a high-resolution image element between
times t1 and t2 is given by ΔF(xij , yij)

ΔF (xij , yij) = r (xij , yij) + ΔF (c) . (12)

Finally, an image element selection strategy similar to the
STARFM method is used, and ΔF (c) is weighted by the spatial

distance Dk = 1 +
√
(xk − xij)

2 + (yk − yij)
2/(w/2), where

w is the window size; in this study, w = 25 and k symbolizes the
kth high-resolution image pixels. The final result F̂2(xij , yij) is

F̂2 (xij , yij) = F1 (xij , yij) +

n∑
k−1

wk ×ΔF (xij , yij) (13)

wk = (1/Dk) /

n∑
k−1

(1/Dk) . (14)

C. RCAN-FSDAF Implementation

The standard FSDAF method uses resampling methods based
on difference or reconstruction for the upsampling method for
the raw data. This upsampling method is likely to lead to
problems with neighboring image elements having the same
image elements as well as spatial inconsistencies between high-
resolution images and low-resolution images, and the accuracy
of spatiotemporal data fusion depends on the accuracy of the
input data [17]. We, therefore, combined the standard FSDAF
model with the RCAN downscaling method. The trained RCAN
can downscale the low-resolution images to obtain input data
with increased spatial information, and FSDAF fuses spatiotem-
poral data. High spatiotemporal resolution data with higher
accuracy and more spatial details are, thereby, produced. Fig. 2
is a flowchart of RCAN-FSDAF.

Iterative training of RCAN is based on Landsat data using
RCAN to learn the mapping relationship between low-resolution
images and high-resolution images. MODIS data at times t1 and
t2 are initially downscaled using well-trained RCAN to comple-
ment the feature information at coarse resolution. This produces
MODIS data with increased spatial heterogeneity details. The
MODIS data at times t1 and t2 after downscaling are fused with
the Landsat data at time t1 using FSDAF to produce high spatial
and temporal resolution fused data at time t2. RCAN-FSDAF
consists primarily of three steps.

1) The 100 Landsat4-8 TM/OLI image blocks of any time and
regions were selected, and they were all downsampled to
240 m (×8) and 120 m (×4). The mapping relationships
between 240 m images and 120 m images and between
120 m images and the 30 m original images were trained
using RCAN. Optimal PSNR was reached after 1200
iterations for each training run.

2) The preprocessed MODIS data at times t1 and t2 were
upsampled to 240 m and reconstructed twice by the RCAN
model trained in the preceding step. The first reconstruc-
tion was to convert the 240 m MODIS data into 120 m
data, and the second reconstruction was to convert this
120 m MODIS data to 30 m.

3) The Landsat data at time t1 and the MODIS data at times
t1 and t2 after reconstruction by RCAN were fused using
the FSDAF model to produce the 30 m high-resolution
spatiotemporal data at time t2.

D. Datasets and Preprocessing

The high-resolution images used in this study were all from
Landsat 8 OLI datasets Level 1 digital product [blue, red, and
near-infrared (NIR) band], provided by the U.S. Geological
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Fig. 2. Flowchart of RCAN-FSDAF.

Survey1 open-source website. The Landsat ecosystem distur-
bance adaptive processing system (LEDAPS) was used for
calibration and atmospheric correction of Landsat images. Be-
cause LEDAPS uses an atmospheric correction method (the 6S
method) similar to the MODIS surface reflectivity product, and
the reflectance of the two sensors is consistent and comparable
[32].

For the low-resolution images, two MODIS datasets were
used in this study. For the first dataset, the MODIS13Q1 dataset,
provided by NASA,2 was reprojected and resampled using the
projection tool (MRT) to match the resolution and range of the
Landsat image. For the second dataset, MODIS-like images
were collected from the original Landsat images, thus elimi-
nating the effects of different sensors. The purpose of using two
datasets is to ensure the accuracy realism of RCAN-FSDAF, on
the one hand, to eliminate the influence of sensor differences
on the accuracy of the RCAN-FSDAF method, and on the other
hand, to reflect the real accuracy of the RCAN-FSDAF method
on satellite data. Finally, MATLAB software was used to smooth
and denoise the three datasets using S-G filtering to meet the
demand for high reflectance in elements of the Landsat and
MODIS images.

III. EXPERIMENTS

A. Experimental Implementation

Three different tests were set up in this study, namely the
highly heterogeneous regions test, the land-use change regions

1[Online]. Available: http://glovis.usgs.gov/
2[Online]. Available: http://www.nasa.gov/

test, and the NDVI inversion test. Random points were selected
to quantitatively evaluate the test results using root-mean-square
error (RMSE), correlation coefficient (R), and average deviation
(AD) as quantitative evaluation metrics. The test regions were
selected as follows.

For the highly heterogeneous regions test, the region (33°06′–
33°10′N, 111°25′–111°29′E) is located in the southwestern part
of Nanyang City, Henan Province, with complex features, which
was selected as the study area. The two Landsat 8 OLI images
were collected on 18 June 2020 and 30 September 2020, both
in the vegetation growing season. The starting observation dates
of the two MODIS13Q1 images were, respectively, 9 June 2020
and 29 September 2020, as shown in Fig. 3, and the Landsat
8 OLI image collected on 30 September 2020 was used as
the base images for comparison with the predicted FSDAF,
DMNet, GAN-STFM, and RCAN-FSDAF images to assess the
performance of RCAN-FSDAF.

The regional test for land-use change in this study consists of
two tests, the regional test for the flood hazard and the regional
test for phenological change. The flood hazard region is a rel-
atively homogeneous area of 18 × 18 km near Dongting Lake
(29°09′–29°18′N, 1132°55′–113°04′E) in the western part of
Yueyang City, Hunan Province. The area is in the Yangtze River
basin, which experienced the largest flood disaster in the 21st
century during the 2016 flood season (May–October), especially
after June. The flooding exceeded the predicted warning level
in several areas after the second half of June. The two Landsat
8 OLI images used in this test were acquired on 5 June 2016
and 23 July 2016, and two corresponding 240 m MODIS-like
images were produced, as shown in Fig. 4. The Landsat 8 OLI
image collected on 5 June 2016 was used as the base images

http://glovis.usgs.gov/
http://www.nasa.gov/
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Fig. 3. Heterogeneous regions. (a) and (b) Landsat8 OLI images (300 × 300 pixels) acquired on 18 June 2020 (t1) and 30 September 2020 (t2). (c) and (d) 240 m
MODIS13Q1 images with 9 June 2020 and 29 September 2020 as the start observation dates, respectively, all images using NIR–red–blue as RGB.

Fig. 4. Flood hazard regions. (a) and (b) Landsat 8 OLI images (600 × 600 pixels) acquired on 5 June 2020 (t2) and 23 July 2020 (t1). (c) and (d) 240 m
MODIS1-like images, all images using NIR–red–blue as RGB.

Fig. 5. Phenological change regions. (a) and (b) Landsat 8 OLI images (2480 × 2800 pixels) acquired on 17 March 2015 (t1) and 4 May 2015 (t2).
(c) and (d) 240 m MODIS-like images.

for comparison. The selection of phenological change regions
was based on the AHB dataset released by Prof. Jun Li’s team
in the spatial and temporal fusion dataset [9], [33]. The region
(43°14′–44°02′N, 119°07′–120°07′E) is located in the northeast
of China, for which there are a lot of circular pastures and
farmlands, the region size is 74.4 km×84 km. The two Landsat
8 OLI images used in this test were acquired on 17 March 2015
and 4 May 2015, and two corresponding 240 m MODIS-like
images were produced, as shown in Fig. 5. The Landsat 8 OLI
image collected on 4 May 2015 was used as the base images for
comparison.

In this study, the upsampling method used by the conventional
FSDAF method in all three tests is the bicubic method. Figs. 6
and 7 show the comparison of the results of MODIS-like datasets
tested in land-use change areas after downscaling by RCAN and
upsampling by bicubic method, and it can be clearly seen that
the boundaries of MODIS-like images after downscaling by the

RCAN method are clearer and have better spatial consistency
with the Landsat images.

B. Heterogeneous Regions Test Results

1) Visual comparison: Fig. 8 shows the (base image) Land-
sat image [see Fig. 8(a)] and the Landsat 8 OLI images [see
Fig. 8(b), (c), (d), and (e)], respectively, produced from the
FSDAF, DMNet, GAN-STFM, and RCAN-FSDAF predictions
for 30 September 2020. It is clear from the enlarged scenes that
the images predicted by RCAN-FSDAF had more spatial detail
and that they more clearly identified the boundaries between fea-
tures than those predicted by FSDAF, DMNet, and GAN-STFM.
RCAN-FSDAF predicted parts of the shadows and topography
of the mountains, which are more similar to the base satellite
images, while in the images predicted by FSDAF, DMNet, and
GAN-STFM, many spatial details are lost and appear somewhat
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Fig. 6. Flood hazard regions. (a) and (b) 30 m MODIS-like images of 5 June 2020 (t2) and 23 July 2020 (t1) using the bicubic method. (c) and (d) 30 m
MODIS-like images of 5 June 2020 (t2) and 23 July 2020 (t1) using RCAN method.

Fig. 7. Phenological change regions. (a) and (b) 30 m MODIS-like images of 17 March 2015 (t1) and 4 May 2015 (t2) using bicubic method. (c) and (d) 30 m
MODIS-like images of 17 March 2015 (t1) and 4 May 2015 (t2) using RCAN method.

Fig. 8. Heterogeneous regions test. (a) Is the base image acquired on 30 September 2020 (t2). (b), (c), (d), and (e) are, respectively, the images predicted by
FSDAF, DMNet, GAN-STFM, and RCAN-FSDAF.

blurred. In general, RCAN-FSDAF better predicts boundaries
between features in complex heterogeneous regions than FSDAF
and DMNet.

2) Quantitative comparison: 4000 sample points were ran-
domly selected within the study area to determine the reliability

and accuracy of the RCAN-FSDAF method in predicting hetero-
geneous landforms. The predictions were quantified using the
RMSE, correlation coefficient (R), and mean deviation (AD).
The scatterplots (see Fig. 9) show the correlation between pre-
dicted and base reflectance. It can be seen that the correlation
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Fig. 9. Scatter plots of the base reflectance and the predicted ones product by the FSDAF, DMNet, GAN-STFM, and RCAN-FSDAF for NIR, red, and blue
bands. (Darker colors indicate a higher density of points, and the diagonal lines are 1:1 lines).

TABLE I
INDICATORS OF THE DATA FUSION METHODS USED TO QUANTIFY PREDICTIONS OF HIGHLY HETEROGENEOUS REGIONS

between predicted reflectance and base reflectance in NIR, the
red, and blue bands of RCAN-FSDAF were closer to the 1:1
line, with the NIR band being the most accurate. This result
is explained by the images used all being observed during
the vegetation growth cycle. The large variation in reflectance
indicates that RCAN-FSDAF better identifies changes in the
features. Table I presents the results of the quantitative compar-
ison, and the overall reflectance predicted by FSDAF, DMNet,
GAN-STFM, and RCAN-FSDAF for all three bands is less than
the base reflectance (AD < 0). For the NIR, red, and blue bands,
RCAN-FSDAF has lower values of RMSE and AD and a greater
value of R than FSDAF and GAN-STFM, except for DMNet.
For DMNet, the RCAN-FSDAF prediction for the red band is
not superior, with a lower R-value than the DMNet method,
and all other indices are optimal. The difference in prediction
accuracy of NIR band reflectance is greater (RMSE 0.0206
versus 0.0210, 0.0251, and 0.0561, AD 0.0021 versus 0.0024,

0.0027, and 0.0048, and R 0.9241 versus 0.9103, 0.9201, and
0.8968), so NIR band reflectance predicted by RCAN-FSDAF is
closer to the base reflectance, as indicated the scatterplot for each
band. In summary, RCAN-FSDAF predictions are more accurate
than those of FSDAF, DMNet, and GAN-STFM, with excellent
performance in both visual and quantitative comparisons.

C. Land-Use Change Test Results

1) Visual comparison: For the flood hazard regions,
Fig. 10(a) shows the base image on 5 June 2016, and Fig. 10(b),
(c), (d), and (e) show, respectively, the image obtained using
FSDAF, DMNet, GAN-STFM, and RCAN-FSDAF predictions.
Closer inspection of the zoomed images reveals that RCAN-
FSDAF successfully delineates the boundaries between the un-
flooded and flooded regions. Furthermore, the shapes of the
unflooded regions predicted by RCAN-FSDAF are more similar
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Fig. 10. Flood hazard regions test. (a) Is the base image acquired on 5 June 2016 (t2). (b), (c), (d), and (e) are, respectively, the images predicted by FSDAF,
DMNet, GAN-STFM, and RCAN-FSDAF.

Fig. 11 Phenological change regions. (a) Is the base image acquired on 4 May 2015 (t2). (b), (c), (d), and (e) are, respectively, the images predicted by FSDAF,
DMNet, GAN-STFM, and RCAN-FSDAF.

TABLE II
INDICATORS OF THREE DATA FUSION METHODS USED TO PREDICT THE FLOOD HAZARD REGIONS

to the base image than those predicted by FSDAF, DMNet,
and GAN-STFM. Although FSDAF, DMNet, and GAN-STFM
manage to capture the general shape of the unflooded regions,
they fail to clearly define the boundaries or to identify the smaller
unflooded regions. For the phenological change regions, Fig. 11
shows the (base image) Landsat image [see Fig. 11(a)] and
the Landsat 8 OLI images [see Fig. 11(b), (c), (d), and (e)],
respectively, produced from the FSDAF, DMNet, GAN-STFM,
and RCAN-FSDAF predictions for 4 May 2015. Many circular
pastures exist in the regions and crops change with the seasons,
i.e., phenological changes. RCAN-FSDAF, FSDAF, DMNet,
and GAN-STFM demonstrate the ability to predict phenological

changes in circular pastures. However, RCAN-FSDAF stands
out by offering a more distinct prediction of the boundaries
delineating these circular pastures.

2) Quantitative comparison (8000 points were randomly
sampled): The scatterplots [see Figs. 12 and 13] show the cor-
relation between predicted and base reflectance. For the flooded
hazard regions, all three bands of RCAN-FSDAF are closer to
the 1:1 line, with the blue band being the most pronounced.
For the phenological change regions, there is no major dif-
ference between the four methods. However, Tables II and III
display the indicator values; evidently, for the two test regions,
RCAN-FSDAF produces more accurate predictions compared
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Fig. 12. Scatter plots of the base reflectance and the predicted ones product by the FSDAF, DMNet, GAN-STFM, and RCAN-FSDAF for NIR, red, and blue
bands.

Fig. 13. Scatter plots of the base reflectance and the predicted ones product by the FSDAF, DMNet, GAN-STFM, and RCAN-FSDAF for NIR, red, and blue
bands.

with FSDAF, DMNet, and GAN-STFM. For the three bands,
RCAN-FSDAF showed significantly lower values of RMSE
and AD and a notably higher value of R than FSDAF, DMNet,
and GAN-STFM. Separately, for the flood hazard regions, the
most prominent differences were found in the red band (R

0.9243 versus 0.9124, 0.9104, and 0.8825, and AD 0.0010 versus
0.0018, 0.0025, and 0.0038). Regarding the overall variance,
both models predict the reflectance for the blue band to be
greater than the base reflectance (AD < 0). Additionally, the
reflectance for the NIR and red bands predicted by both models
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TABLE III
INDICATORS OF THREE DATA FUSION METHODS USED TO PREDICT THE PHENOLOGICAL CHANGE REGIONS

Fig. 14. (a) Shows the NDVI inversion results of the base image acquired in the first test. (b), (c), (d), and (e) show the respective NDVI inversion results of
FSDAF, DMNet, GAN-STFM, and RCAN-FSDAF predicted images.

Fig. 15. Scatter plots of the base NDVI and the predicted ones product by the FSDAF, DMNet, GAN-STFM, and RCAN-FSDAF.

is less than the base reflectance (AD > 0). For the phenological
changes’ regions, the most notable differences were found in the
red band (RMSE 0.0241 versus 0.0256, 0.0304, and 0.0324, R
0.9248 versus 0.9147, 0.9129, and 0.9102, and AD 0.0048 versus
0.0050, 0.0051, and 0.0053). Overall, RCAN-FSDAF demon-
strates superior accuracy in predicting regions with changes in
land-cover types.

D. NDVI Inversion Test Results

Until now, spatiotemporal data fusion has been widely used
and has produced good results in the inversion of various quan-
titative remote sensing parameters. In order to establish the
applicability of RCAN-FSDAF, NDVI inversion of the fused
data produced in the first test was performed, and five inversion
results were obtained, as shown in Fig. 14. A Total of 4000
random points were randomly selected to determine the accuracy

of the inversion results using RMSE, R, and AD. From the
scatterplot in Fig. 15, we find that the correlation between NDVI
obtained from the inversion of the predicted data using FSDAF
and NDVI obtained from the inversion of the base data was
biased below the 1:1 line; a slight improvement in NDVI from
the inversion of DMNet and GAN-STFM forecasts, while the
correlation between NDVI obtained from the inversion of the
predicted data using RCAN-FSDAF and the NDVI obtained
from the inversion of the base data was more uniformly dis-
tributed at the center of the 1:1 line. Table IV shows the values
of the indicators of the three NDVI inversions, and it can be
seen that the results produced by RCAN-FSDAF were closer to
the base inversion results than the results of FSDAF, DMNet,
and GAN-STFM, with smaller values of RMSE and AD and
a greater value of R. These values indicate that the results
obtained by the inversion of the prediction data using RCAN-
FSDAF were more accurate than FSDAF. This result will be
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TABLE IV
INDICATORS OF THE FUSION RESULTS OF THE THREE METHODS USED FOR

NDVI INVERSION

of value in subsequent quantitative remote sensing analysis and
application.

IV. DISCUSSION

In this study, a new spatiotemporal data fusion method RCAN-
FSDAF is proposed by combining the downscaling method
based on deep learning with the traditional spatiotemporal data
fusion method. Based on Landsat and MODIS data, three tests of
the RCAN-FSDAF method were conducted: the highly hetero-
geneous area test, the land-use change area test, and the NDVI
inversion result test, and the RCAN-FSDAF method showed
good fusion effect and accuracy in all three tests in this study.
Among them, the highly heterogeneous region test and the
land-use change regions test are representative tests to test the
spatiotemporal data fusion algorithm. Similarly, the authors in
[6] and [15] set up highly heterogeneous regions and land-use
change regions to test FSDAF and PSTAF-GAN. However, there
are still some uncertainties, which can be described as follows.

The proposed method provides a new framework to solve
the current problem of limited fusion accuracy due to the large
uncertainty error of input data by traditional spatiotemporal data
fusion methods. The resampling methods based on difference
or reconstruction are poor in decomposing the mixed image ele-
ments of the input data and have poor spatial consistency, which
leads to the traditional spatiotemporal data fusion methods to
distinguish the boundaries between different features difficulty.
Deep-learning methods have advantages in extracting deep fea-
tures and texture features, etc., and are capable of extracting
more spatial information. However, compared with the tradi-
tional spatiotemporal data fusion methods, the spatiotemporal
data fusion algorithm based solely on deep learning brings more
noise to the image fusion process and ignores the advantages of
the traditional spatiotemporal data fusion algorithm in terms of
image element unmixing and land-use type change prediction,
etc. The basic principle of the RCAN-FSDAF method is to
combine the deep-learning-based super-resolution technology
with the traditional spatiotemporal data fusion method. By com-
plementing the feature information at coarse resolution with
RCAN, the input data with more spatial heterogeneity details
are obtained, and thus, the accuracy of FSDAF is improved.
However, the improvement of the prediction performance of the
RCAN-FSDAF method depends on the downscaling effect of
the RCAN to a certain extent. Methods with better downscaling
effects will obtain better fusion results. Similarly, Zhai et al.
[21] reduced the scale of input MODIS data by introducing a
linear spectral mixing model, which replaced the resampled
low-resolution data in FSDAF and generated high-precision

predicted LAI data with high spatial and temporal resolution.
Xie et al. [22] proposed a CDSTARFM algorithm based on
the combination of the image element decomposition down-
scaling method and STARFM model; first, the MODIS data
were decomposed and downscaled using the image element
decomposition downscaling method, and then the downscaled
MODIS data were used to replace the directly resampled MODIS
data in the STARFM model for data fusion. The results show that
the CDSTARFM algorithm has better accuracy; therefore, the
RCAN-FSDAF method has some alternatives. In future work,
we will choose to use super-resolution techniques with higher
efficiency and accuracy, such as (pan sharpening in closed-loop
regularization and modality-aware feature integration for pan
sharpening) proposed by Zhou et al. [26], [27] and CUCaNet
proposed by Zheng et al. [28]. However, this study takes the
combination of RCAN and FSDAF as an example to carry out a
detailed study, which verifies the reliability of the framework of
combining the deep-learning-based downscaling method with
the traditional spatiotemporal data fusion method, which can
also be extended to the performance improvement of other
traditional spatiotemporal data fusion methods, so the RCAN-
FSDAF method has also certain scalability.

Different MODIS data are used for the first test and the
second test in this study. The use of real MODIS data on the
one hand is to ensure the practicality of the RCAN-FSDAF
method proposed in this study for the fusion effect of MODIS
and Landsat data. On the other hand, the use of similar MODIS
data is to eliminate the influence of errors caused by sensor
differences on the test accuracy and to ensure the authenticity
of the fusion accuracy because sensor differences are a bigger
problem for spatiotemporal data fusion algorithms [34], [35].
The MODIS data used in this study is the 16-day synthetic global
vegetation index product (MODIS13Q1), and the daily surface
reflectance product is not used. Therefore, the temporal phase
difference can affect the fusion accuracy of the RCAN-FSDAF
method. In addition to this, the data used in this study have some
alignment errors. Therefore, they need to be further investigated
to achieve better fusion results.

Overall, the RCAN-FSDAF method proposed in this study
can provide a new framework and reference for the current
traditional spatiotemporal data fusion methods for accuracy
improvement. The validation results and analysis of the three
tests conducted on the RCAN-FSDAF method in this study can
provide data support for the framework of this study. However,
the errors caused by temporal phase discrepancies and alignment
errors need further specialized research.

V. CONCLUSION

Aiming at the problem that the traditional spatiotemporal
fusion method reduces the fusion accuracy due to the large
uncertainty error of input data, this study proposes a framework
of combining deep-learning-based super-resolution technology
with traditional spatiotemporal fusion method and explores in
detail its applicability in areas of high land-use heterogeneity
and areas of land-cover change, and its effectiveness in the
subsequent inversion of quantitative remotely sensed data by
taking RCAN and FSDAF as examples. The results show that
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our proposed new framework has a large improvement in fusion
accuracy. Our main conclusions are summarized as follows.

1) The predicted reflectance of various bands by RCAN-
FSDAF was closer to the base reflectance than FSDAF,
GAN-STFM, and DMNet, as shown by the higher correla-
tion and smaller error with the base reflectance. We found
that RCAN-FSDAF more accurately predicted complex
features or complex mountainous environments, and more
accurately identified boundaries between different feature
changes in land cover, because it better decomposes ele-
ments consisting of mixed image features.

2) Indicators of the NDVI inversion of the prediction results
of the two methods showed that the high spatiotemporal
resolution NDVI data produced by the inversion of the
RCAN-FSDAF prediction results were more accurate than
other data. This result indicates the possibility of obtain-
ing more accurate results by fusing long time-series data
and, subsequently, inverting remote sensing results. This
method can be extended to other remote sensing inversions
of biophysical parameters.

3) This study is the first published record of RCAN being
combined with FSDAF, the combination increased predic-
tion accuracy. Training RCAN is not complicated and is
relatively efficient. If this virtue can be extended to other
spatiotemporal data fusion methods, it will improve the
prediction accuracy of the other spatiotemporal data fusion
methods.
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