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NSANet: Noise-Seeking Attention Network
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Abstract—Light detection and ranging technology has remained
popular in capturing natural and built environments for numerous
applications. The recent technological advancements in electroop-
tical engineering have aided in obtaining laser returns at a higher
pulse-repetition frequency (PRF), which considerably increased
the density of the 3-D point cloud. Conventional techniques with
lower PRF had a single pulse-in-air zone, large enough to avoid a
mismatch among pulse pairs at the receiver. New multiple-pulse-in-
air technology guarantees various windows of operational ranges
for a single flight line and no blind zones. The disadvantage of the
technology is the projection of atmospheric returns closer to the
same pulse-in-air zone of adjacent terrain points likely to intersect
with objects of interest. These noise properties compromise the
perceived quality of the scene and encourage the development of
new noise-filtering neural networks, as the existing filters are signif-
icantly ineffective. We propose a novel dual-attention noise-filtering
neural network called noise-seeking attention network (NSANet)
that fuses physical priors and local spatial attention to filter noise.
Our research’s fusion module is motivated by two psychological
theories of feature integration and attention engagement to prove
the role of attention in computer vision at the encoding and de-
coding phase. The presented results of NSANet show the benefit of
attentional engagement theory and a performance boost of 7.30%
on recall and 4.10% on F1-score compared to the state-of-the-art
noise-filtering deep convolutional neural networks.

Index Terms—Attention, computer vision, noise-filtering neural
network, physical priors, point cloud, systematic noise.

I. INTRODUCTION

L IGHT detection and ranging (LiDAR) is a critical tool for
mapping natural and man-made environments in military

and civilian applications. Recent advancements in electrooptical
engineering have allowed for high pulse-repetition frequency
(PRF) laser returns, leading to significantly denser 3-D point
clouds. Airborne LiDARs, also known as active sensors, emit
pulses and generate reflections from backscattered signals.

Compared to other data acquisition methods, airborne LiDAR
surveys are faster and more accurate due to their maturity and
the following characteristics: 1) high-density point cloud capture
ability; 2) recording of discrete or full-waveform backscattered
signals, allowing for mapping of ground surfaces, low veg-
etation, and even forest and heavily populated urban areas;
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3) no blind spots in the sensor technology; 4) faster surveys
leading to economical data acquisition; and 5) reduced impact
from extreme weather or environmental conditions on resulting
mapping .

Despite the capabilities of LiDAR to capture the reality of a
scene, the quality can be compromised by unwanted atmospheric
data, referred to as noise [1]. Laser scanner technology has come
a long way since its early days when it could only manage a
few thousand pulses per second (pps) and could only capture
the first and last pulse return with no information on intensity.
Today, thanks to technological progress, laser scanners can
manage up to half a billion pps, allowing for the capture of both
full-waveform and discrete data while accurately measuring the
energy of the reflected signal.

The main goal of developing LiDAR technology has been
to achieve high point density with a relatively smaller mean
point spacing. This objective was driven by the need for fast,
efficient, and detailed data collection, which required a higher
PRF, greater altitude, and an increased scan field of view (SFOV)
for wider coverage. The previous single-pulse-in-air (SPIA)
technology did not meet these requirements [1].

In airborne LiDAR systems, the term “pulse-in-air (PIA)
zone” refers to a maximum unambiguous range, where the laser
pulse propagates through the air before reaching the ground or
target surface, and the next beam is yet to be fired, as shown in
Fig. 3.

The conventional LiDAR technology performs the survey
using an SPIA zone with a lower PRF. In this system, a single
pulse is fired, and the transmitter waits for a time interval of
1/PRF before shooting the next pulse and receiving the previous
signal before it. Fig. 2(a) illustrates that at a certain time, only
one pulse is in the air, such asS2 is not fired beforeR1 is received.
These systems are slow, costly, and have only one operational
range per flight line. Moreover, they generate less detailed data
and have a relatively lower point density [2].

To overcome the limitations of conventional LiDAR technol-
ogy, multiple-pulse-in-air (MPIA) technology was introduced
in 2006. Unlike the SPIA system, MPIA fires multiple pulses
without waiting for them to return. The receiver then matches
the returned signals with all the pulses fired using proprietary
dithering algorithms [3]. MPIA technology is highly config-
urable, allowing intensity and PRF adjustments to acquire more
detailed high-density point clouds. This results in fast cost-
effective gate-less sensors that do not generate blind zones.
These sensors provide multiple operational ranges for a single
flight. As illustrated in Fig. 2(b), at a certain time, there could
be multiple pulses in the air, such as S1 and S2, before R1 is
reflected.
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Fig. 1. (a) SPIA is a traditional technology, which matched the signal sent by a
transmitter (S) and received by a receiver (R) efficiently but was expensive. (b)
MPIA technology improved the cost and speed up the data collection though it
is more prone to atmospheric points, which can be seen overlapping with objects
of interest in (c). (d) Proposed NSANet uses physical priors and spatial attention
to filter noise from the point cloud.

Fig. 2. (a) SPIA zone shows one pulse sent and received before next is fired.
(b) MPIA fires second pulse before first is returned.

The use of MPIA technology in LiDAR systems can be
affected by atmospheric points caused by environmental factors,
such as dust, fog, snow, or rain particles. When the laser beam is
deflected or scattered by these atmospheric particles, it can result
in the misinterpretation of signals on the receiver as objects of
interest, generating noise [4].

Increasing the PRF has a detrimental effect as it narrows the
PIA zones and increases the difficulty of differentiating noise
points from objects of interest. Consequently, the projection of
these noise points can give the impression that they are closer to
the objects of interest and occur during the transition among PIA
zones, as depicted in Fig. 3. This proximity makes distinguishing
the noise points from the objects of interest difficult.

Resolving range ambiguity is crucial in the postprocessing
analysis of acquired data. Range ambiguity arises when the
returned pulses overlap on the receiver. The noise points are
projected onto the ground at the closest possible range to address
range ambiguity. This is necessary because noise points detected
at longer ranges can falsely appear closer to the ground.

Consequently, when the noise points are projected, they can
give the illusion of being closer to the transition zones among
different PIA areas. This phenomenon occurs because the range
ambiguity resolution process places the noise points at ranges
closer to the ground, creating the perception that they are adja-
cent to the transition zones. Fig. 1(c) depicts the compromised
quality of perception due to noise [5].

Our data show variable noise density exhibiting character-
istics, such as complex objects (i.e., trees and bushes). Fur-
thermore, the global systematic noise pattern is localized on
the transition point between two PIA zones and overlaps with
objects of interest. Another major characteristic is imbalanced
class distribution, i.e., noise points making up (1–3)% of the
complete scene.

While the atmospheric returns always subsisted at lower PRF,
we could eliminate them with simple height filtering or nearest
neighboring algorithms [6]. However, more sophisticated filter-
ing algorithms are required once noise begins to overlap with
the key objects and compromise the scene’s semantics.

Deep convolutional neural networks (CNNs) have surpassed
traditional computer vision techniques in recent times [7], [8],
[9], [10]. They can emulate human vision for perceiving 3-D
scenes by extracting complex and deep features to learn patterns
for detection, classification, and semantic segmentation. This in-
spired us to develop a large-scale noise classification deep neural
network that efficiently and robustly filters noise from the point
cloud. One of the key limitations in the existing noise-filtering
literature is that the proposed techniques have not been used to
remove noise from large-scale 3-D scenes [11], [12], [13], [14],
[15], [16], [17]. The remote sensing community mostly treats
noise filtering as an outlier detection problem for noise in 3-D
objects. This neglects the problem most manufacturers face to
remove the noise added in the dithering step due to incorrect
projections of atmospheric points closer to objects of interest.

3-D large-scale point cloud noise-filtering techniques were
not developed largely by the research community due to
the manufacturers’ in-house techniques to filter the noise and
release a relatively cleaner dataset for commercial and academic
use. These techniques were based on height filters and the
support vector machine (SVM), and now, Teledyne Optech is
using the method proposed in this article. This is a preprocessing
technique. Therefore, the major concern for the selection is a
good tradeoff between the speed of inference and the effective-
ness of the network. Our system design was motivated by various
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noise types and physical priors branching into physics-based
deep learning.

As mentioned earlier, noise can be classified into two types
based on localization: local and global. To address this, we
propose a system that fuses these spatial contexts using attention
inspired by human attention phenomena. The basic idea of atten-
tion in computer vision is to withdraw attention from irrelevant
objects and focus on relevant objects by assigning more weight
to relevant features. Different types of attention implementation
exist, such as additive, multiplicative, self-attention, and others.
Our study focuses on using additive and multiplicative attention.

Psychologists have studied the fusion of attention into the
decision-making process and proposed two relevant theories:
feature integration theory (FIT) proposed by Treisman and
Gelade [18] and attentional engagement theory (AET) proposed
by Duncan and Humphreys [19]. FIT backs the fusion of atten-
tion at the encoding and decoding stages, while AET does it only
at the decoding stage. We designed our network using both the
fusion theories.

Our proposed method, the noise-seeking attention network
(NSANet), is a novel prior-based dual-attention noise-filtering
neural network. Our key contributions are as follows.

1) We developed a dual-attention-based noise-filtering neural
network for the large-scale 3-D point cloud.

2) We proposed a dual-attention module, which embeds
physical priors and local spatial attention to guide the
network to activate a global noise pattern and eliminate
ambiguity among overlapping objects.

3) We designed an ablation study focused on the fusion
of attention into a network based on two psychological
theories: FIT and AET.

The following sections discuss related work, motivation,
methodology, experimental configuration, and results.

II. LITERATURE REVIEW

This section will be divided into four parts: 1) introduction
to airborne laser scanning; 2) physical-prior-based network; 3)
noise-filtering networks; and 4) multiscale feature fusion.

A. Airborne Laser Scanning: PIA

Airborne LiDARs are active sensors emitting pulses and
generating backscattered signal reflections. Over the past few
decades, remote sensing technology has progressed, and air-
borne LiDAR surveys have become more common. They are
used to plan for natural and human disasters, which can be
prevented with the aid of this technology. In contrast to other
data acquisition methods and tools, airborne LiDARs are more
efficient, faster, and accurate due to the technology’s maturity
and the following vital characteristics: 1) their ability to capture
an exact and highly dense point cloud; 2) LiDARs can record dis-
crete or full waveform of the backscattered signal, map ground
surfaces, and detect low vegetation even in forests and heavily
populated urban areas; 3) the sensors have no blind zones;
4) surveys are faster, making them an economical data acqui-
sition method; and 5) extreme weather or environmental condi-
tions have a relatively lower effect on the resultant mapping [3].

Point clouds’ digitization using full or discrete waveform has
advantages and disadvantages. Full-waveform digitization cap-
tures vertical structures in a time-series dataset, while discrete
waveform only captures peaks. Since the thesis only utilizes
discrete-waveform-based LiDAR, this section will focus solely
on airborne LiDARs based on discrete waveform technology [3].

The airborne LiDAR system is a complex multisensor device
with various essential components, such as a reflectorless laser
sensor, an airborne inertial measuring unit (AIMU), a global
positioning system (GPS), data storage, and a power supply. As
the system carrier, such as an aircraft or plane, flies over the
area of interest, the laser sensor emits pulses toward the surface.
These pulses travel at the speed of light and reflect to the sensor,
depending on the surface’s reflectivity. This enables the system
to create a highly accurate 3-D map of the area of interest, which
can be used for various applications in fields, such as surveying,
mapping, and environmental management.

After receiving the reflected energy, the sensor calculates a
3-D point based on the distance traveled by the pulse, the sensor’s
position, and the beam’s direction. To track the LiDAR’s position
accurately, the system uses trajectory information from a global
navigation satellite system receiver, which provides altitude
and orientation. In addition, the AIMU records the LiDAR’s
position using pitch, roll, and yaw angles. The LiDAR’s signal
is deflected using an internal mirror, and the mirror’s position is
recorded for every laser pulse shot, as shown in Fig. 4. Finally,
the range between the target and the sensor is calculated using
the Euclidean distance as follows:

R =
√
(xp − xl)2 + (yp − yl)2 + (zp − zl)2 (1)

where xp, yp, and zp are the coordinates of the points and xl, yl,
and zl are the coordinates of the sensor.

Advancements in LiDAR technology have enabled a high PRF
of over half a million kilohertz. The PRF represents the ability
to fire the pulses within 1 s, calculating how many pulses can
travel with the speed of light (c) to the maximum unambiguous
range Rmax in 1 s, as follows:

PRF =
c

2×Rmax
. (2)

This enhances survey efficiency, allowing data acquisition with
fewer flight lines and a wider SFOV. The SFOV is the angle at
which LiDAR emits the pulses, set based on the target applica-
tion and sensor range. Different acquisition techniques have been
used for effective, efficient, and fast surveys. The PIA serves as
the basis for acquisition technology, allowing the measurement
of how many pulses can be in the air at a given time or before the
next one is fired. The PIA zone is the space between the laser and
the target, where a beam travels through before the next pulse is
fired. The number of total PIA zones depends on the following
equation:

PIA =
PRF/(c/2)

Altitude/cos(SFOV)
. (3)

SPIA is a traditional technology that was discarded due to its
inability to match the high PRF. MPIA technology has been



JAMEELA AND SOHN: NSANET: NOISE-SEEKING ATTENTION NETWORK 13711

Fig. 3. PIA zones and projection of objects and noise points on transition.
Rmax shows the range a pulse travels before the next one is fired.

Fig. 4. Airborne LiDAR.

developed, surpassing the limitations of traditional SPIA tech-
nology [4]. This technology ensures the firing of multiple pulses
before receiving the last one, making it efficient and fast, as
depicted in Fig. 3. This thesis largely focuses on the 3-D point
cloud acquired using MPIA technology for noise filtering and
utility semantic analysis.

1) Single Pulse in Air: SPIA is a conventional method for
data acquisition in airborne LiDAR, which is cost effective at
low PRF. SPIA involves discrete data acquisition, firing the next
pulse only when the previous one is received. However, at higher
PRF, SPIA technology struggles to keep up due to its limitation
of allowing only one pulse in the air at a time. This drawback
can lead to missing or corrupted data points, especially at higher

altitudes or higher PRF speeds where the speed of light is not
fast enough to return the pulse before the next one is fired [20].

2) Multiple Pulses in Air: In contrast to SPIA technology,
MPIA technology operates more efficiently by not waiting for a
pulse to be fully reflected and matched before firing the next one,
as illustrated in Fig. 2. However, this efficiency has a drawback—
the laser pulse pairs across PIA zones can result in atmospheric
points being projected closer to or overlapping with objects of
interest. Consequently, the point cloud obtained through MPIA
technology may suffer from compromised scene perception due
to noise.

In the past, when atmospheric returns were present at lower
PRF, they could be easily removed using simple height filters
or nearest neighbor algorithms. However, with MPIA, these
atmospheric points started to mix with the objects of inter-
est, necessitating more sophisticated algorithms for noise fil-
tering. In addition, this technology affects the projection of
wire points in the correct PIA zone during range resolution
for the digitization of the 3-D point cloud. These issues have
encouraged the development of dithering algorithms. Various
companies have employed proprietary algorithms, which are
not disclosed [21]. Hence, the thesis focuses on cleaning the
3-D point cloud obtained through MPIA technology, such as
Teledyne Optech Galaxy T1000, and using it to segment the
utility scenes correctly.

It is important to understand that airborne LiDAR can cap-
ture high-resolution dense 3-D point clouds for survey-grade
applications [22].

B. Physics-Based Learning

Deep learning has significantly improved classification, ob-
ject detection, recognition, and segmentation. However, inte-
grating physical priors and principles into deep learning models,
known as physics-based learning, has shown great potential for
solving some problems [23]. P 3V AE is a generative model
integrating deep learning with physics modeling to learn a
high-dimensional latent space. It has shown improvements for
semantic segmentation by regularizing the feature space [24]. A
self-supervised dehazing algorithm also used physical priors to
generate a lightweight network that outperformed the existing
systems [25]. Despite various physics-based learning models
that target complex scientific problems, there is a research
gap in utilizing physical priors for semantic segmentation and
denoising of 3-D point clouds [26].

C. Noise Filtering

The techniques for noise filtering can be categorized into
four main groups: 1) statistical and geometrical methods;
2) clustering-based approaches; 3) machine learning techniques;
and 4) deep learning algorithms.

1) Statistical and Geometrical Noise Filtering: The statis-
tical filtering techniques used for removing noise from 3-D
point clouds and images include univariate location and scale
estimation, low-pass filters, mean filters, median filters, principal
component analysis, multivariate location, covariance estima-
tion, and spatial filters [27], [28], [29], [30], [31], [32], [33].
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While these filters have been useful for cleaning data collected
using the SPIA technology, they are ineffective and expensive
for large-scale 3-D point clouds with high noise density and
complexity.

Geometrical techniques have traditionally been used for out-
lier detection in 3-D point clouds, such as density [34], dis-
tance [35], graph [36], [37], [38], [39], and probability-based
methods. These techniques were mostly employed for denoising
3-D meshes, models, and sparse point clouds. However, they
have also been transformed into voxelization pipelines, and
density- or distance-based filters have been applied to remove
noise [40]. Bipartite graphs for approximating errors (noise)
and manifold-to-manifold distance-based methods for outlier
detection have shown good performance [41].

Nonetheless, geometrical methods are ineffective and ex-
pensive for large-scale 3-D point clouds with clustered and
complex noise. For instance, the research work in [42] deals
with a large-scale point cloud that contains single-echo reflec-
tion values. It has dealt with multisensor-based point clouds to
remove reflection-based noise. However, it does not work for
MPIA-based LiDAR due to multiple returns.

2) Cluster-Based Noise Filtering: It includes methods such
as the nearest neighbor, radius outlier removal, mean-shift clus-
tering, K-means, and DBScan [27], [43], [44], [45]. However,
these methods require significant memory to construct clusters
that adequately preserve object points while removing outliers
and corrupted points. These work well for datasets with low
overlap with objects of interest but can be resource intensive
when covering each point and performing recursive clustering.
Furthermore, these techniques are commonly used for 3-D point
cloud models rather than large-scale scenes. While some mod-
ifications have been made to run these techniques on GPUs for
a performance boost, they may still not be suitable for handling
large-scale scenes effectively.

3) Machine-Learning-Based Noise Filtering: The emer-
gence of machine learning has brought a significant impact
on data analysis techniques, including the cleaning of 3-D
point clouds. Linear regression, SVM, random forest, and other
methods have been employed by various communities to filter
or eliminate noise [46], [47]. These techniques have proven
successful in preserving the object points while removing ob-
vious noise. However, the tradeoff between maintaining scene
quality and removing noise depends on the application domain’s
analysis. One of the challenges of using these techniques is
the need for feature crafting and selection, which requires a
thorough understanding of the dataset and domain. In recent
years, researchers in noise filtering have explored the use of
CNNs after introducing deep learning for scene understanding.

4) Deep-Learning-Based Noise Filtering: Deep learning in
computer vision has significantly improved segmentation, clas-
sification, reconstruction, and detection. CNNs extract features
from input data and detect decision-making features. They have
shown performance boosts in denoising, surface reconstruction,
densification, noise classification, and filtering. PointCleanNet
[5], PointFilter [48], neural project denoising [49], MaskNet
[50], and CNN-based normal estimation [51] for smoothing
have improved filtering noise using various techniques

through deep neural networks. Recently, the transformer-based
encoder–decoder model has been used to filter noise within
point clouds containing single-echo reflection values [52]. It
converts the point cloud into range images and removes noise.
The work is efficient for single-echo reflective sensors but could
not generate range images for airborne LiDAR using MPIA.
Research is promising and shows potential for noise-filtering
3-D point clouds. The limitation of the previous research work is
the lack of a dedicated network for a large-scale 3-D point cloud.

The existing deep learning methods have demonstrated the
capabilities to remove noise from 3-D objects. The reason is
that their generalization over 3-D large-scale scenes will not be
effective and smooth object segmentation complexities, which
in a large-scale scene can affect the performance of the denoising
network. Most of the proposed networks are based on PointNet,
and they have difficulty generalizing for denoising in large-scale
3-D scenes [17], [53]. They also have a scale sensitivity issue,
which is hard to handle for large-scale noises in complex scenes
as these networks are not built to cater to the global semantic
context, which is key for filtering noise in a 3-D scene. These
methods have also not shown comparable performance on com-
plex and clamped noises.

One of the key aspects is to fuse the global and local contexts
into the network for filtering noise. Our method considers multi-
scale feature fusion and attention to explore the scale sensitivity
for filtering noise better. The next section will discuss attention
and its use in computer vision.

D. Multiscale Feature Fusion

Feature fusion typically serves as a central module in feature
aggregation. These modules necessitate embedding and fusing
features from different scales to integrate context seamlessly into
the deep learning network. Rather than simply concatenating
features from different scales, these fusion modules capital-
ize on attention [54]. This approach enables the selecting of
significant features for enhanced highlighting and performance
improvement in the given task. To gain a deeper insight into
feature fusion using attention, the following section outlines the
attention mechanisms and psychological theories behind fusing
features more effectively incorporating context.

1) Attention: This research explored using attention to em-
bed physical priors into a neural network. Attention is a cognitive
phenomenon that allows humans to focus on certain objects
while ignoring others selectively. In deep learning, attention is a
two-stage process, where the network first extracts features from
the entire input and then emphasizes important details to improve
the accuracy of tasks, such as classification, object detection,
segmentation, and tracking [55]. Attention has been widely
studied and adapted from human vision into computer vision. In
fact, “Attention Is All You Need” [56] was the first publication to
integrate attention mechanisms into natural language processing
and sparked the use of attention in other deep learning tasks.

Over time, researchers have developed and studied
various types of attention mechanisms, such as single head,
multihead, additive, multiplicative, spatial, channel, and fusion
attention [55]—the questions of where and what to attend to
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have been major research areas in this field. For example, spatial
self-attention has improved performance in segmentation and
object detection [10]. In addition, additive self-attention has
been found to work well for ambiguous boundaries among
objects of interest. Psychological theories of attention guide
this thesis. It utilizes a three-stage paradigm to embed physical
priors and domain-based spatial layouts into neural networks for
filtering noise and understanding large-scale 3-D point clouds:

1) a context-independent extraction of low-level features;
2) modeling relationship and analysis of low-level features

are based on the computer vision task;
3) focus on relevant regions based on earlier stages of ex-

tracting high-level features for the final task [57].
Research focuses on understanding this fusion of attentional

theories to propose the most appropriate embedding technique
of physical priors into the deep learning model.

2) Attentional Engagement Theory: AET, as introduced by
Duncan and Humphreys [19], outlined the attention process into
two distinct stages: 1) the preattentive stage, where features are
extracted without focal attention, and 2) the selective attention
stage, where these features are intensely and focused upon to
facilitate decision making.

In the realm of computer vision and deep learning, this theory
can be translated into a two-part model, where, initially, an
attention-free encoder processes features from the input data.
This corresponds to the preattentive stage of AET, where features
are detected without attentional focus. Such an encoder would
scan the entire dataset, identifying potential interest features
without determining their significance or role.

Subsequently, the selective attention stage of AET is mirrored
in the form of an attention-based decoder. This model component
is designed to selectively concentrate on the features encoded
by the first stage, applying intense focus to discern patterns,
make connections, and ultimately assist in decision making.
This could manifest as a network that, having encoded various
features, now applies a “filter” to decide which features are
most pertinent to the task, such as segmenting specific structures
from a medical image or identifying objects within a complex
scene.

The principles of AET are exemplified in deep learning archi-
tectures, such as the Attention 3-D U-Net [10]. These networks
leverage attention mechanisms to enhance the feature selection
process during the decoding phase, ensuring that the network
pays “attention” to the most informative parts of the data for
accurate segmentation or detection.

Incorporating AET into deep learning models provides a
framework that can handle complex noisy datasets by mimicking
the human attention process—initially surveying and extracting
a broad array of information and then honing in on the most
critical features for the task. This allows for more precise and
relevant feature utilization in object detection and segmentation
tasks.

3) Feature Integration Theory: According to FIT, proposed
by Treisman and Gelade [18], the visual system processes indi-
vidual features, such as color, shape, and size in a parallel and
preattentive manner. However, integrating these features into a
coherent object perception requires focused attention.

In the scope of this thesis, the theory is operationalized
through the design of an attention-based encoder and decoder
framework. The encoder emulates the preattentive stage, cap-
turing and encoding disparate features independently. These
features are processed in parallel, akin to the initial stage of
visual processing, where the brain registers various attributes of
objects.

Conversely, the decoder embodies the attentive phase of FIT.
It employs an attention mechanism to focus selectively on certain
encoded features, integrating them to construct a complete and
recognized object or scene. This selective attention in neural
networks is modeled after the cognitive process, where attention
binds disparate features into a singular identifiable form.

To apply this to a deep learning model, one could employ an
attention mechanism that echoes the selective focus of attention.
For example, convolutional layers in the attention-based encoder
could detect a wide array of features within input data. At the
same time, the decoder, through an attention mechanism, would
prioritize and fuse these features based on their relevance to
the task—such as enhancing the clarity of 3-D point clouds by
filtering out noise.

By integrating this selective focus into the neural network, it
could be trained to identify and highlight features that are critical
for specific outcomes, thereby enhancing the model’s ability to
discern and prioritize information in complex datasets, much
like the human visual system’s proficiency in focusing on salient
features in a visual scene.

III. MOTIVATION

The latest technological advancements and environmental
surveys often produce unwanted noise. To address this issue,
our network uses the physical properties of sensors and mapping
principles to filter out noise. Our design process involved two
crucial studies: 1) data analysis and 2) physical priors.

A. Data Analysis

The first study identified the essential characteristics of a
dataset. The following sections will discuss the findings and
key features of the study.

1) Density: Determining the varying density of noise points
across a scene is vital to our network design because it
can be challenging to distinguish between foreground and
noise. The noise points are not uniformly distributed and
can appear in clusters, resembling complex objects, such
as trees or bushes, while others are sparsely dispersed.

2) Localization: The dataset also reveals another distinguish-
ing characteristic of noise points: their localization. As
mentioned, many noise points are projected at the tran-
sition point between two PIA zones. These atmospheric
points exhibit a systematic global pattern that can be either
dense or sparse, depending on the environmental condi-
tions of the surveying area. Interestingly, this recurring
noise pattern can be close to the objects of interest in some
cases, while in others, it is found below the terrain.
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Fig. 5. Three noise types: 1) complex; 2) sparse noise; and 3) global system-
atic.

3) Distribution: The PIA zones are narrower because of the
higher PRF, which results in atmospheric points over-
lapping with the foreground. This phenomenon is par-
ticularly noticeable in areas with trees, bushes, build-
ings, power lines, and, occasionally, even the terrain.
Despite this, the atmospheric points account for only a
small percentage (1–3%) of the overall foreground in the
dataset.

B. Physical Priors

We conducted an extensive analysis to investigate various
aspects of noise data points, such as their distribution, projection
near the PIA transition zone, clustering with objects of interest,
and how they affect the perceived quality of the scene [58]. The
range ambiguity resolution of noise points results in projecting
noise on the transition among PIA zones. Hence, our network
leverages this physical information, including PIA, PRF, and
flight trajectory, to calculate the proximity of each point to
the PIA transition zone. These proximity data are then used to
generate a heatmap that indicates the probability of a point being
a noise. The heatmap serves as a physical prior or external cue,
enabling our network to effectively incorporate global context
and filter out noise.

Based on these studies, we identified three types of noise, as
illustrated in Fig. 5. This categorization motivated us to propose
a design integrating physical priors to filter out noise.

1) Complex noise: This type of noise shares similar charac-
teristics with trees and bushes and often appears in clusters
that overlap with objects of interest.

2) Sparse noise: It consists of outlier and sparse noise points
located far away from the terrain and objects of interest.

3) Global systematic noise: This noise type exhibits a dense
or sparse distribution and follows a parabolic systematic

pattern localized at the transition point among PIA zones
(refer to Fig. 5).

IV. METHODOLOGY

NSANet is a physical-prior-based deep neural network for
noise filtering that employs a multiresolution approach and the
dual-attention mechanism. Our network is designed to address
all three types of noise mentioned earlier. We utilize spatial
and physical-prior-based attention to reduce ambiguity in dis-
tinguishing between noise and non-noise objects, as proposed
in [10]. Our design has three major components: 1) a multires-
olution encoder–decoder structure, which targets sparse noise
spread out as outliers; 2) a dual-attention module that focuses on
physical priors or global attention to address global systematic
noise; and 3) local spatial attention that targets the ambiguous
boundaries between complex noise and objects of interest. In
this context, we will highlight the significance of the fusion of
the attention module in the encoder and decoder blocks based
on the AET and FIT.

A. 3-D Noise-Filtering Neural Network

The NSANet architecture, depicted in Fig. 6, is a U-shaped
multiresolution encoder–decoder structure that utilizes a 3-D
voxel grid to learn deep features for noise labeling and filter-
ing [9]. We opted for a voxel-based architecture based on a
comparative study, which demonstrated that 3-D voxel-based
networks outperform point-based networks (such as PointNet [7]
and PointNet++ [8]) in terms of efficiency and performance for
all types of noise. Point-based networks fail to cater to global
systematic and complex noise and are also slow compared with
voxel-based networks. One of the key reasons for selecting the
voxel-based approach is its ability to deal with spatial hierar-
chies, which is essential for this specific problem due to the
requirement of feature extraction from multiscale contexts for
noise filtering.

The network encodes four feature maps of different resolu-
tions, denoted byE1,E2,E3, andE4. The first few layers extract
essential low-level features, while deeper layers extract more
sophisticated features. En decodes feature map Dn using local
spatial additive attention between Dn−1 and En, followed by
multiplicative attention using the physical prior probability map
Pn. This process is then followed by two 3 × 3 × 3 convolution
operations, batch normalization, and ReLu activation. The out-
put consists of three feature maps, i.e., D1, D2, D3, each with
dimensions H

2l × W
2l × D

2l × 32l, where l represents the number
of layers. These feature maps are trained to focus on all three
types of noise at multiple receptive fields, integrate global re-
ceptive fields through global attention, and subsequently remove
noise points.

1) Physical Prior Estimation (PPE) Module: The attention
module in our network requires a physical prior to accurately
estimating global attention. We utilize the speed of light (c) and
PRF to estimate the maximum LiDAR range (Rmax). In addition,
the system takes the minimum and maximum GPS time (Pmingt

and Pmaxgt) recorded from the 3-D point cloud to determine
the position (Tmatch) of the sensor during a specific time. The
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Fig. 6. NSANet-1 based on AET. It uses a PPE module to generate a PIA proximity probability map converted into a voxel grid and downsample by a factor of 2.
The multiresolution encoder–decoder structure uses a DDA module to eliminate noise based on local and global contexts. The VPP module eliminates borderline
misclassification of noise points.

Fig. 7. Estimated physical priors: Physical prior probability is calculated using
Algorithm 1. The higher the proximity to the PIA transition zone, the higher the
probability of the point being part of a global systematic noise pattern, as shown
with red color.

Algorithm 1: Physical Prior Estimation Module.
Input: PRF , c, Pn, Tl, N , NT

n = 1, 2, 3, . . ..., N, l = 1, 2, 3, . . .. . ., NT Pmingt, Pmaxgt

RMAX = c
2×PRF

while l ≤ NT do
Tmatch = Tl ≤ Pmingt and Tl ≥ Pmaxgt

end while
while n ≤ N do
Tm = ‖Pgt − Tmatch‖ < 1e− 2

Rn =
√

(Pn − Tm)2

PIAn = ceil( Rn

Rmax
)

R
[n]
obs = RnmodRmax

Probn = Robs/Rmax

end while
return Prob

trajectory of the flight (Tm) and 3-D point clouds (Pn) are used to
estimate the range of each shot (Rn). Then,Rmax andRn are used
to calculate their respective PIA zones (PIAn). Furthermore,
PIA zones, Rn, and Rmax are utilized to compute the observed
range (Robs) beyond PIA zones, which is then translated into a
probability map based on the distance from the transition point
(Probn). The closer a point is to the transition among PIA zones,
the higher the probability it is part of the parabolic systematic
noise pattern, as shown in Fig. 7.

In Algorithm 1, N is the total number of raw input points and
NT is the total number of shots in flight trajectory.

2) Decoder Dual-Attention (DDA) Module: Shallow ma-
chine learning architectures or denoising autoencoders
(DAEs) [59] can easily label sparse noise. However, complex
noise often exhibits similar characteristics to objects of interest,
making it difficult to distinguish between the two due to the
distribution of points and shape variance. This ambiguity can
lead to an overpopulation of false positives. We use local addi-
tive attention gates to address this issue, which handles spatial
ambiguities, reduces misclassification, and suppresses irrelevant
features when labeling complex noise. Global systematic noise
patterns have been one of the most challenging problems in
noise filtering. However, after careful study, we discovered that
they only occur close to the PIA transition zone. Hence, the
physical prior’s heatmap from the PPE module embedded this
information as global multiplicative attention. This attention
mechanism focuses on global systematic noise patterns.

This novel attention model distinguishes itself from the ex-
isting attention mechanisms by seamlessly integrating both
additive and multiplicative attention, thereby facilitating the
imposition of local and global contexts. This model incorporates
a broader context, unlike conventional approaches that solely
compute similarity maps through skip connections and hidden
layers. This extended context is advantageous for mitigating
ambiguous boundaries in local regions and activating pertinent
global regions, contributing to a more comprehensive under-
standing of the data

qladd = σ1(Wxx
l
i +WHxl

i + bH). (4)

These attention gates take input from the previous layer of the
decoder (Dl−1) for Dl, as shown in (4); WHxl

i represents the
weight of decoder tensor hl−1, and bH is bias

qlmul = (qladd ×Wpx
l
i). (5)

The encoder feature map of the same level (E2), as shown
in (4), is denoted as Wxx

l
i and the prior probability map of

the same level (P2) presented in (5) is denoted as Wpx
l
i. To

calculate the local spatial attention to target complex noise,
(4) is used to perform the additive operation, and then, σ1 is
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Fig. 8. Dual-attention module calculates attention coefficient based on the
local and global feature maps. The local feature map from the encoder xl and
the previous layer of the decoder or encoderhl−1, and global feature map comes
from physical priors gr , which are calculated based on the global positioning of
each point in the point cloud from the PPE module.

Algorithm 2: Voxel Postprocessing Module.
Input: Vn = 3D voxel_grid, t = threshold,
w_size = slidding_window_size, n = 1, 2, 3, . . ..., N

while n ≤ N do
If Vn[occupancy] > 0 and Vn[occupancy] ≥ t is true
max_label = maxpool(Vn, wsize)

If Vn[label] notequal max_label
Vn[label] = max_label
end If

end If
end while

return V updated
n = Vn

used to reflect ReLu operation σ1(x) = max(0, x). The output
qladd is then used to generate multiplicative attention of global
physical-prior-based attention using (5)

qladd_mul = ϕT (qlmul) + bϕ. (6)

An multi-layer perception (MLP) with 1× 1× 1 generated a
dual-attention tensor with bias bϕ in (6)

αl
i = σ(qladd_mul(x

l
i, g

l
r, hl−1; Θi)). (7)

The output qladd_mul for each layer l is then normalized using
sigmoid operationσ2(x) =

1
1+e(−x) . This operation generates an

attention coefficient (α), which is used to take an elementwise
summation with the feature map E2, as shown in Fig. 8 and (7).

3) Voxelization: To prepare the 3-D point cloud for input into
the NSANet architecture, we represent it as a voxel grid. Raw
point cloud data are preprocessed onto the voxel grid, and a mean
is calculated to represent all the points within each 3-D voxel.
The network also maintains a projection matrix from the voxel
grid to the raw point cloud, making it easy to project labels.
Choosing an appropriate voxel size provides a tradeoff between
efficiency and effectiveness.

In Algorithm 2, N is the total number of voxels.
4) Voxel Postprocessing (VPP) Module: This module is an

optional postprocessing component designed to refine the pre-
dictions made by NSANet. The VPP module algorithm can be
seen in Algorithm 2.

1) VPP takes the input of the predicted labels of a voxel grid
Vn with dimensions (V x, V y, V z, C).

2) It also requires parameters such as the threshold t for the
occupancy of noise points in each voxel and a sliding
window size (wx, wy, wz) to determine the neighborhood.

3) The module iterates over all voxels and checks if the oc-
cupancy is greater than zero but lower than the configured
threshold t.

4) If the condition is met, it applies a maxpool operation with
a sliding window of size (3 × 3 × 3) on the voxel grid.

5) It checks if the maximum value of the label is equal to
the label at the center of the window. For example, if the
max-pooled value is 2, the module verifies if it matches the
label assigned by NSANet. If a label mismatch is detected,
the module assigns the max-pooled label.

6) This process is repeated for the entire voxel grid, resulting
in an updated 3-D voxel grid V updated

n .

V. EXPERIMENTS

We conducted several experiments to validate our hypothesis.
Our first ablation study compared the performance of NSANet-1,
NSANet-2, and NSANet-3 with baseline while keeping two
input features of occupancy points per voxel (Occ.) and mean-Z
(MZ) and weighted cross-entropy (WCE) loss function. Af-
ter finding optimized settings from this Ablation study, we
conducted feature engineering. This suggests that employing
a smaller set of features, as opposed to a limited number of
manually designed geometric features, can lead to improved
performance both quantitatively and in terms of efficiency.
We conduct a loss- and attention-based ablation study to ob-
tain the best NSANet configuration and optimal feature input.
Furthermore, our research conducted a comparative analysis
that supports our decision to utilize a voxel-based network for
noise-filtering neural networks. The experiments evaluate test
sets specifically designed to assess the noise class. The tables
presented in this section display the best performance factors,
which are highlighted in bold numbers.

A. Dataset

We employed a Teledyne Galaxy T1000 laser scanner to
collect data, covering an area of 13km2. The collected data were
subsequently divided into train and test sets for our experiments.
Specifically, the first 4km2 of the dataset was allocated for testing
purposes, while the remaining data were utilized to train our
network.

Within the dataset, 14 distinct scenes did not overlap, en-
compassing over five million points on average, with a den-
sity of approximately 30 pp/m2. To establish the ground truth,
Teledyne Optech employed Terrasolid point cloud processing
software [60] to label the data. These labels were generated
based on extensive domain knowledge and technical expertise.

Our training dataset had two classes, i.e., noise and non-noise,
which allowed us to train our network effectively.

B. Experimental Configuration

The dataset undergoes a split of 70% and 30% for training
and testing, respectively, with the training set further divided
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Fig. 9. NSANet-2 adapted FIT by employing the attention module in the encoder as well. The first variation contains only local attention in encoder layers called
the encoder single attention (ESA) module.

into training and validation sets (80% and 20%, respectively).
Subscenes based on the GPS time of the flight line are generated
within each scene, and a voxel grid of 64 m × 64 m × 64 m is
created for each subscene. Features include mean absolute ele-
vation (MZ) and the number of occupied points (Occ.). NSANet
outputs confidence scores for noise and non-noise classes, with
the final prediction determined by the highest confidence score.
Postprocessing techniques enhance accuracy.

NSANet training involves 90 epochs on two GPU RTX 6000
units, utilizing the Adam optimizer with a learning rate of
α = 0.0001 and a 0.8 decay rate for every 100 000 steps through
a staircase learning rate schedule. Inference takes 2–3 min, and
precision, recall, and F1-score assess performance. PointNet and
PointNet++ use a 1-m3 partition size, training for 90 epochs on
two GPU RTX 6000 units with a learning rate of α = 0.001,
and a 0.7 decay rate for every 200 000 steps via a staircase
learning rate schedule. SVM training involves voxelization,
grouping 100 points using voxels, and extracting features like
the number of neighboring points, mean elevation, and geo-
metric features (omnivariance, eigentropy, anisotropy, planarity,
linearity, surface variation, sphericity, and verticality). The SVM
is trained with a soft-margin radial basis function kernel of
gamma = 0.05.

C. Evaluation Matrices

We selected precision, recall, and F1-scores to evaluate our
network’s performance as noise is in the minority class. The
precision determines the total number of predicted noise or
non-noise out of the total instances of the class, as shown in (9).
Recall measures correctly predicted samples out of the total
number of predicted samples of the specific class, as shown
in (8). The F1-score shows the balance between precision and
recall, as shown in (10). The reason for selecting these evaluation
metrics is that the noise-based evaluation metrics, such as peak
signal-to-noise ratio or structural similarity index, do not apply
to point clouds as these are for image denoising. However,
distance-based evaluation metrics, such as Chamfer distance,
earth mover’s distance, and fidelity metrics, are insufficient for

evaluating the performance of binary classification of noise and
non-noise points

Recall =
TP

TP + FN
(8)

Precision =
TP

TP + FP
(9)

where TP is true positive, FN is false negative, and FP is false
positive

F1-score = 2× Precision × Recall
Precision + Recall

. (10)

VI. RESULTS AND DISCUSSION

A. NSANet Ablation Study

Our ablation study introduced a dual-attention module in the
encoder and the decoder based on our interpretation of FIT and
AET. Through a series of experiments, we validated that the im-
plementation of NSANet-1, as depicted in Fig. 6, which focuses
on utilizing attention during the decoding stage, outperformed
the variations of NSANet-2 and NSANet-3 illustrated in Figs. 9
and 10. This outcome confirms that the network effectively
leverages the principles of attentional theory as exemplified by
AET, thus experimentally validating its usability. The results
presented in Table I highlight that incorporating attention mech-
anisms during the feature interpretation stage to filter noise is a
superior strategy for addressing this problem. It also validates
the human vision principle of paying attention to the decoding
stage instead of the data extraction stage, as it gives balanced
results. At the same time, NSANet-2 has more omission errors,
and NSANet-3 has more commission errors. Noise filtering does
not benefit from overly aggressive or conservative networks.

B. Feature Engineering

The input features for deep learning networks are crucial for
learning. Initially, the experiment is configured to select a palette
of features, including Occ. and MZ, for the NSANet-1 ablation
study. The mean elevation for each voxel was calculated based
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Fig. 10. NSANet-3 adapted FIT by employing the attention module in the encoder as well. This variation contains dual attention in encoder layers called the
encoder dual-attention (EDA) module.

Fig. 11. Visualization shows scenes with high vegetation comparing baseline performance with WCE loss and NSANet-1-variation-employed AET and WCE
loss. Red shows the misclassification of noise points, and white reflects non-noise points.

on the z values of the points within the voxel, enhancing the
network’s ability to learn the vertical geometry of the scene
(see Table II). For the proposed NSANet-1, which incorporates
physical priors and spatial attention, training was conducted
using a single channel, surpassing the performance of the base-
line, achieving a recall of 72.5%, a precision of 85.4%, and an

F1-score of 0.789%. Subsequently, MZ was added to the feature
channels alongside (Occ.), which improves the performance on
recall by 14.8%, precision by 7.5%, and F1-score by 0.111%.
The final results in Table II highlight the importance of absolute
elevation as a discriminating feature, especially due to the dis-
tinctive noise distribution in the elevation dimension. Most of
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Fig. 12. Visualization shows scenes with low vegetation comparing baseline performance with WCE loss and NSANet-1-variation-employed AET and WCE
loss. Red shows the misclassification of noise points, and white reflects non-noise points.

TABLE I
ABLATION STUDY OF MODULES FOR NSANET TO COMPARE THE PERFORMANCE OVER RECALL, PRECISION, AND F1-SCORE

TABLE II
ABLATION STUDY ON IMPORTANCE OF FEATURE ENGINEERING FOR OPTIMIZED NSANET-1 OVER RECALL, PRECISION, AND F1-SCORE
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Fig. 13. Comparison of attention modules and their impact on F1-score, recall,
and precision for noise filtering.

Fig. 14. Cumulative score of SOTA for noise filtering. It shows that the
NSANet outperforms existing SOTA.

the noise annotation is performed through 2-D vertical profiling.
Thus, the feature combination of mean elevation and occupancy
points will be used in all the NSANet-1 experiments.

C. Loss Functions

The research employed the cross-entropy (CE) loss, which is
commonly used for segmentation problems

CE =

[
−

C∑
i=1

yi log(pi)

]
. (11)

Fig. 15. Comparison of point- and voxel-based networks. Red represents noise
points, and blue represents regular points. PointNet has more misclassification
of noise points closer to the ground than regular points.

Fig. 16. Comparison of SOTA based on inference time for 1 million points.

In (11), y represents the true label, p is the predicted probability
for the positive class in binary classification, pi is the predicted
probability for class i in multiclass classification, and C is the
number of classes. Then

WCE = − 1

N

N∑
i=1

C∑
c=1

wc · yi,c · log(pi,c) (12)

where N represents the total number of samples, C denotes
the number of classes, wc signifies the weight assigned to class
c, yi,c is the true label for sample i and class c, and pi,c is
the predicted probability for sample i and class c. However,



JAMEELA AND SOHN: NSANET: NOISE-SEEKING ATTENTION NETWORK 13721

TABLE III
ABLATION STUDY ON IMPORTANCE OF LOSS FUNCTION OVER RECALL, PRECISION, AND F1-SCORE

TABLE IV
ABLATION STUDY OF GLOBAL, LOCAL, AND DUAL-ATTENTION MODULES IN THE REFERENCE TO THE DDA MODULE IN FIG. 8 TO COMPARE PERFORMANCE

ADVANTAGE OVER RECALL, PRECISION, AND F1-SCORE

TABLE V
COMPARISON OF NSANET FOR NOISE FILTERING WITH SVM, DAE, 3-D
U-NET, POINTNET++, AND POINTNET OVER RECALL, PRECISION, AND

F1-SCORE FOR NOISE CLASS

this specific problem necessitated using a WCE loss, as shown
in (12). This was due to the significant class imbalance in the
dataset, making it crucial to assign appropriate weights. The
introduction of class weights proved highly beneficial and led to
a substantial improvement in performance, as demonstrated in
Table III. The results show that the performance for the noise
class was best when WCE is used with the recall of 87.3%,
the precision of 92.9%, and the F1-score of 90.0%. To explore
alternative optimal loss functions, a few tests were conducted
using focal loss (FL), as shown in the following equation, to
assess its impact on performance:

FL(pt) = −αt(1− pt)
γ log(pt) (13)

where pt is the predicted probability of the true class, αt is the
FL balancing factor, and γ is the focusing parameter. In addition,

TABLE VI
COMPARISON OF NSANET FOR COMPUTATIONAL PERFORMANCE WITH SOTA

the specific distribution and characteristics of the noise and non-
noise classes in data have not been effectively addressed by FL
exhibiting recall decrease by 11.1%, precision by 2.2%, and F1-
score by 6.6%. Therefore, WCE loss significantly outperformed
FL, confirming its superiority in this problem domain.

D. Attention Ablation Study

Furthermore, another ablation study assessed the significance
of global, local, and dual-attention modules. The findings pre-
sented in Table IV and Fig. 13 demonstrate that integrating phys-
ical priors yields a relatively higher performance improvement
of 85.2% recall, 91.6% precision, and 0.884% F1-score com-
pared to using only local attention, which shows a performance
decrease of 4.71% recall, 0.4% precision, and 0.022 F1-score.
However, the dual-attention module plays a critical role in
effectively eliminating noise from the point cloud, facilitating
comprehensive scene understanding with an F1-score of 0.900.
These experiments have effectively validated the importance of
physics-based deep learning approaches for computer vision
tasks. This ablation study shows that despite local attention’s
ability to deal with ambiguous territories between noise and
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TABLE VII
ABLATION STUDY BASED ON THE VPP MODULE AND COMPARED PERFORMANCE OVER RECALL, PRECISION, AND F1-SCORE

objects of interest, it fails to deal with global systematic patterns.
Therefore, global attention fused with local attention works
best for removing noise. Qualitative analysis of attention fusion
shows that every attention module plays an important role in
removing noise points. Point-based graph shows how global at-
tention improves results more than local attention, but an overall
performance boost is achieved by including both modules as dual
attention.

E. Comparative Study

We conducted a comparative study based on an extensive
literature review. The selection of existing deep learning net-
works for noise filtering was not chosen due to their inability
to deal with 3-D large-scale point clouds. We selected the
models used for semantic segmentation of the 3-D point cloud
due to their ability to deal with large-scale data and multi-
scale objects and integrate larger contexts. Considering these
limitations, various models, including SVMs, DAE, PointNet,
PointNet++, 3-D UNet, Attention 3-D UNet, and multiview-
based 2-D UNet, as shown in Table V, were selected for
noise filtering. The results of each model are summarized as
follows.

1) The SVM was trained to balance preserving objects
of interest and eliminating noise points. It achieved an
F1-score of 0.501 for the noise class.

2) DAE, which focuses on denoising reconstruction, outper-
formed SVM with a relatively higher F1-score of 0.697
for the noise class

3) PointNet [7], a pioneering network that directly processes
3-D point cloud data, performed better than DAE but
struggled with complex noise and lacked global context,
multiresolution, and local contextual features and shows
the F1-score of 0.805. Fig. 15 shows the superior perfor-
mance of the voxel-based network.

4) PointNet++ [8] was also tested but did not yield satisfac-
tory results (F1-score 0.740).

5) The 3-D U-Net model with WCE loss was selected as
the baseline. It utilized a multiresolution encoder–decoder
structure to incorporate more context and exhibited ex-
ponentially improved performance on the noise class by
exhibiting a recall of 77.9% and F1-score of 0.841.

6) It further compared the performance of attention 3-D
U-Net and multiview-based 2-D U-Net. The 2-D U-Net,
which took two views as input, showed comparable per-
formance to the attention 3-D U-Net by exhibiting the

F1-score of 0.859 and 0.862. The 2-D U-Net has a limi-
tation as the view selection can be tedious and dependent
on the dataset. However, attention 3-D U-Net exhibited
aggressive noise classification, misclassifying non-noise
as noise, while the 3-D U-Net with CE loss demonstrated
generally poor performance.

Based on the insights gained from these experiments, we
concluded that our system, which incorporates global and lo-
cal contexts through attention mechanisms embedded in the
network, works effectively. This approach led to significant
performance enhancements, as demonstrated in Table IV. Unlike
other networks that displayed better precision but lower recall
and F1-scores, our model achieved a balanced performance
across all metrics, as shown in Fig. 14.

F. Computational Performance

Our comparative evaluation underscores the superior compu-
tational efficiency of the NSANet architecture, a voxel-based
neural network. This assessment, illustrated in Fig. 16, bench-
marks the performance of NSANet against other state-of-the-
art (SOTA) networks by measuring the time it takes to infer
information from 1 million data points. Table VI showcases
our findings, with NSANet significantly outpacing its counter-
parts at an inference speed of 1.98 s for the given data size.
Point-based networks, such as PointNet and PointNet++, lag
behind, with inference times of 36.32 and 29.29 s, respectively,
while RandLA completes the task in 9.10 s. NSANet’s rapid
inference capabilities could be beneficial for a range of practical
applications that require efficient noise filtering.

In this study, the architecture of NSANet has been refined
from its original baseline, resulting in a reduction of parameters
when compared to the standard 3-D U-Net. However, it employs
a relatively high number of trainable parameters at 4.0 million.
This figure is indicative of the network’s complexity and the
computational resources required, which may present a limi-
tation in certain use cases. Despite this, the architecture offers
a significant advantage in processing speed and noise-filtering
capability, which are often critical considerations in practical
applications. The optimization of the NSANet design balances
this tradeoff, leveraging a higher parameter count to achieve a
level of accuracy and efficiency that may justify the increased
computational demand in scenarios where rapid processing is
prioritized.

Nevertheless, future work could focus on parameter reduction
strategies without compromising the network’s performance to
enhance its applicability in resource-constrained environments.
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It is worth mentioning that the inclusion of RandLA in our
comparison provides a broader context for evaluating NSANet’s
performance. RandLA’s noise-filtering capabilities were not ex-
plicitly tested in our study due to the limitations of point-based
networks in noise management and their challenges to classify
overlapping classes in semantic segmentation tasks. However, it
remains pertinent to demonstrate NSANet’s competitive advan-
tage in terms of inference efficiency.

G. G. Error Analysis and VPP Module

Our research has shown advancements in noise filtering,
surpassing the SOTA methods, as illustrated in Figs. 11 and 12.
It is important to highlight that our work draws inspiration
from semantic segmentation and denoising research. Filtering
noise from large-scale 3-D point cloud data captured by airborne
LiDAR remains a challenging problem with limited existing so-
lutions. However, there are certain scenarios where our network
encounters difficulties in filtering noise, particularly in cases
where the distribution of objects of interest closely resembles
noise or overlaps with it. These challenging instances serve as
hard examples and contribute to a performance gap. To address
this, we have incorporated a VPP module, which significantly
enhances the network’s performance by 11.6% (recall), 3.2%
(precision) and 7.5% (F1) by considering neighboring voxel’s
confidence. Detailed information regarding the impact of VPP
can be found in Table VII.

VII. CONCLUSION

This study introduced an innovative dual-attention NSANet
model that leverages physical priors and local spatial attention
for effective noise filtering. Through our extensive experimental
ablation study, we demonstrated that incorporating global and
local contexts as attention mechanisms can effectively address
the challenges posed by overlapping objects and remove sys-
tematic global patterns and sparse noise. Furthermore, our study
provided evidence that integrating global context enhances scene
understanding. These experiments validated our conceptual in-
spiration and confirmed the hypothesis behind our two-stage-
based FIT, which incorporates physical priors into the network.
Importantly, our results showcased that this integration signifi-
cantly improves noise-filtering performance. NSANet exhibited
impressive capabilities and efficiency in handling large-scale
point clouds captured by airborne LiDAR scanners. Unlike other
models, our approach consistently performed well across all
evaluation metrics. Moving forward, our future research will
focus on exploring point-based neural networks and advancing
the learning of physical priors to enhance noise removal capa-
bilities further.
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