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CompoHyDen: Hyperspectral Image Restoration via
Nonconvex Componentwise Minimization

Hazique Aetesam , Abdul Wasi , and Sonal Sharma

Abstract—In this article, we propose a variational approach for
estimating the clean hyperspectral images (HSI) that are corrupted
by the combined effect of Gaussian noise, impulse noise, stripes,
and deadlines. Successful removal of noise from the corrupted
observations is essential for subsequent downstream analyses like
classification, spectral unmixing, and target tracking. The main
contribution of this work is as follows. First, an objective function
is designed for the joint estimation of clean data and impulse
corrupted pixels. A rationale is presented for using the �0−norm
to estimate the exact sparsity induced by impulse noise. Second, the
problem is reformulated as a multiconvex problem, which is solved
using proximal projection and alternating minimization. Third, to
exploit the spatial-spectral similarity, a nonlocal and vectorized
version of total variation regularization is proposed to estimate the
clean data. Lastly, a study on the parameter sensitivity analysis
empirically validates the convergence of the restoration results
under different values of the regularization hyperparameters. The
experiments conducted over synthetically corrupted and real HSI
data obtained from hyperspectral sensors suggest the potential
utility of the proposed methodology (CompoHyDen) at a scalable
level.

Index Terms—Alternating minimization, Gaussian-impulse
noise, hyperspectral imaging, nonlocal total variation (TV), proxi-
mal projection.

I. INTRODUCTION

IMAGES acquired from traditional cameras contain a single-
channel grayscale image or a combination of red, green,

and blue channels for colored images. Under such acquisition
settings, some of the remotely sensed data cannot capture the
gamut of information beyond the visible parts of the electro-
magnetic spectrum from the target area under investigation [1].
Hyperspectral sensors provide an added incentive by capturing
images in the wavelength range spanning 400−2500 nm [2].
The resultant hyperspectral datacube contains hundreds of spec-
tral bands in a contiguous wavelength range. This aids in the
application of hyperspectral imaging (HSI) in fields related to
agriculture, food quality, remote sensing, military surveillance,
and biomedicine [3], to name a few.
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However, HSIs are prone to corruption during the acquisition
and transmission stages. On the one hand, Gaussian noise is
attributed to the thermal agitation of charge carriers and low-
radiance energy captured as a result of the narrow splicing of
the pixel spectrum [4]. On the other hand, impulse noise occurs
when sensors go out of the radiometric range; rendering hori-
zontal and vertical stripes in the data. Faulty memory locations
and corrupted sensor elements are other factors responsible for
impulse noise [5]. These are rendered as dead pixels in the
acquired datacube. As a result, remotely sensed images contain a
combination of Gaussian and impulse noise [6]. Noise removal is
a longstanding problem and an essential prerequisite for success-
fully applying downstream analyses such as classification [7],
spectral unmixing [8], and target tracking [9].

II. RELATED WORKS

This section provides a concise overview of the literature rel-
evant to hyperspectral image (HSI) noise removal. Restoration
of HSIs can be done using filtering-based, image priors [total
variation (TV), low-rank], and learning-based [10], [11] ap-
proaches. All these categories lack any proper boundary among
them, as the amalgamation of two or more of the other categories
has been explored in recent works. Further, since the scope of this
article is prior-based variational technique, we do not discuss the
learning-based approaches here. The following paragraphs pro-
vide a concise overview of each of the above-stated categories.

Under the filtering-based methods, Deng et al. [12] pro-
posed a method that was basically a randomized algorithm for
patch-based filtering of images. This Monte Carlo method is
highly time efficient compared to other nonlocal means (NLM)
methods. Aswathy et al. [13] used a sparsity-based strategy to
effectively restore HSIs by employing low-pass sparse banded
filter matrices. However, the main limitations of filtering-based
approaches include manual tuning of hyperparameters like win-
dow size and patch-size (in NLM-based methods). Computa-
tional bottlenecks during 3-D processing of the data cannot be
denied as well.

For the TV-based methods, Zhong et al. [14] quantified
the sparsity of deadlines, stripes, and other noise sources by
employing the nonconvex and nonsmooth �0−norm, restoring
hyperspectral images with high accuracy. Kong et al. [15] pre-
sented a group of low-rank and spatial-spectral TV for image
restoration. It meticulously extracts spatial information while
removing Gaussian and sparse noise too. In another approach,
Wang et al. [16] proposed �0 TV along with tensor low-rank
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constraint for hyperspectral image noise removal, claiming
that it preserves more information than �1 norm for further
processing. Peng et al. [17] proposed an optimized 3-D TV
regularizer that captured sparsity along all gradient maps of an
HSI and reflected correlation among all these bands. This helps
in better processing of these images. Wang et al. [18] argued
that TV-based methods introduce artifacts by oversmoothing the
image. To circumvent this, their proposed model exploits the
spatial-spectral information both locally and globally, showing
better edge preservation capability.

In low-rank based methods, Zhuang et al. [19] exploited the
properties of self-similarity and low dimensionality to produce
a model exhibiting insensitivity to its parameters to denoise
hyperspectral images. Mahmood and Sears [20] proposed a
model that helps in the estimation of noise at each pixel of a
hyperspectral image without divulging any information about
the statistical nature of noise. They emphasized that it could also
aid in image noise removal when it exhibited spectral correlation.
For hyperspectral images that are corrupted by a combination of
stripe, Gaussian, and impulse noises, Jiang et al. [21] proposed a
method that exploited expectation maximization for restoration
while working on low-rank and self-similarity. Chen et al. [22]
pointed out that a large amount of work was done on HSI
denoising based on the independent and identically distributed
(iid) nature of noise. Therefore, they proposed a model in the
Bayesian framework that adapted to tackle various noises that are
non-iid in nature. Pertinent to mention is that prior-based meth-
ods require hand-crafted regularization terms for every dataset
that deviates from the diverse and complex noise encountered
in real HSIs.

All the preceding methods suffer from one or more deficien-
cies.

1) �0−norm over the sparse noise component [14] and over
TV regularization [16] are both nonconvex problems.
They are difficult to solve and generate nonunique solu-
tions.

2) 3-DTV involved in exploiting the texture information [15]
is suboptimal in restoring Gaussian corrupted pixels mixed
with sparse impulse noise. Both these noise types need dif-
ferent mathematical treatments. Further, low-rank deter-
mination using Tucker decomposition fails to decompose
higher order tensors since they explicitly materialize inter-
mediate data, whose size grows rapidly as order increases
(≥ 3).

3) In Peng et al. [17], the nonlocal nature of image smooth-
ness renders the method inapplicable for 3-D tensor data.
Estimation of noise sparsity on subspace bases still does
not handle the nonlocal nature of noise and image smooth-
ness.

4) Since the alternating direction method of multipliers
(ADMM) is inherently suited for nonsmooth convex op-
timization problem, its application for solving �0 − �1
hybrid TV leads to suboptimal results [18].

5) Low-rank tensor decomposition performed by singu-
lar value decomposition (SVD) in [19] is computation-
ally intensive, specifically for data of this magnitude
(dimension ≥ 3).

6) Per-pixel noise estimation [20] ignoring the statistical
nature of noise leads to overestimation/underestimation
of decoupled Gaussian and impulse noise corrupted pixels
present in the HSI datacube. Noise estimation considering
the interband correlation without the underlying assump-
tion of noise characteristics leads to insufficient removal
of high-magnitude impulse noise.

7) Gaussian mixture model (GMM) to handle the nonidenti-
cal and independently distributed (non-iid) noise in [22] is
highly sensitive to the initial values of the model param-
eters, especially in HSI data, where there are too many
components in the mixture. Further, GMM can be compu-
tationally expensive to fit on high dimensional data (≥ 3).
The initial assumption under GMM is that the data comes
from a mixture of normal distributions. However, the high
spikes introduced by impulse corrupted pixels deviate
from Gaussian distribution and more suitably follow the
Laplacian scale mixture model.

Inspired by the recent developments, we aim to overcome the
above stated limitations. Following are the main contributions
of our work.

1) GMM used to fit mixed Gaussian-impulse noise in [22]
leads to suboptimal restoration results. Therefore, in our
work, the two noise sources are modeled separately using
Gaussian (for Gaussian noise) and Laplace (for impulse
noise) distribution. An objective function is designed for
the joint estimation of clean data and impulse corrupted
pixels.

2) Contrary to the work in [14], to handle the nonconvex
�0−norm term, the resultant optimization problem is re-
formulated as a multiconvex problem involving the esti-
mation of true clean image as well as the binary mask. To
support the above argument, a rationale is presented for
using �0−norm to estimate the exact sparsity induced by
impulse noise. Since the resultant optimization problem
is multiconvex, it can be easily solved using proximal
projection and alternating minimization.

3) In the previous works [14], [15], [16], similarity weights
were computed across all bands but nonlocal TV (NLTV)
was computed separately for each band. This misses the
interband coupling. To circumvent this difficulty, we have
incorporated interband coupling by introducing a matrix
K. Formally, we introduce �∞,1,1−norm in the regular-
ization term because interchannel coupling is more in
�∞−norm than in �2− or �1−norm.

4) A theoretical study of the convergence analysis of the
proposed objective function aids in the componentwise
minimization of the criterion function.

III. PRELIMINARIES AND OBJECTIVE

For an image corrupted by mixed Gaussian-impulse noise, the
image formation model [23], [24] is given by

fij =

{
uij + gij ∀(i, j) ∈ Ωg

vij ∀(i, j) ∈ Ωs = Ω− Ωg

(1)
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where the original data u are corrupted by the Gaussian noise
component g ∼ N (0, σ2

g), approximated as normal distribution
with mean μg = 0 and variance σ2

g . v ∼ L(0, σs) is the impulse
noise component, approximated as a Laplace distribution [25]
with μs = 0 as the location parameter and σs as the scaling
parameter. The cumulative effect of the two random variables
g and v produces the composite noisy signal f . The indices
(i, j) denote the pixel locations along the spatial and spectral
dimensions1. Ω denotes the total set of pixels present in the
image. Ωg and Ωs are the sets of Gaussian and impulse noise
corrupted pixels,2 respectively. IfΩs = ∅, the image is corrupted
by only Gaussian noise, and the image formation model is
modified asf = u+ g. For an image corrupted by both Gaussian
and impulse noise, the image formation model [26], [27] can be
simplified as

f = u+ g + v. (2)

The optimization problem that we seek to address is given by

arg min
u,v

L(u, v) = 1

2
‖f − u− v‖22 + λ1J(u) + λ2‖v‖0 (3)

where the first term is the data fidelity term [29], [30] in �2−norm
(‖ · ‖22) addressing the Gaussian noise component, J(u) is the
regularization term over the clean data (details presented in
Section IV-E), and �0−term (‖ · ‖0) models the exact sparsity
of the impulse corrupted pixels. The hyperparameters λ1 and λ2

are adjusted based on the level of Gaussian and impulse noise,
respectively.

The main objective of this article is as follows. First, we
present the rationale behind choosing the nonconvex and non-
continuous �0−norm as the penalty term in the objective func-
tion by subsuming the variable v present in the fidelity term
(Section IV-A). Second, to handle the difficulty introduced
by �0 term, we reformulate the objective function as a mul-
ticonvex problem that is continuous (Section IV-B). Third, a
componentwise minimization strategy is devised to solve the
resultant minimization problem (Section IV-C). Lastly, we study
the convergence of the proposed scheme based on alternating
minimization and estimate the local minima by making a trivial
change in the objective function (Section IV-D).

IV. PROPOSED METHODOLOGY

Since we are mainly interested in the estimation of the actual
signal u, v can be eliminated from the objective function of (3)
such that

arg min
u

E(u) = arg min
v

L(u, v). (4)

The resultant objective function is still nonconvex in nature. In
order to solve (4), it can be written as a multiconvex problem

1It is to be noted that the original dimension of 3-D HSI data is R
m×n×p;

however to exploit the spatial-spectral similarity in the data, the 3-D matrix is
converted into its corresponding Casorati matrix representation [28] such that
{f, u, g, v} ∈ R

mn×p and {f, u, g, v}i,j ∈ R
mn×1. The indices are dropped

from further consideration to enhance clarity.
2There is a dichotomy of pixels into Gaussian and impulse corrupted ones.

A pixel successively corrupted by Gaussian and later by impulse noise does not
possess any information about the clean data or Gaussian corrupted pixels.

Fig. 1. Negative log-likelihood for mixed Gaussian impulse noise and its
approximation using R0 and R1 regularizers under different values of λ.
(a) λ = 5, (b) λ = 10, (c) λ = 15, and (d) λ = 20.

involving the estimation of u and the auxiliary variable Φ (more
about Φ is presented in Section IV-B).

A. �0−norm as the Penalty Term

In this section, we discuss the intuition behind using �0−norm
over the impulse noise component v to measure the exact sparsity
of the signal. Let us consider that the function Rp is introduced
over the data fidelity term to remove the component v. The
resultant objective function is given by

Ep(u) =
1

2
Rp‖f − u‖+ λ1J(u). (5)

Based on whether �0− or �1−norm is a better choice to approxi-
mate impulse noise, pixelwise R0 and R1 (for p = 0 and p = 1,
respectively) is given by

R0(x) = min(|x|2, 2λ2) (6a)

R1(x) =

{
|x|2 ;if |x| ≤ λ2

2λ2|x| − λ2
2 ;otherwise.

(6b)

The fidelity term 1
2Rp‖f − u‖ in (5) approximates the negative

log-likelihood under mixed Gaussian-impulse noise based on
the value of p in Rp. Fig. 1 is used to simulate the nega-
tive log-likelihood of R1 and R0 for a pixel whose original
intensity level is 128. It is initially corrupted by Gaussian noise
of specific level (here, σ = 10) followed by random-valued
impulse noise (RVIN) (considering that the dynamic range of
the data is [0, 255]) [31]. The experiment is simulated for 1010

iterations. There are several observations that can be made here.
First, R1 possesses somewhat erratic behavior as it is evident
from the figures that it is quite different from the negative log-
likelihood (indicated by the blue color). It can be observed from
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Fig. 2. Proposed HSI denoising model: CompoHyDen. ⊗ is used to denote the Hadamard product while ⊕ represents the additive nature of the two noise sources
(g, v).

the figure that the graph for R0 better approximates the negative
log-likelihood than theR1 term. Second,R1 is highly sensitive to
the values of the hyperparameter λ2 [see Fig. 1(a)–(c)]. Lastly,
for higher values of λ2 = {15, 20}, the performance saturates
for both R0 and R1. Conclusively, we can state that R0 is more
robust to the value of the hyperparameter λ2, and thus, �0−norm
in the penalty term is a more suitable choice to model the exact
sparsity of the impulse corrupted pixels.

B. Multiconvex Problem

Now that we are equipped with the knowledge that �0−norm
is a more suitable choice as the penalty term to model the exact
sparsity of impulse noise, we next introduce an auxiliary variable
defined by

Φi,j =

{
0; if vi,j �= 0

1; if vi,j = 0
(7)

where Φi,j is a binary matrix3 having the same dimension as u.
To handle the nonconvex �0−term in our objective function, (3)
can be modified as a multiconvex problem

arg min
u,Φ∈{0,1}

L(u,Φ) = 1

2
Φ‖f − u‖22 + λ1J(u) + λ2(I− Φ) (8)

where I ∈ 1mn×p and the term (I− Φ) is used to approximate
the �0 term. I is the matrix with all ones. Since Φ is a binary
matrix, it acts as a mask over the input image u to decouple
the effect of Gaussian and impulse noise (see Fig. 2 for more
details).

3According to (7), Φi,j assigns a value 0 to those pixel locations which are
corrupted by impulse noise and the value 1 to those pixel locations which are
corrupted by Gaussian noise.

C. Componentwise Minimization

The resulting criterion function of (8) is still nonconvex and
difficult to solve. Therefore, in this section, we propose an
alternating minimization approach that decouples the energy
functional into two parts; one for the estimation of u and the
other for the estimation of the binary matrix Φ. For solving
the problem under fixed Φ, the resultant optimization problem
is convex if the penalty term J(u) is convex. Similarly, under
fixed u, Φ can be estimated in a single step.

1) Estimation of u: Under fixed Φ, the fidelity term over the
set Ωg is convex and quadratic, and the penalty term is
convex (usually a nonsmooth term). The criterion function
to estimate u is given by

û = arg min
u

1

2
‖f − u‖22 + λ1J(u) (9)

2) Estimation of Φ: Under fixed u, L(u,Φ) is a function of
Φ only

Φ̂ = arg min
Φ∈{0,1}mn×p

1

2
Φ‖f − u‖22 − λ2Φ. (10)

Since (10) is separable, it can be solved in a constant time
as

Φ =

⎧⎪⎨
⎪⎩
0; if (f − u)2i,j/2 < λ2

1; if (f − u)2i,j/2 < λ2

0 or 1; if (f − u)2i,j/2 = λ2.

(11)

According to (9) and (10), λ1 and λ2 are the two hyperparam-
eters set according to the noise level of g and v, respectively.
For the initial estimation of Φ, rank-ordered absolute difference
(ROAD) filter [32] is used. This is updated in every iteration as
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it is especially important under RVIN where several iterations
are needed to accurately detect the corrupted pixels under mixed
Gaussian-impulse noise. A block diagram of the componentwise
minimization (CompoHyDen) is depicted in Fig. 2. The noise
simulation in the forward observation model is preceded by
masking the image using the binary matrix Φ and (I− Φ). This
is made possible by the Hadamard product (
) computation.
The pixels decoupled using Φ and I− Φ are then chosen for
Gaussian (g) and impulse (v) noise simulation. During the
inverse estimation, û and Φ̂ are found iteratively from the noisy
image f using (9) and (10), respectively. This is also depicted
in Fig. 2.

The choice of the penalty term J(u) for Gaussian noise is
deferred until Section IV-E. It will be a convex term that can be
directly fed into (9).

D. Convergence Analysis and the Modified Objective Function

In this section, we show that (9) and (10) for the estimation
of u and Φ yields a coordinatewise minimizer of L(u,Φ) in
a finite number of steps. In other words, we can state that a
point (û, Φ̂) is a coordinatewise minimizer of L(u, Φ̂) and Φ̂ is
a coordinatewise minimizer of Ep(u) in (5).

Theorem 1: If we consider that ũ is a local minimizer for
Ep(u) and Φ ∈ [0, 1]mn×p minimizes L(ũ,Φ), then (ũ, Φ̃) is
the local minima for L(u,Φ).

Proof: Assuming that ũ is the local minimizer for Ep(u), we
can use a very small constant ε > 0 such that whenever ‖u−
ũ‖ < ε, thenEp(u) ≥ Ep(ũ). As a result, ∀(u,Φ) satisfying the
condition ‖(u,Φ)− (ũ, Φ̃)‖ < ε, we also have ‖u− ũ‖ < ε

L(u,Φ) ≥ Ep(u) ≥ Ep(ũ) = L(ũ, Φ̃). (12)

Thus, we can conclude that (ũ, Φ̃) is a local minimizer for
L(u,Φ). �

Theorem 2: If Φ̃ is the coordinatewise minimum point for
L(ũ,Φ), then (ũ, Φ̃) is a local minima for L(u,Φ). Also, ũ is a
local minima of Ep(u).

Proof: Since Φ̃ provides a local minima for L(ũ,Φ) and ũ
minimizes L(u, Φ̃), we have ũ as the local minima of Ep(u).
Then, (ũ, Φ̃) is the local minima of L(u,Φ) from Theorem 1.

However, while solving the subproblem Φk for iteration k
in (10), there can be many points of minima for L(uk,Φ). We
are required to choose the best Φ to minimize L(u,Φ), so that
the algorithm converges to the local minima point of Ep(u). �

Since there can be many potential candidates for Φ which
minimizes L(u,Φ), we resort to the following strategy. The
objective function of (8) can be modified by appending a term
τΦr where r has the same dimension as Φ and u and τ is a
small constant. Each entry ri,j in r is a random value uniformly
sampled in the range [0,1]. Equation (8) is modified as

Ĺ(u,Φ) = arg min
u,Φ∈[0,1]

L(u,Φ) + τΦr. (13)

This ensures that the algorithm stops at local minima with
probability 1. On the other hand, under (11), the subproblem

for estimating Φ is modified to

Φ =

⎧⎪⎨
⎪⎩
0; if (f − u)2i,j/2 + τr < λ2

1; if (f − u)2i,j/2 + τr < λ2

0 or 1; if (f − u)2i,j/2 + τr = λ2.

(14)

E. Vectorial NLTV as Regularization Term

A classical image restoration framework using Rudin-Other-
Fatemi (ROF) [33] model of TV-based regularization estimates
the local derivatives with respect to the adjacent pixels. This is
called local TV. It is based on the assumption that individual
pixels are surrounded by smooth regions punctuated by sharp
discontinuities. This contributes to the piecewise approximation
of images, which helps in noise removal and detail preservation.
However, the local version of TV cannot distinguish fine struc-
tural details and textures from noise.

In order to overcome these limitations of a classical TV model,
the interactions of pixels with its neighbors need to be explored.
Here, the neighborhood is based not only on the spatial closeness
but also closeness in terms of its intensity with other pixels over
the entire spatial and spectral extent of the image. NLM is a
classical approach by Buades et al. [34] to restore a pixel x ∈ u
by averaging the intensity levels over all the pixels based on
neighborhood similarity decaying as a function of h

ωu0
=

exp(−dρ(u0(x)− u0(y))

h2
(15)

where the distance d is computed by dρ(u0(x)− u0(y)) =∫
Ω Gρ(t)|u(x+ t)− u(y + t)|2 dt.Gρ is a Gaussian kernel and
h is the filtering parameter that controls the decay of ω as
the function of Euclidean distance between image patches. The
weight function ω satisfies the following properties:

1) 0 < ωu0
≤ 1;

2)
∫
ωu0

(x, y) = 1.
Since TV is �1−norm over image gradients, incorporating

an NLTV prior on the image u yields ∇ωu(x, y) = (u(y)−
u(x) ·√ω(x, y)∀y ∈ ω for ω : Ω× Ω → R and u : Ω → R, as
shown by Gilboa and Osher in [35]. A classical approach to
image restoration composed of a data fidelity and NLTV term
computes the similarity weights along the spectral dimension
collectively. The objective function used to realize this is given
below

û = arg min
u

1

2
‖f − u‖22 + λ∇ω0

‖u‖1. (16)

However, the above equation uses NLTV along each band sepa-
rately [36], [37]. This misses the similarity among pixels along
the spectral axis.

Discretization of the nonlocal gradient ∇ω on u ∈ R
mn×p

involves a linear operator K [38]. Computation of K over
u yields a 3-D matrix Ku whose first, second, and third
dimensions correspond to the pixels, weighted differences of
the pixels and the number of bands. For Ku ∈ R

m×n×p, each
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(Ku):,:,p is given by (17),
⎡
⎢⎢⎢⎢⎢⎢⎣

0 ω1,2(u1,p − u2,p) . . . ω1,p(u1,p − um,p)

ω2,1(u2,p − u1,p) 0 . . . ω2,p(u2,p − um,p)

...
...

. . .
...

ωn,1(un,p − u1,p) ωn,3(un,p − u3,p) . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(17)

where the first subscript in each entry denotes the linear indexing
of pixels for each layer (the Casorati representation of 3-D data,
as mentioned in Section III) and the second dimension denotes
the spectral dimension. Considering that ∇ωu is implemented
using Ku, (16) is modified as

û = arg min
u

1

2
‖f − u‖22 + λ‖Ku‖∞,1,1. (18)

The general �p,q,r−norm over a matrix X is given by

‖X‖p,q,r =

(∑
i

(∑
j

(∑
k

|Xi,j,k|p
)q/p)r/q)1/r

(19)

where r, q, p are taken along the first, second, and third
dimensions, respectively, [39] [40] [41]. Typically, we consider
�∞,1,1 because the interchannel coupling is more in �∞−norm
than in �2 or �1 norm. Splitting the image gradient in horizontal
(∇h) and vertical (∇v) components for �∞,1,1−norm yields the
following expression:∫

ω

(
max
∀p

[∇hu(x)] + max
∀p

[∇vu(x)]

)
. (20)

The nonlocal regularization interacts only among the pixels
locally within the search window K > 0. In other words,
ω(x, y) = 0 for ‖x− y‖∞ > K. The similarity weight between
the pixel x and y is defined by

ω(x, y) =

⎧⎪⎨
⎪⎩

1
C(x)e

− 1
h2

∑
t∈N0

‖u0(x+t)2−u0(y+t)2‖

; if ‖x− y‖∞ ≤ K

0; otherwise

(21)

where N0 is the comparison window centered at 0 and h has the
same usual meaning as defined in (15). C is the normalization
factor defined by

C(x) = e
− 1

h2

∑

{y:‖x−y‖∞≤K}
‖u0(x+t)2−u0(y+t)2‖

. (22)

F. Final Algorithm

For the minimization of objective function of (18), we make
use of primal-dual hybrid gradient (PDHG) of the form [42]

û = arg min
u

N∑
i=1

li(Tiu) (23)

where li is a term in the objective function and Ti is an operator,
both indexed by i.N is the total number of terms in the objective
function. A generalized proximal projection of a term li in the

Algorithm 1: CompoHyDen.

Require: u0 ∈ R
mn×p , τ > 0 , σ > 0 , ρ >

0, f , λ1, λ2, ε, i = 1 · · ·N, k = 1
1: Initialise: v0 = 0 , x0,i−1 = u0 ,Φ0, k = 1 . . .K
2: while L(uk,Φk)− L(uk−1,Φk−1) > ε do
3: for i ∈ 1 . . . N do
4: qk,i = xk,i + σ · Ti(2vk − uk−1)
5: pk,1 = qk,i − σ · proxli/σ

(qk,i/σ)
6: xk,i = ρ · pk,i + (1− ρ)xk−1,i

7: end for
8: vk = uk−1 −

∑N
i=1 τT

∗
i xk,i

9: uk = ρvk + (1− ρ)uk−1

10: Estimate Φk from (14)
11: k = k + 1
12: end while

objective function of (23) is given by [43]

proxγ li(y) = arg min
u

{
li(u) +

1

2γ
‖u− y‖22

}
(24)

with γ > 0 playing the role as the step-size parameter in any
gradient-based optimization technique.

1) Considering that y = T1 u where T1 = I

proxγ l1(y) = arg min
u

1

2
‖f − u‖22 +

1

2γ
‖u− y‖22 (25)

=
y + γf

1 + γ
. (26)

2) Similarly, considering that y = T2 u where T2 = K

proxγ l2(y) = arg min
u

{
‖Ku‖∞,1,1 +

1

2γ
‖u− y‖22

}
.

(27a)

Because the outer norms in (18) are in �1 form, the problem
of estimating �∞,1,1 decouples along the first and second
dimensions and the problem is reduced to the estimation of
proximal operator of �∞−norm at each component [44].
This is equivalent to the projection onto L1−ball (see
Appendix A), given by

= y − Proj‖·‖1≤1

(
y

λ

)
. (27b)

The final algorithm for solving (8) is given by the following.
where ε is used as the stopping criteria, the initial value of the
matrix Φ0 is obtained from the ROAD filter [32] which is used
for the detection of impulse corrupted pixels under RVIN. K is
the number of iterations indexed by the subscript k and N is the
number of terms in the objective function of (16) (here, N = 2).
λ1 and λ2 are the hyperparameters given in (8). Initial estimates
are given by u0 and v0. τ and σ are the proximal operators while
ρ is the relaxation parameter.
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V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we conduct extensive experiments on synthet-
ically corrupted hyperspectral data and those obtained from real
hyperspectral sensors.

A. Experimental Setup

For experimentation purposes, all the images are normal-
ized in the range [0,1] prior to noise simulation. Cases 1 and
3 are the homogeneous noise settings, while other cases are
heterogeneous in nature. This distinction is made on the ba-
sis of the level and types of noise used to corrupt different
bands of the 3-D data. Under homogeneous settings, the same
level of noise is used to corrupt each band. On the other hand,
different noise levels can be present in different bands in hetero-
geneous settings. Anisotropic noise in heterogeneous settings is
difficult to handle as compared to the same noise levels added to
all the bands. A comprehensive description of the noise settings
is discussed below.

1) Case 1: For mean zero and standard deviation σ, denoted
by N ∼ (0, σ), three different levels of Gaussian noise
are simulated that are identically distributed across all the
layers with σ = 0.02, 0.06, 0.1.

2) Case 2: Here, Gaussian noise is nonidentically distributed
(non-iid) with a signal-to-noise ratio (SNR) having a range
of SNR ∼ U(10, 30) (uniformly sampled between 10 and
30).

3) Case 3: Identical to case 1 but here, RVIN denoted by p%
is considered along with different values for σ such that
(σ, p) = (0.04, 6%), (0.06, 10%), (0.08, 15%).

4) Case 4: Parameters are identical to case 2. However,
along with noniid Gaussian noise, a noniid RVIN de-
noted by p% is used such that SNR ∼ U(20, 30) and
p ∼ U(5%, 20%).

5) Case 5: Similar to case 2 with a different range of
SNR ∼ U(10, 20) and 40% stripe noise. The stripe noise
here is simulated by taking into consideration the method
proposed in [45] and [46]. When we say that there is
x% stripe noise, we indicate that x percent of all the
layers in the given datacube is randomly selected as a
viable candidate for stripe noise addition. From the chosen
candidate layer, 20− 40 number of columns are randomly
selected. The intensities of the pixels in these columns are
either increased or decreased in accordance with the mean
of the pixel intensities of the chosen layer.

6) Case 6: Identical to case 5 with the exception that the
range for the number of columns is 5−15. Also, instead
of stripe noise, deadlines are added to 50% of the layers.

7) Case 7: Similar to case 5 in terms of the range
of stripe noise (40%) but with SNR ∼ U(20, 30) and
p ∼ U(5%, 20%).

8) Case 8: Similar to instance 7, except that deadlines (50%)
are introduced; in place of stripe noise.

9) Case 9: Pairing of simulation from cases 7 and 8. Here,
stripe noise, deadlines, as well as Gaussian and impulse
noise, are introduced into the data.

Under the above noise settings for synthetic and real data,
some state-of-the-art methods are used for visual and quan-
titative comparisons. These methods include: TV-regularized
low-rank matrix factorization for hyperspectral image restora-
tion (LRTV) [47], hyperspectral image restoration via TV
regularized low-rank tensor decomposition (LRTDTV) [48],
denoising hyperspectral image with noniid noise structure
(NMoG) [22], double-factor-regularized low-rank tensor fac-
torization for mixed noise removal in hyperspectral image
(LRTFDFR) [49], hyperspectral image denoising using factor
group sparsity-regularized nonconvex low-rank approximation
(FGSLR) [50], hyperspectral image denoising based on global
and nonlocal low-rank factorizations (GLF) [51], mixed noise
removal in hyperspectral image via low-fibered-rank regular-
ization (3-DlogTNN) [52], hyperspectral image restoration via
local low-rank matrix recovery and Moreau-enhanced TV (En-
hancedTV) [53] and hyperspectral mixed noise removal by
�1-norm-based subspace representation (L1HyMixDe) [54].

To support the visual results, we have used five sepa-
rate full reference image quality assessment metrics, includ-
ing two spectral-specific indicators, to compare the relative
performance of different methods. On the one hand, spatial met-
rics include peak PSNR, structural similarity index (SSIM) [55],
and feature similarity index (FSIM) [56], while mean spec-
tral angle mapper (MSAM) [57] and Erreur Relative Globale
Adimensionnelle de Synthèse (ERGAS) [58] are the spectral
metrics. Better performance of a restoration method is judged
by higher values of the spatial metrics and lower values of the
spectral metrics. While drawing comparisons, an average of
these metrics over all bands of the image is considered.

B. Experiments on Synthetic Data

The synthetic data used in this work have been derived
from the Cuprite4 dataset and the Interdisciplinary Computer
Vision Laboratory (ICVL)5 dataset. The airborne visible/infrared
imaging spectrometer (AVIRIS) sensor recorded the Cuprite
dataset, with 224 spectral bands in the wavelengths range of
370–2480 nm. The initial spatial dimension was 512 × 614. But
a cropped region of 256 × 256 pixels was used for the experi-
mentation purposes. Images in the ICVL dataset were captured
using the Specim PS Kappa DX4 hyperspectral camera. While
this work was being written, more than 200 photos were already
part of the ICVL dataset, including photos from urban, suburban,
indoor, and plant lifelike acquisition settings. Each image has a
size of 1392 × 1300 × 519 and has a wavelength ranging from
400 to 1000 nm with 1.25 nm increments. However, for all
practical purposes, we used 31 band images which are also part
of the same existing dataset. To reduce the computational burden
while processing using comparing methods, the spatial dimen-
sion was down-sampled to 512 × 512 pixels. Each layer in both
the datasets was noise simulated under cases 1–9 (mentioned
previously).

Fig. 3 helps visualize the denoising results of the simulated
Cuprite dataset under noise case 1. Images are shown in their

4Obtained from: https://aviris.jpl.nasa.gov/data/free_data.html
5Obtained from:https://icvl.cs.bgu.ac.il/hyperspectral/

https://aviris.jpl.nasa.gov/data/free_data.html
https://icvl.cs.bgu.ac.il/hyperspectral/
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Fig. 3. Denoising results of simulated Cuprite dataset under noisy case 1: (σ = 0.02). Images are displayed in their pseudocolor representation by combining
three channels (red: 50, green: 80, blue: 90). (a) Groundtruth. (b) Noisy. (c) LRTV. (d) LRTDTV. (e) NMoG. (f) LRTFDFR. (g) FGSLR. (h) GLF. (i) 3-DlogTNN.
(j) EnhancedTV. (k) L1HyMixDe. (l) CompoHyDen.

pseudocolor representation by concatenating three grayscale
bands (red: 50, green: 80, blue: 90). In Fig. 3, denoising results
on an image corrupted by iid Gaussian noise with standard
deviation σ = 0.02 are shown with visual comparison with nine
other competing methods. From the zoomed-in portion of each
image, the proposed model evidently denoises the images better.
Also, the results are sharp and more detailed, with considerably
less blur. Visual result of the proposed methodology depicted
in the figure shows a significant contrast preserving behavior
compared to other methods. Visual results generated by methods
like NMoG and GLF fail to remove the grainy texture, stripes,
and other artifacts from the image, while LRTDTV loses details
in an attempt to recover the corrupted observation. The proposed
method reduces these anomalies brought about by the noise and
postprocessing artifacts.

Similarly, on the ICVL dataset, Fig. 4 gives the visual results
under noise case 3 with the images being displayed in their
pseudocolor representation by combining three bands (red: 30,
green: 20, blue: 10). For Fig. 4, the iid Gaussian noise with
σ = 0.04 and RVIN with p = 6% corrupts the image. The visual
comparison shows that the proposed method does effective
denoising without introducing unnecessary blur during noise
removal. At the same time, it maintains the contrast present in
the ground truth data.

To aid visual analysis, image restoration performance must
be quantified. This is achieved by employing metrics such as
PSNR, SSIM, MSAM, EGRAS, and FSIM. Because PSNR and
SSIM are best suited for 2-D data, the graphs in Fig. 5 (for
PSNR) and Fig. 6 (for SSIM) show these metrics plotted against

a spectrum of band numbers ranging from 1 to 224, for the
Cuprite dataset. Higher values for both these metrics indicate
good reconstruction quality when compared to the groundtruth
signal. Whereas PSNR provides pixel-level similarity, SSIM
quantifies perceptually appealing visual results that correlate
with the human visual system (HVS). The two figures point
to high PSNR (see Fig. 5) and SSIM (see Fig. 6) values for the
proposed method for five distinct noise cases (1, 3, 5, 7, and
9) across layers, outperforming the state-of-the-art methods in
most cases. However, due to the inherently low input SNR in
some bands, there are some occasional drops around layers 130
and 160. According to the graphs, the second, third, and fourth
best-performing methods for all cases are FGSLR, GLF, and
L1HyMixDe. An aggregate analysis of the restoration perfor-
mance is necessary to estimate the overall accuracy of different
methods. Therefore, in Table I, we have tabulated the results of
all the metrics for Cuprite dataset.

Fig. 7 gives an in-depth insight into the spectral signature
for the Cuprite dataset in various cases and pixel locations,
which help in drawing a comparison of reconstruction accuracy
between the ground truth, proposed methodology (CompoHy-
Den), and other approaches. Its main aim is to compare the
proposed denoising model’s reconstruction accuracy to those of
the other techniques mentioned in the work. For the ground-truth
plot, the areas shown with arrows and lines indicate the layers
that have a distinct change in spectral signature from the results
obtained using various methods. The pixel locations are selected
at random and for each plotted case, a great degree of similarity
with the ground truth validates the efficiency of the proposed
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Fig. 4. Denoising results of simulated ICVL dataset under noisy case 3: (σ = 0.04, p = 6%). Images are displayed in their pseudocolor representation by
combining three channels (red: 30, green: 20, blue: 10). (a) Groundtruth. (b) Noisy. (c) LRTV. (d) LRTDTV. (e) NMoG. (f) LRTFDFR. (g) FGSLR. (h) GLF.
(i) 3-DlogTNN. (j) EnhancedTV. (k) L1HyMixDe. (l) CompoHyDen.

Fig. 5. Layerwise evaluation of PSNR for the Cuprite dataset for (a) case 1, (b) case 3, (c) case 5, (d) case 7, and (e) case 9. The line shown in black represents the
results obtained by our proposed methodology (CompoHyDen). PSNR achieves the best values for all the cases with exceptional drop around more noisy layers.
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Fig. 6. Layerwise evaluation of SSIM for the Cuprite dataset for (a) case 1, (b) case 3, (c) case 5, (d) case 7, and (e) case 9. The line shown in black represents the
results obtained by our proposed methodology (CompoHyDen). SSIM achieves the best values for all the cases with exceptional drop around more noisy layers.

Fig. 7. Spectral Signature for Cuprite dataset under case 2 at pixel location
(92 136) for different methods. (a) Groundtruth, (b) noisy (c) LRTV, (d)
LRTDTV, (e) NMoG, (f) LRTFDFR, (g) FGSLR, (h) GLF, (i) 3-DlogTNN, (j)
EnhancedTV, (k) L1HyMixDe, and (l) proposed (CompoHyDen). The regions
annotated with arrows (in groundtruth image using different colors) show
the layers with noticeable difference in spectral signature in comparison with
restored results.

approach. Methods such as LRTFDFR and FGSLR too show
promising results under cases 4 and 5. The 3-D graphs in Fig. 8
give the intensity projection for a particular layer. Here, the
intensity levels are plotted along the z-axis for the corresponding
pixel locations through the horizontal and vertical extent of

Fig. 8. Intensity projection for layer 50 under case 1: (σ = 0.06) using
different methods for Cuprite dataset. (a) Groundtruth, (b) noisy, (c) LRTV,
(d) LRTDTV, (e) NMoG, (f) LRTFDFR, (g) FGSLR, (h) GLF, (i) 3-DlogTNN,
(j) EnhancedTV, (k) L1HyMixDe, and (l) proposed (CompoHyDen).
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TABLE I
QUANTITATIVE EVALUATION USING MPSNR, MSSIM, MSAM, ERGAS, AND MFSIM METRICS FOR CUPRITE DATASET

the 2-D image layer (along the x- and y-axes). It helps in
understanding how various methods perform at a pixel level
when contrasted with the ground truth. Other than the promising
plots of the proposed methodology, results vary from poor for
LRTV and LRTDTV to considerably good for EnhancedTV and
L1HyMixDe.

C. Experiments on Real Data

For experiments involving real-world data, we use the Urban
dataset6 obtained from hyperspectral digital imaging collection
experiment (HYDICE) sensor covering a ground area of 2 m
×2 m. The resultant hyperspectral dataset is acquired in the
wavelength range 440–2500 nm having 210 spectral bands.
The spatial dimension is 307× 307 pixels. Fig. 9 shows the

6Obtained from: https://rslab.ut.ac.ir/data

denoising results on the urban dataset for layer 200 using various
denoising techniques. From the zoomed-in portions, it it is
evident that the proposed methodology reconstructs the image
better and is less pixelated. Also, our method does not blur
the recovered image like LRTV and LRTDTV. This is further
supported by the contrast preserving property of the proposed
methodology (CompoHyDen).

Any natural image is composed of mostly smooth sections
punctuated by sharp change in contrast or edges. These are
the regions of high-frequency components. However, noise also
contributes to high-frequency. This effect can be quantized by
plotting the horizontal and vertical mean profiles of the noisy and
restored images. Mean profiles of noisy images have random
spikes, which are less prominent in denoised versions of the
same image. Fig. 10 plots the horizontal mean profile for layer
205 of the Urban dataset. In the horizontal mean profile, the

https://rslab.ut.ac.ir/data
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Fig. 9. Denoising results of urban dataset for layer 200. (a) Noisy, (b) LRTV,
(c) LRTDTV, (d) NMoG, (e) LRTFDFR, (f) FGSLR, (g) GLF, (h) 3DlogTNN,
(i) EnhancedTV, (j) L1HyMixDe, and (k) proposed (CompoHyDen).

Fig. 10. Horizontal mean profile for the layer 205 for Urban dataset. (a) Noisy,
(b) LRTV, (c) LRTDTV, (d) NMoG, (e) LRTFDFR, (f) FGSLR, (g) GLF, (h) 3-
DlogTNN, (i) EnhancedTV, (j) L1HyMixDe, and (k) proposed (CompoHyDen).

mean intensity levels are plotted against the number of rows
in the considered image band. In the graphs of LRTFDFR
and FGSLR, spikes are not smoothed out while L1HyMixDe
and the proposed method generate smoother plots. Similarly, a
plot between the column number and the corresponding mean
intensity levels are obtained in the vertical mean profile (see

Fig. 11. Veritcal mean profile for the layer 205 for Urban dataset. (a) Noisy,
(b) LRTV, (c) LRTDTV, (d) NMoG, (e) LRTFDFR, (f) FGSLR, (g) GLF,
(h) 3-DlogTNN, (i) EnhancedTV, (j) L1HyMixDe, and (k) proposed (Compo-
HyDen).

TABLE II
NO REFERENCE SPATIAL-SPATIAL IMAGE QUALITY ASSESSMENT [59] FOR

URBAN DATASET

Fig. 11). Here, EnhancedTV and the proposed algorithm show
better results while mapping the mean vertical intensities but
GLF and 3-DlogTNN are underperforming.

For images obtained from real hyperspectral sensors, refer-
ence/groundtruth data are barely available. This limits the use
of full-reference image quality assessment metrics like SSIM
and PSNR. Table II lists the no reference spatial-spectral image
quality assessment metric [59] over different methods for the ur-
ban dataset. From the spectral domain, we learn features that are
sensitive to noise and thus, help in understanding the nature and
extent of distortion in the HSIs. These, combined with the spatial
(structural and textural) attributes, help us learn quality-sensitive
traits from the image. These features help frame a multivariate
Gaussian model, which comes in handy in generating a final
quality score for the HSIs without a reference image. A lower
score signifies a better-reconstructed output image. From the
table, the proposed methodology (CompoHyDen) performs the
best, outperforming all of the other state-of-the-art methods,
making it a perfect fit for the scenarios where groundtruth is
unavailable.

D. Discussion

In this section, we analyze the running time of different
methods, followed by sensitivity analysis of the regularization
parameters λ1 and λ2 under different realizations of noise cases
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TABLE III
RUNNING TIME OF DIFFERENT METHODS (IN SECONDS)

on the Cuprite dataset. Furthermore, convergence of the pro-
posed methodology is also undertaken.

1) Running Time Analysis: The efficiency of any algorithm is
estimated based on its running time. Table III gives an overview
of the running time (in seconds) of the proposed algorithm
compared with nine other methods. These results are tabulated
for both the synthetic datasets (Cuprite and ICVL) as well as
the real Urban dataset. On the Cuprite and ICVL datasets, the
proposed method running time is 9.78 and 31.36 s, significantly
outperforming all of the other methods. For example, its running
time is about 27 and 40 times faster than L1HyMixDe on the
Cuprite and ICVL datasets, respectively. However, for the Urban
dataset, FGSLR and L1HyMixDe, with running times of 13.34
and 13.7002, respectively, outperform the proposed method
(43.8530 s). Still, it outperforms 6 out of 9 methods on the
Urban dataset. Pertinent to mention is that all the experiments are
conducted on a PC equipped with MATLAB on the Microsoft
Windows operating system. The hardware resources include an
Intel i7 processor with 16 GB RAM.

2) Parameter Sensitivity Analysis: Regularization of hyper-
parameters can have far-reaching effects on the restoration per-
formance of HSIs, both visually and in terms of the quantitative
metrics. According to (3), λ1 is appended to the priorJ(u)which
in our case is a modified version of TV regularization. On the
other hand, λ2 introduces exact sparsity over the impulse noise
component v. In Fig. 12, we have attempted to obtain the best
values of PSNR and SSIM for different realizations of noise over
the Cuprite dataset by tweaking the values of the scalars λ1 and
λ2. Best PSNRs are obtained from cases 1, 3, 5, and 7, while
best SSIMs are obtained from cases 2, 6, 8, and 9. Values of λ1

for all the cases are varied between 1e− 5 and 1e+ 0.5 while
the values of λ2 are varied between 1e− 3 and 10. The optimal
values of λ1 and λ2 are mentioned in the caption of Fig. 12.

3) Convergence Analysis: The convergence analysis of any
optimization-based image inversion problem must be studied in
order to confirm its efficiency when deployed in a real-world
environment. Therefore, we conducted an empirical study of
the proposed methodology’s convergence speed for different
noise realisations on the Cuprite dataset. The relative change
in the optimal value uk during subsequent passages through the
algorithm is shown in Fig. 13. Noise simulations are shown in

Fig. 12. Optimization of hyperparameters (λ1, λ2) and the corresponding val-
ues of PSNR and SSIM. Case 1: (λ1 = 10e− 2, λ2 = 3), Case 3: (λ1 = 10e−
1, λ2 = 6), Case 5: (λ1 = 10e− 4, λ2 = 3), Case 7: (λ1 = 10e− 3, λ2 =
6), Case 2: (λ1 = 10e− 3, λ2 = 10e− 2), Case 6: (λ1 = 1.5, λ2 = 8), Case
8: (λ1 = 10e− 4, λ2 = 6), Case 9: (λ1 = 10e− 3, λ2 = 8).

the figure for five different cases: cases 1, 3, 5, 7, and 9. The
algorithm converges around the 40th iteration in all of the cases
depicted in the figure. This demonstrates the robustness of the
proposed methodology over a wide range and types of noise
levels. The plot results are in direct agreement with any first
order gradient-based optimization technique where there is large
relative change in the optimal value during the initial iterations.
This starts to stabilize as the solution starts to move towards an
optimal value.

VI. CONCLUSION

This work proposes a novel approach for denoising HSIs cor-
rupted by Gaussian noise, impulse noise, stripes, and deadlines.
Considering that impulse noise is sparsely scattered throughout
the spatial and spectral planes, we initially suggest a rationale for
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Fig. 13. Convergence analysis using relative change (‖uk+1 − uk‖F )/‖uk‖F under optimal setting of λ1 and λ2 for different noise cases for Cuprite dataset.

using �0−norm to model the exact sparsity in the data. Since the
resultant optimization problem is nonconvex and noncontinu-
ous, the problem is reformulated by introducing an auxiliary
variable. To handle the spatial and spectral similarity in the
data, a nonlocal and vectorized representation of TV is used as
a prior over clean estimation. Extensive results are presented
to cover nine different degradation scenarios encountered in
real hyperspectral data over five different spatial and spectral
metrics.

Although the proposed method (CompoHyDen) performs
well on the no-reference metric and has substantially less run-
ning time on the synthetic data than the other methods, its run-
time increases on the Urban dataset. In our future endeavors, we
intend to explore the effect of the sequence of noise simulation
(Gaussian noise followed by impulse noise and viceversa) on
the restoration quality of HSIs. Moreover, for the detection of
impulse corrupted pixels, more robust and accurate methods
need to be developed to achieve the perfect dichotomy of pixels
set into Gaussian and impulse corrupted ones.

APPENDIX A
PROXIMAL EVALUATION OF �∞−NORM

The proximal operator of ‖u‖∞ can be computed using
Moreau decomposition [44] without resorting to estimating
subgradient. Thus, the Moreau decomposition is given by

v = prox f(v) + prox f ∗(v) (28a)

where the convex conjugate f ∗ is given by

f ∗(u) = sup
y
(uT y − f(y)). (28b)

When the given function is a norm, its convex conjugate is an
indicator function. This is based on dual norm, i.e., for f(u) =
‖u‖p ∀p ≥ 1

f ∗(u) = 1‖u‖q≤1(u) such that
1

p
+

1

q
= 1. (29)

The indicator function is given by

1s(u) =

{
0, ; for u ∈ S

∞, ; for u /∈ S.
(30)

In our specific case when f(u) = ‖u‖∞, f ∗(u) = 1{‖u‖1≤1}(u).
Further, we already know that prox f(y) = y = prox f ∗(y).
Thus

proxf ∗(y) = arg min
u

(
1{‖u‖≤1} + ‖y − u‖22

)
. (31)

This is basically a projection on Ł1−ball. The resultant proximal
operator of �∞−norm is given by

proxλ‖ · ‖(y) = y − λProj{‖·‖≤1}
(y

λ

)
. (32)
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