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Abstract—The atmospheric infrared ultraspectral sounder
(AIUS) is China’s first infrared occultation spectrometer onboard
the GaoFen-5 satellite. This instrument provides measurements in
the near-infrared and mid-infrared spectral regions with a spectral
resolution of 0.02 cm−1, monitoring key greenhouse gases like
methane (CH4). In this study, we have developed a physics-based
retrieval algorithm for accurately deriving CH4 mole fraction
profiles from infrared absorption spectra. The retrieval algorithm
is applied to the AIUS and successfully obtains CH4 mole frac-
tion profiles from January to December 2019 over Antarctic. The
validation results show that the retrieval algorithm has a satisfac-
tory performance using AIUS measurements, with average relative
standard deviation of the differences less than 7.2% throughout the
altitude range of 10–70 km.

Index Terms—Antarctic, GaoFen-5 (GF-5)/atmospheric infrar-
ed ultraspectral sounder (AIUS), methane (CH4), retrieval
algorithm.

I. INTRODUCTION

M ETHANE (CH4) is a chemically and radiatively active
gas in the atmosphere and is the second most important
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anthropogenic greenhouse gas after carbon dioxide (CO2) [1].
Before the 1970s, scientists measured atmospheric CH4 con-
centrations by analyzing air trapped in polar ice cores. Direct
measurements of CH4 in the troposphere began in 1978 [2], [3].
Currently, CH4 concentrations can be obtained through discrete
air samples collected at the ground surface, as well as through
remotely sensed measurements of atmospheric CH4 columns
obtained from the ground surface or space. According to data
from the National Oceanic and Atmospheric Administration,
the global annual concentration of CH4 has been constantly
changing since 1983. These data indicate a sustained increase
in atmospheric CH4 concentrations in the 1980s, a stable period
between 1999 and 2005, and generally rapid growth after 2005.
In 2022, the concentration of CH4 reached 1911.83 ± 0.59
ppb [4].

Compared to traditional methods based on ground-based ob-
servations or air sampling, satellite measurements have several
advantages, including stability, continuity, large-scale coverage,
and convenient access to globally spatiotemporal distribution.
Satellite remote sensing has become a major tool over the
past decades for monitoring greenhouse gases, such as CH4

and CO2. In 1979, the stratospheric and mesospheric sounder
on the Nimbus-7 satellite measured the global distribution of
stratospheric CH4 concentration for the first time [5]. Afterward,
several satellite sensors have been launched to measure the
vertical column densities and concentration profiles of CH4.
The CH4 column densities can be retrieved from near-infrared
radiance measured by instruments, such as the scanning imaging
absorption spectrometer for atmospheric chartography [6] and
the tropospheric monitoring instrument [7]. The instruments,
such as the Michelson interferometer for passive atmospheric
sounding [8], the atmospheric infrared sounder [9], the atmo-
spheric chemistry experiment—Fourier transform spectrometer
(ACE-FTS) [10], and the tropospheric emission sounder [11]
can observe CH4 profiles based on thermal infrared emission.
The thermal and near-infrared sensor for Carbon Observation
Fourier Transform Spectrometer-2 [12] can retrieve the CH4

columns and profiles from SWIR spectra and TIR spectra,
respectively [13].

GaoFen-5 (GF-5) is a high-resolution remote sensing satellite
that was launched on May 9, 2018 (Beijing local time). The
satellite was designed to fly in a high-inclination (98.2◦) circular
low-Earth orbit, located 705 km above the Earth’s surface, with
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Fig. 1. Illustration of the AIUS solar occultation observation [24].

the local time of ascending node at 13:00 [14]. GF-5 is equipped
with six payloads designed to achieve various scientific objec-
tives and has a projected lifespan of eight years [15]. However,
the GaoFen-5 satellite lost contact with the ground station and
has been out of service since April 2020. The atmospheric in-
frared ultraspectral sounder (AIUS) on board the GF-5 satellite,
designed by the Beijing Institute of Space Mechanics and Elec-
tricity, is China’s first solar occultation infrared spectrometer.
The AIUS was designed to detect O3 and other atmospheric
compositions related to ozone depletion, with a specific focus
on the atmosphere above Antarctic [16], [17]. The main scientific
objectives of the AIUS are to provide high-precision observa-
tions for atmospheric environmental monitoring and climate
change research, and to promote the development of China’s
occultation/limb measurement technology [17].

Presently, only a few studies on AIUS trace gas retrievals
have been conducted. Wang et al. [18] used simulated spectra to
retrieve the profiles of N2O, NO2, and HF in order to validate the
suitability of the OEM algorithm using the parameters of GF-5
AIUS. Cao et al. [19] applied a channel selection algorithm to
the AIUS and retrieved temperature profiles from the AIUS.
Li et al. [16], [20] evaluated the obtained AIUS Level-1 data
and performed the first retrievals of O3, H2O, and HCl profiles
from AIUS spectra. CH4 is an important greenhouse gas and its
spatiotemporal variations over Antarctic strongly associate with
global warming and climate change.

In addition to the AIUS, the ACE-FTS is the only instrument
that is currently available for measuring CH4 profiles over
Antarctic. The AIUS is similar to the ACE-FTS in terms of
observation geometry and can serve as a complement to the
ACE-FTS. It is an important data source for monitoring CH4 in
polar regions.

Currently, the AIUS have demonstrated its potential for re-
trieving O3, H2O, HCl, and other gases. Considering the role
of CH4 in global warming and climate change [21], [22], the
vertical distribution of CH4 over Antarctic has not yet been
adequately observed. Therefore, this article focuses on the AIUS
CH4 inversion. Here, we develop a retrieval algorithm based on
the radiative transfer calculations and optimal estimation for de-
riving CH4 profiles from AIUS spectra during the whole year of
2019 and analysis the spatiotemporal variations over Antarctic.
This study will, for the first time, focus on retrieving CH4 profiles
using AIUS measurements and expand the application scope of
the first domestic infrared occultation satellite.

The rest of this article is organized as follows. In Section II,
the measurements and methodology are introduced, followed
by a brief description of the AIUS instrument and Level-1 data,

the retrieval method, and the channel selection. The results of
AIUS CH4 retrieval over the Antarctic, the error analysis, and
the comparison with the ACE-FTS CH4 data are discussed in
Section III. Finally, Section IV concludes this article.

II. MEASUREMENTS AND METHODOLOGY

A. Overview of the AIUS Instrument and Level-1 Data

During sunrise in orbit, the AIUS measured the solar transmit-
tance spectrum of the tangential atmosphere from the horizon
to the outer atmosphere (as shown in Fig. 1) within a bandwidth
of 750 to 4100 cm −1 along the altitude from 8 to 100 km. It
carried out this measurement with a high spectral resolution of
0.02 cm−1. The pressure, temperature, and concentrations of
atmospheric species (such as O3, H2O, HCl, NO2, N2O, HF,
etc.) were retrieved from the specific spectral absorption lines
of different atmospheric components. Its latitudinal coverage
ranged from 55 ◦S to 90 ◦S.

The AIUS was implemented with two types of photovoltaic
detectors: Mercury Cadmium Telluride (MCT) and Indium
Antimonide (InSb). The spectral calibration precision met the
requirements for atmospheric trace gas inversion [23]. Their
spectral ranges were 750—1850 cm−1 and 1850–4100 cm−1, re-
spectively. The AIUS utilized ultraresolution Fourier transform
spectrometer technology and sun-tracking system technology to
provide observations with a high spectral resolution [24].

Converting the AIUS Level-0 data (raw measurements) to
Level-1 data (irradiance spectra) required a series of processing
and calibration steps, including data preparation, interferogram
reconstruction, spectrum computation, spectral calibration, and
transmittance calculation [16], [24].

The first step was to acquire and process the auxiliary data.
The Level-0 data consisted of interferometric measurements
downloaded from the spacecraft, along with the acquisition time,
sun position, and satellite position. These parameters were used
to calculate the geometric parameters, altitude, and geographic
location (latitude and longitude).

The AIUS operated in low Earth orbit. The interferogram
experienced spikes due to the influence of charged particles. The
second step was to calculate the interference values at the spikes
in order to reconstruct the interferogram using interpolation or
statistical methods.

In the third step, the fast Fourier transform was used to
calculate the spectrum from the reconstructed interferogram.
Accurate calibration is an essential technology for obtaining
precise measurements of O3, CO2, and CH4 concentrations. The
fourth step involved spectral calibration, which included cor-
recting for Doppler shift, selecting suitable lines, and accurately
determining peak positions [24].

The final step was to calculate the transmittance. The Level-1
data product includes transmittance, instrument line shape (ILS),
as shown in Fig. 2, as well as observation geometry and other pro-
cessed auxiliary data. The relationship between transmittance
and the digital number is shown as follows [16]:

τ(h, λ) =
D(h, λ)−B(h, λ)

S(h, λ)−B(h, λ)
(1)
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Fig. 2. ILS function of the AIUS.

where h represents the tangent; λ denotes the wavenumber;
and D(h, λ), B(h, λ), and S(h, λ) refer to the digital number
value, the deep space signal, and the solar radiation outside the
atmosphere, respectively.

B. Retrieval Method

The retrieval method comprises a forward model based on
the reference forward model (RFM) and an inversion proce-
dure based on the optimal estimation method (OEM). Ignor-
ing scattering and assuming local thermodynamic equilibrium,
the radiative transfer equation for the radiation intensity at
wavenumber v received by an instrument at position s is as
follows [25], [26]:

I(v, s) = I(v, s0)e
−τ(v;s0,s)

+

∫ s

s0

B(v, T (s′))e−τ(v;s′,s)α(v, s′)ds′ (2)

where I(v, s0) represents the background contribution at
wavenumber v and position s0, τ denotes the optical depth,
B(v, T ) signifies the radiance emitted by a black body at tem-
perature T , and α(v, s′) represents the volume absorption coef-
ficient from position s0 to position s. On the right side of (2), the
first term represents the attenuated radiation, while the second
term represents the increase in radiance caused by atmospheric
thermal emission. In this equation, B(v, T ) is represented by
the Planck function, shown as follows:

B(v, T ) =
2hc2v3

ehcv/kBT − 1
(3)

where h represents the Planck constant and kB denotes the
Boltzmann constant, respectively. The transmittance calculated
by the radiation transfer model is shown as follows [27]:

τ = e−
∑

χ

= e−
∑

kμ

= e−
∑

k(υ,p,T,e)

∫
vρds (4)

where χ is the optical thickness, k is the absorption coefficient,
which is in general a function of the wavenumber υ, pressure
p, temperature T , and partial pressure e. μ is the absorber
amount, which is related to the volume mixing ratio (VMR)
of the absorber v, the (molecular) air density ρ, and the distance
along the path s.

We typically used a discrete version of the nonlinear data
model for the radiative transfer equation. Equation (2) can be
replaced with

y = F (x, b)+ ε (5)

where y represents the measurement vector, which refers to
the measurement of transmittance [see (1)]; and F denotes
the radiative transfer model, which represents the simulated
transmittance [see (4)]. In this study, the RFM [27], [28] is used
for line-by-line radiative transfer calculations. x refers to the
state vector; b represents the forward model parameters; and ε
denotes the vector of measurement noise.

The retrieval method utilizes the OEM to find a solution
estimate that minimizes a cost function, which can be written
as [29]

χ2 = (y − F(x,b))TS−1
ε (y − F(x,b))

+ (x− xa)
TS−1

a (x− xa) (6)

where xa represents a priori profile, Sa denotes a priori covari-
ance matrix, E|(x− xa)(x− xa)

T |, Sε signifies the covari-
ance matrix for measurement errors,KSaK

T , andK represents
the Jacobian matrix, ∂F (x)

∂x .
Newtonian iteration is a straightforward numerical technique

to find the root of the gradient of (6) when the problem is not
highly nonlinear. For the general vector equation, g(x) = 0. The
function g(x) is the derivative of the cost function (6) and ∇xg
is the second derivative. The iteration is similar to Newton’s
method for the scalar case and can be expressed as

xi+1 = xi − [∇xg(xi)]
−1g(xi). (7)

Calculate g(x) and ∇xg based on (6), and substitute into the
Newtonian iteration (7). In the Gauss–Newton method, the next
iteration is given by

xi+1 = xi +
(
S−1
a +KT

i S
−1
ε Ki

)−1

(
KT

i S
−1
ε (y − F (xi))− S−1

a (xi − xa)
)
. (8)

When the true solution is significantly far from the current iter-
ation point, the Newton iteration will be invalid. In the retrieval
of O3, H2O, and HCl profiles from AIUS measurements, Li
et al. [16] used the Levenberg–Marquardt (LM) method to solve
the underlying least-squares fitting problem. In the LM method,
the cost function is minimized by introducing a constraint factor,
denoted as γ. A new iterate is as follows:

xi+1 = xi +
(
(1 + γ)S−1

a +KT
i S

−1
ε Ki

)−1

(
KT

i S
−1
ε (y − F (xi))− S−1

a (xi − xa)
)

(9)

where γ represents a smoothing factor. When γ → 0, (8) and
(9) are similar. For more details on the retrieval procedure, refer
to [16], [29], [30], [31], [32], [33].
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TABLE I
MODEL PARAMETERS AND EXTERNAL DATA SOURCES

The error analysis is essential for retrieving the atmospheric
composition. There are three types of errors that can be charac-
terized by their respective error covariance: the covariance of the
smoothing error (Ss), the covariance of the forward model error
(Sp, which includes spectroscopy, temperature, and pressure
error), and the covariance of the retrieval random noise error
(Sm) [29], given as follows:

Ss = (A− I)Sa(A− I)T (10)

Sp = GKbSbK
T
b G

T (11)

Sm = GSεG
T (12)

e =
√

Ss + Sp + Sm (13)

where A represents the Averaging Kernel (AK) matrix, A =
GK; I denotes the identity matrix; G refers to the gain matrix,
G = (KTS−1

ε K+ S−1
a )−1KTS−1

ε ; Sb represents the error co-
variance matrix of b; and Kb denotes the Jacobian matrix with
respect to the parameters of the forward model. The calculation
of matrices G and A is realized by coding, whereas K is
obtained from the forward model. The smoothing error (es),
the forward model error (ep), and the retrieval random noise
error (em) can be represented by the square roots of Ss, Sp,
and Sm, respectively. The total error (e), is calculated as the
square root of the sum of the aforementioned covariance.

The parameters in the forward model include the CH4 retrieval
channel, spectral resolution, the absorbing species, atmospheric
profiles, viewing geometry, spectroscopic data, ILS, and the field
of view [27] (see Table I). Within the wavelength range used
in this experiment, there are no significant differences between
the CH4 versions of HITRAN 2020 and HITRAN 2016. The
spectroscopic parameters for CH4, N2O, H2O, and other species
were taken from the HITRAN 2016 database [34].

The interfering species profiles were constructed using at-
mospheric models from the Air Force Geophysics Laboratory,
Microwave Limb Sounder (MLS) Level-2 products, and the
ACE-FTS Climatology Version 4.1. The atmospheric profiles
cover the altitude range from 0 to 102 km with a vertical grid
of 1, 2, and 3 km in the ranges of 0–50 km, 50–90 km, and
above 90 km, respectively. The a priori information for the CH4

VMR was constructed following the methodology outlined by
Li et al. [16].

C. Channel Selection

The AIUS has 167 501 spectral bands that contain a signif-
icant amount of information but cannot be directly used for
CH4 retrieval. High spectral resolution measurements allow for
the separation of individual bands. We use microwindows to
enhance computational efficiency and reduce errors caused by
interfering species [35].

First, we analyzed the absorption of atmospheric molecules
in the 750–4100 cm−1 range using data on the atmospheric
molecular absorption spectrum from the HITRAN website.1

Combining the four spectral features with the significant ab-
sorption points of CH4 in the infrared spectrum (2913 cm−1,
1533.3 cm−1, 3018.9 cm−1, and 1305.9 cm−1) and considering
the absorption of interfering components, we initially screened
three broad spectral absorption ranges: 1130–1660 cm−1, 2470–
3160 cm−1, and 3820–3910 cm−1. And then, based on the ab-
sorption windows of potential interfering components in the ra-
diative transfer model (refer to Table II), we selected seven initial
inversion spectral windows for CH4, namely 1200–1230 cm−1,
1330–1340 cm−1, 1380–1500 cm−1, 1550–1660 cm−1, 2645–
2980 cm−1, 3820–3822 cm−1, and 3865–3920 cm−1. These
windows were selected to minimize interference from other
atmospheric species.

The seven aforementioned microwindows still contain 33 107
spectral bands. Using these bands for retrieval is still inefficient
in terms of data management and computational resources.
Finally, We selected the retrieved channels based on the measure
of information entropy. The channel selection method mainly
includes the following four main stages.

Step 1: Calculate the background error covariance matrix
(Sa).

Step 2: Calculate the observed covariance matrix (Ŝ). The
observation covariance matrix can be written as [36]

Ŝ = Sa − SaK
T (KSaK

T + Sε)
−1KSa. (14)

The third step is to calculate the information capacity (H). If
Sa and Ŝ are known, the information capacity included in the
observation process is recorded as follows:

H =
ln|Sa| − ln|Ŝ|

2
. (15)

The final step is to obtain the channels through iterative
processes. At each iteration, only the channel with the highest
value of H is selected.

After conducting an analysis on disturbance in atmospheric
components and performing experiments to channel selection,
we were able to obtain 120 spectral bands for CH4 retrieval.
These bands are shown in Fig. 3. On most CH4 microwindows,
the spectra were of high quality with a signal-to-noise ratio
(SNR) of 200–350 [16].

We compared the AIUS CH4 retrieval bands used in this ex-
periment with the officially announced ACE-FTS CH4 retrieval
bands, as shown in Fig. 3. The gray line represents the simu-
lated transmittance, while the blue dot denotes the ACE-FTS

1[Online]. Available: https://hitran.org/

https://hitran.org/
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TABLE II
FITTING WINDOWS

Fig. 3. Comparison of the AIUS and ACE-FTS CH4 retrieval channels.

CH4 retrieval bands, and the red dot indicates the AIUS CH4

retrieval bands. The CH4 channel selection results from this
experiment are primarily included in the ACE-FTS CH4 inver-
sion channel, except for the spectral range of 1500–2000 cm−1.
ACE-FTS CH4 experiments use a spectral range spanning from
1500 to 2000 cm−1 to enhance CH4 retrieval. However, in our
experiment, we excluded this microwindow to eliminate H2O
interference on the retrieval performance.

CH4 retrieval experiments were conducted using two different
channel schemes, as illustrated in Fig. 4. The CH4 concentration
profiles retrieved using two different channel schemes show a
similar variation trend with height, but the retrieval efficiency of
the AIUS retrieval scheme 1 (using 120 channels) is 24 times
higher than that of the channel scheme 2 (using 1115 channels).

Fig. 5 illustrates the weight function values of the 120 selected
channels in the order of their selection. The horizontal axis
represents the selected channels, the vertical axis represents
the tangent height, and the color bar represents the weight.
The 120 selected channels covered the altitude range from
the troposphere to the mesosphere, and the tangent heights at
which the extreme values of each channel weight function varied
sequentially.

III. RESULTS AND DISCUSSION

A. AIUS CH4 Retrievals

Unfortunately, the AIUS instrument has been out of service
since April 2020. The spectral measurements after 2019 were
lost due to malfunctions at the ground station. To obtain a more

Fig. 4. CH4 profiles were retrieved from two different channel schemes. The
retrieval was carried for AIUS measurements recorded on May 16, 2019. The
red line represents the CH4 profile retrieved from the 120 channels, while the
blue line refers to the CH4 profile retrieved from 1115 channels.

Fig. 5. Weight function matrix of AIUS channels.

solid outcome, we have included Level-1 data from the com-
missioning phase (from January to March 2019) for additional
retrieval experiments. In this study, we used 246 orbits of AIUS
spectra observed in different months for retrieval. Table III
presents the temporal and spatial characteristics of the AIUS
data we used in this experiment, which were categorized into
five latitude zones: 60–65◦S, 65–70◦S, 70–75◦S, 75–80◦S, and
80–85◦S.

The value of the averaging kernel (AK) represents the contri-
bution of the measurement data in the retrieval. The AK shape
describes the vertical resolution of the retrieved profile [37]. The
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TABLE III
INFORMATION ON THE AIUS DATA USED IN THIS RESEARCH

Fig. 6. Averaging kernel of a single CH4 profile. The retrieval was carried
for AIUS measurements recorded on May 16, 2019. The colorful solid line
represents the averaging kernel, while the gray line indicates the FWHM. The
black solid line expresses the sum of the average kernel at each altitude.

AK and the full-width-at-half-maximum (FWHM) of AIUS data
on May 16, 2019 are shown in Fig. 6. When the altitude is below
15 km or above 65 km, the AK value is less than 0.3. When the
altitude is between 15 and 65 km, the AK value falls within
the range of 0.7–1. It indicates that the information on CH4

retrieval mainly comes from the AIUS measurement data in this
experiment. The FWHM reaches 4–11 km across the altitude
range from 10 to 65 km. Above 65 km, the FWHM exceeds
20 km.

The residuals between the measured spectra and the simulated
spectra are shown in Fig. 7. The spectral residuals between the
simulated and measured spectra are within ± 0.2 and ± 0.03
at the tangent heights of 40.5 and 70.2 km, respectively. This
indicates that the residual transmittance of the measured data
is lower at the higher tangent height compared to the simulated
spectra.

We calculated the monthly average value of the CH4 profiles,
as shown in Fig. 8. It illustrates that CH4 concentrations show
significant seasonal variations over Antarctic. In each season, the
monthly mean CH4 profile is similar during consecutive months,
such as April–May, July–August, and November–December.

The monthly average VMR in November and December is
higher than that in other months for altitudes ranging from 21
to 76 km. These two months are the warm season in Antarctica,
during which there may be an increase in the release of CH4 from
ocean sediment and permafrost. This can result in an increase
in the CH4 VMR in the atmosphere [38]. The average VMR in

Fig. 7. Comparison of residual transmittance between measured and simulated
spectra. The AIUS measurements were recorded on May 16, 2019. Four spectra
are plotted for tangent heights at 40.5 and 70.2 km, respectively.

Fig. 8. Comparison of the AIUS CH4 profiles in different months.

April and May is lower than in other months for altitudes above
57 km. Below 57 km, as altitude increases, the monthly average
VMRs in September, August, April, and March are lower than
those in other months. The VMR value of CH4 decreases as
altitude increases. The CH4 VMR is approximately 1.17–1.65
ppmv between 10 and 20 km, and decreases to less than 0.2
ppmv at 35 km in April and May.

Due to the characteristics of AIUS measurements, it is im-
possible to observe the same latitude zone every month, and we
cannot obtain measurement data for the same latitude zone each
month. The aforementioned analysis results may be influenced
by latitude. So, we also analyzed the average CH4 profiles in
different latitude zones, as shown in Fig. 9.

Fig. 9 illustrates that CH4 concentrations show significant
latitude variations over Antarctica. The average VMR in 60 –
65◦ S is higher than that in other months, ranging from 21 to
90 km. The VMR of CH4 decreases with increasing altitude.
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Fig. 9. Comparison of the AIUS CH4 profiles in different latitude zones.

TABLE IV
MODEL PARAMETER ERRORS CONSIDERED IN THE AIUS CH4 RETRIEVALS.

As can be seen from Figs. 8 and 9, certain profiles lack nu-
merical values at the 10-km mark. The tangent height measured
by the AIUS is sometimes higher than 10 km, which makes it
impossible to retrieve the CH4 concentration at this altitude.

B. Error Characterization

In the retrieval experiment, it is necessary to assess the
uncertainties of atmospheric parameters, such as temperature
and pressure, among others, that are used in the experiment. In
this study, we consider the potential sources of error, includ-
ing smoothing error, forward model error, and random noise
error. The sources of error, and the corresponding perturbation
amounts are shown in the Table IV.

The precision of the MLS version 4 temperature and pressure
measurements is better than 1 K and 1% from the upper tropo-
sphere to the stratosphere [39], [40], [41], respectively. In this
study, we found errors caused by the uncertainties in temperature
and pressure to be 4.82E-04 ppmv (0.15%), and 2.70E-03 ppmv
(0.44%), respectively.

The CH4 intensities in HITRAN 2016 [34] are derived
from the HITRAN 2012 and the MeCaSDa database below
1370 cm−1, and they remain unchanged from the HITRAN
2012 intensities in the 1370–4000 cm−1 region. The uncertainty
of CH4 line intensities used in this experiment is smaller than
4% [42], [43], [44], which can cause a bias of 6.17E-03 ppmv
(1.27%). The uncertainty of H2O and CO2 line intensity is

1% and 5% [45], respectively. Unfortunately, we did not find
official information on the uncertainty of N2O and O3 line
strength within the AIUS CH4 retrieval channels; we have
chosen to apply a 1% perturbation as a conservative estimate
of the actual uncertainty. The uncertainties in line intensity of
the four atmospheric components mentioned previously (H2O,
CO2, N2O, and O3) contribute to a deviation of 1.38E-05 ppmv
(1.90E-03%).

Individual estimates of various errors and relative errors for
the CH4 retrieval are shown in Fig. 10. Below 25 km, the
total error is mainly attributed to random noise and smooth-
ing error, while above 25 km, the total error is primarily due
to spectroscopy and random noise error. The uncertainties in
temperature and pressure have a relatively minor impact on the
total error.

C. Validation Using ACE-FTS Observations

The ACE-FTS is a solar occultation measurement instrument
on board SCISAT-1, which was launched in August 2003. The
satellite is in a circular orbit at an altitude of 650 km and an
inclination angle of 74◦ [46]. The ACE-FTS covers the 750–
4400 cm −1 range with a high spectral resolution of 0.02 cm−1.
It provides vertical profiles of trace gas VMRs and temperature
across latitudes from 85◦ S to 85◦N. The vertical resolution is
approximately 4 km from the cloud tops up to about 150 km [47].

The retrieval of ACE-FTS CH4 products from atmospheric
spectra involves two steps. The first step is deriving the pressure
and temperature profiles using the spectral lines of carbon diox-
ide. Second, CH4 VMR profiles are retrieved using a modified
global fitting approach, in which all parameters are determined
with the LM nonlinear least-squares method [48]. The retrieval
product is not sensitive to the initial profiles and does not include
averaging kernels. The uncertainties reported in the data files are
the statistical fitting errors resulting from the least-squares pro-
cess and do not account for systematic components or parameter
correlations [48], [49].

The HITRAN 2016 spectroscopic line parameters and the
Voigt line shape were used in the ACE-FTS V4.1 retrieval
calculations, employing a similar methodology to that used
for AIUS retrievals. More detailed explanations of the retrieval
algorithms can be found in [48], [50], and [51].

The accuracy of the version v2.2 CH4 data is within 10%
from the upper troposphere to the lower stratosphere, and within
25% in the middle and higher stratosphere up to the lower
mesosphere (<60 km) when compared with correlative satellite,
balloon-borne, and ground-based data [10]. In Version 4 (with
version 4.1), which represents the most recent update, the re-
trieval utilizes the latest spectroscopic information and features
improved accuracy in forward model calculations [51]. In this
article, we compared ACE-FTS CH4 data V4.1 with AIUS data.
The data are available online.2

For the comparison experiment, we limited the spatial coinci-
dence to within 1.5◦ (approximately 150 km) and the temporal
coincidence to within 36 h between AIUS and ACE-FTS. As a

2[Online]. Available: https://databace.scisat.ca/level2/ace_v4.1_v4.2/

https://databace.scisat.ca/level2/ace_v4.1_v4.2/
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Fig. 10. Individual estimates of smoothing, forward model, and noise errors for CH4 retrieval. The absolute and relative errors correspond to the retrieval was
carried for AIUS measurements recorded on May 16, 2019. Assumed uncertainties in the forward model errors are given in Table IV. The solid black line (Total
error) represents the root sum squares of the smoothing error, forward model error, and random noise error.

Fig. 11. Mean AIUS (red line) and ACE-FTS (blue line) profiles of the 42
matching pairs in the 60–85◦S latitude zone are included in the comparison.

result, we obtained 42 orbits of AIUS data that met the matching
criteria.

The range of altitude in which both instruments have good
sensitivity is limited by the AIUS data at the lower boundary
and by the ACE-FTS data at the upper boundary. We have set
the lower altitude at 10 km and the upper altitude at 70 km. The
inversion errors in this altitude range are very low, resulting in an
uncertainty of 2–3% for ACE-FTS CH4, while it may be more
than 10% at the lowest and highest altitudes of the retrieval [10].

We needed to consider the difference in vertical resolution
between the AIUS and the ACE-FTS when comparing their CH4

products. Indeed, the AIUS has a vertical resolution of approxi-
mately 4–11 km (with an altitude range of 10–60 km), whereas
ACE-FTS has a resolution of around 4 km. In order to facilitate

Fig. 12. Difference between AIUS and ACE-FTS profiles of CH4.

comparison, the AIUS and ACE-FTS data are interpolated into
a unified grid with intervals of 10, 15, 20, 25, 30, 35, 40, 45,
50, 55, 60, 65, and 70 km. The comparisons between AIUS and
ACE-FTS CH4 profiles are shown in Figs. 11–13.

Fig. 11 shows the mean CH4 profiles of the AIUS and ACE-
FTS between 10 and 70 km. It indicates that the AIUS and
ACE-FTS CH4 mean profiles are in good agreement. The CH4

concentrations retrieved by the AIUS are slightly higher than
those retrieved by ACE-FTS at 10 km.

The quantitative differences between AIUS and ACE-FTS are
illustrated in Figs. 12 and 13. These differences are presented in
absolute units and as percentages relative to ACE-FTS, respec-
tively. The average relative standard deviation of the differences
is smaller than 7.2% below 70 km.
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Fig. 13. Percentage relative difference between AIUS and ACE-FTS profiles
of CH4.

IV. CONCLUSION

This article provides the CH4 retrievals and an assessment
of the atmospheric CH4 profiles obtained during the second
year of the AIUS mission, in order to quantify the level of
agreement with other available instruments. The AIUS CH4

products are retrieved from solar occultation measurements,
using 120 spectral bands located between 1203 and 2906 cm−1.

The inversion results indicate that CH4 mole fractions show
significant variations in latitude and season over Antarctica. The
CH4 VMR is approximately 1.17–1.65 ppmv between 10 and
20 km, and decreases to less than 0.2 ppmv at 35 km in April
and May.

The results of the error analysis indicate that the majority
of the total error is caused by spectroscopic, random noise and
smoothing errors. The uncertainties in temperature and pressure
have a relatively minor impact on the total error. The comparison
between AIUS CH4 profiles and ACE-FTS CH4 profiles reveals
that the average relative standard deviation of the differences is
smaller than 7.2% below 70 km.

In future work, the retrieval algorithm will be improved to
retrieve more trace gases, such as HCN, CCl4, SF6, etc. Com-
parisons with ACE-FTS, ground stations, and other datasets are
required for further validation.

ACKNOWLEDGMENT

The AIUS, ACE-FTS, and MLS data used in this study
were acquired from the China Center for Resources Satellite
Data and Application3, ACE/SCISAT Database4, and EARTH-
DATA5, respectively. The authors would like to thank the Global
Monitoring Laboratory for providing the trends in CH4, and

3[Online]. Available: https://data.cresda.cn/
4[Online]. Available: https://databace.scisat.ca/
5[Online]. Available: https://disc.gsfc.nasa.gov/

the HITRAN group members for providing the HITRAN online
data.

REFERENCES

[1] M. Zhou et al., “Atmospheric CO and CH4 time series and seasonal
variations on Reunion island from ground-based in situ and FTIR (NDACC
and TCCON) measurements,” Atmospheric Chem. Phys., vol. 18, no. 19,
pp. 13881–13901, 2018.

[2] S. Kirschke et al., “Three decades of global methane sources and sinks,”
Nature Geosci., vol. 6, no. 10, pp. 813–823, Oct. 2013.

[3] D. Blake, E. Mayer, S. Tyler, Y. Makide, D. Montague, and F. Row-
land, “Global increase in atmospheric methane concentrations between
1978 and 1980,” Geophys. Res. Lett., vol. 9, no. 4, pp. 477–480,
1982.

[4] X. Lan, K. Thoning, and E. Dlugokencky, “Trends in globally-averaged
CH4, N2O, and SF6 determined from NOAA global monitoring laboratory
measurements. version 2023-06,” 2023, doi: 10.15138/P8XG-AA10.

[5] R. Jones and J. Pyle, “Observations of CH4 and N2O by the NIM-
BUS -7 SAMS—A comparison with in situ data and two-dimensional
numerical-model calculations,” J. Geophys. Res.-Atmos., vol. 89, no. ND4,
pp. 5263–5279, 1984.

[6] S. Noel et al., “Stratospheric CH4 and CO2 profiles derived from SCIA-
MACHY solar occultation measurements,” Atmos. Meas. Techn., vol. 9,
no. 4, pp. 1485–1503, 2016.

[7] O. Schneising et al., “A scientific algorithm to simultaneously retrieve car-
bon monoxide and methane from TROPOMI onboard SENTINEL-5 pre-
cursor,” Atmospheric Meas. Techn., vol. 12, no. 12, pp. 6771–6802, 2019.
[Online]. Available: https://amt.copernicus.org/articles/12/6771/2019/

[8] T. von Clarmann et al., “Retrieval of temperature, H2O, O3, HNO3,
CH4, N2O, ClONO2 and ClO from MIPAS reduced resolution nominal
mode limb emission measurements,” Atmos. Meas. Techn., vol. 2, no. 1,
pp. 159–175, 2009.

[9] X. Xiong et al., “Characterization and validation of methane products from
the atmospheric infrared sounder (AIRS),” J. Geophys. Res.-Biogeosci.,
vol. 113, Jul. 2008.

[10] M. De Maziere et al., “Validation of ACE-FTS V2.2 methane profiles
from the upper troposphere to the lower mesosphere,” Atmospheric Chem.
Phys., vol. 8, no. 9, pp. 2421–2435, 2008.

[11] R. Beer, T. Glavich, and D. Rider, “Tropospheric emission spectrometer
for the Earth observing system’s aura satellite,” Appl. Opt., vol. 40, no. 15,
pp. 2356–2367, May 2001.

[12] T. Tanaka et al., “Characterization and validation of CO2 and CH4 products
derived from the GOSAT thermal infrared band,” Proc. SPIE, vol. 8528,
pp. 175–178, 2012.

[13] A. de lange and J. Landgraf, “Methane profiles from GOSAT thermal
infrared spectra,” Atmos. Meas. Techn., vol. 11, no. 6, pp. 3815–3828,
Jun. 2018.

[14] Y. Sun et al., “Hyper-spectral observation satellite and it’s application
prospects,” Aerosp. Shanghai, vol. 34, no. 3, pp. 1–13, 2017.

[15] Q. Tao et al., “Long life assurance technology of GF-5 satellite,” Aerosp.
Shanghai, vol. 36, no. S2, pp. 18–23, 2019.

[16] X. Li et al., “Monitoring trace gases over the Antarctic using atmospheric
infrared ultraspectral sounder onboard GaoFen-5: Algorithm description
and first retrieval results of O3, H2O, and HCL,” Remote Sens., vol. 11,
no. 17, 2019, Art. no. 1991.

[17] C. Liangfu et al., “Mission overview of the GF-5 satellite for atmo-
spheric parameter monitoring,” Nat. Remote Sens. Bull., vol. 25, no. 9,
pp. 1917–1931, 2021.

[18] H. Wang et al., “Assessment of retrieved N2O, NO2, and HF profiles
from the atmospheric infrared ultraspectral sounder based on simulated
spectra,” Sensors, vol. 18, no. 7, 2018, Art. no. 2209.

[19] X. F. Cao and X. Y. Li, “Channel selection for AIUS temperature in-
version based on GF-5,” (in Chinese), J. Remote Sens., vol. 24, no. 10,
pp. 1157–1167, 2020.

[20] X. Cao, X. Li, S. Liu, and X. Zhang, “Assessment of spectra of the
atmospheric infrared ultraspectral sounder on GF-5 and validation of water
vapor retrieval,” Sensors, vol. 21, no. 2, 2021.

[21] L. Loulergue et al., “Orbital and millennial-scale features of atmospheric
CH4 over the past 800,000 years,” Nature, vol. 453, no. 7193, pp. 383–386,
2008.

[22] J. Jouzel et al., “Extending the Vostok ice-core record of paleoclimate to
the penultimate glacial period,” Nature, vol. 364, no. 6436, pp. 407–412,
1993.

https://dx.doi.org/10.15138/P8XG-AA10
https://amt.copernicus.org/articles/12/6771/2019/


LIU et al.: CHINA’S FIRST INFRARED OCCULTATION SPECTROMETER (GAOFEN-5/AIUS) 7955

[23] L. L. Du, L. Liu, S. L. Ge, Z. W. Li, C. J. Zhou, and G. S. Ding, “High pre-
cision on-orbit spectral calibration of atmospheric infrared ultra-spectral
sounder,” J. Infrared Millimeter Waves, vol. 40, no. 2, pp. 214–222, 2021.

[24] L. Hou, P. Xu, Y. Zhang, and L. Li, “Key technologies of atmospheric
infrared ultra-resolution spectrometer,” Aerosp. Shanghai, vol. 36, no. S2,
pp. 117–125, 2019.

[25] J. Xu, “Inversion for limb infrared atmospheric sounding,” Doctoral dis-
sertation, Technische Universität München, Munich, Germany, 2016.

[26] K. N. Liou, An Introduction to Atmospheric Radiation, Dept. Atmos. Sci.,
Univ. California, Los Angeles, Los Angeles, California, Elsevier, vol. 84,
pp. 1–583, 2002.

[27] A. Dudhia, “The reference forward model (RFM),” J. Quantitative Spec-
trosc. Radiative Transfer, vol. 186, pp. 243–253, 2017.

[28] T. von Clarmann et al., “Intercomparison of radiative transfer codes
under non-local thermodynamic equilibrium conditions,” J. Geophys.
Res.-Atmos., vol. 107, no. D22, pp. ACH-12, 2002.

[29] C. D. Rodgers, Series Atmos., Ocean. Planet. Phys.: Volume 2 In-
verse Methods Atmos. Sounding Theory Pract., p. 256, Jul. 2000,
doi: 10.1142/3171.

[30] C. D. Rodgers, “Retrieval of atmospheric-temperature and composition
from remote measurements of thermal-radiation,” Rev. Geophys., vol. 14,
no. 4, pp. 609–624, 1976.

[31] J. Xu et al., “Performance assessment of balloon-borne trace gas sounding
with the terahertz channel of telis,” Remote Sens., vol. 10, no. 2, 2018.

[32] J. Xu, F. Schreier, A. Doicu, and T. Trautmann, “Assessment of Tikhonov-
type regularization methods for solving atmospheric inverse problems,” J.
Quantitative Spectrosc. Radiative Transfer, vol. 184, pp. 274–286, 2016.

[33] J. Xu, L. Rao, F. Schreier, D. S. Efremenko, A. Doicu, and T. Trautmann,
“Insight into construction of Tikhonov-type regularization for atmospheric
retrievals,” Atmosphere, vol. 11, no. 10, 2020, Art. no. 1052.

[34] I. E. Gordon et al., “The HITRAN2016 molecular spectroscopic database,”
J. Quantitative Spectrosc. Radiative Transfer, vol. 203, pp. 3–69, 2017.

[35] G. Echle et al., “Optimized spectral microwindows for data analysis of
the Michelson interferometer for passive atmospheric sounding on the
environmental satellite,” Appl. Opt., vol. 39, no. 30, pp. 5531–5540, 2000.

[36] S. Zhang, “Hyperspectral atmospheric sounding information channel se-
lection study,” J. Meteorological Sci., vol. 29, no. 4, pp. 4475–4481, 2009.

[37] M. N. Deeter et al., “Operational carbon monoxide retrieval algorithm
and selected results for the MOPITT instrument,” J. Geophys. Res., Atmo-
spheres, vol. 108, no. D14, 2003.

[38] M. Maslin, M. Owen, R. Betts, S. Day, T. D. Jones, and A. Ridgwell, “Gas
hydrates: Past and future geohazard?,” Philos. Trans. Roy. Soc. A, Math.
Phys. Eng. Sci., vol. 368, no. 1919, pp. 2369–2393, 2010.

[39] M. J. Schwartz et al., “Validation of the aura microwave limb sounder
temperature and geopotential height measurements,” J. Geophys. Res.,
Atmospheres, vol. 113, no. D15, 2008. [Online]. Available: http://
000255594400001

[40] N. J. Livesey et al., “Earth observing system (EOS) aura microwave limb
sounder (MLS) version 4.2x level 2 and 3 data quality and description
document,” Tech. Rep., 2020. [Online]. Available: https://mls.jpl.nasa.
gov/data/v4-2_data_quality_document.pdf

[41] E. F. Fishbein et al., “Validation of UARS microwave limb sounder
temperature and pressure measurements,” J. Geophys. Res., Atmospheres,
vol. 101, no. D6, pp. 9983–10016, 1996. [Online]. Available: http://WOS:
A1996UJ40400022

[42] Y. A. Ba et al., “MeCaSDa and ECaSDa: Methane and ethene calculated
spectroscopic databases for the virtual atomic and molecular data centre,”
J. Quantitative Spectrosc. Radiative Transfer, vol. 130, pp. 62–68, 2013.
[Online]. Available: http://WOS:000326482100004

[43] L. R. Brown et al., “Methane line parameters in the HITRAN2012
database,” J. Quantitative Spectrosc. Radiative Transfer, vol. 130,
pp. 201–219, 2013. [Online]. Available: http://WOS:000326482100015

[44] L. R. Brown et al., “Methane line parameters in HITRAN,” J. Quantita-
tive Spectrosc. Radiative Transfer, vol. 82, no. 1-4, pp. 219–238, 2003.
[Online]. Available: http://WOS:000184738800011

[45] J. Loos, M. Birk, and G. Wagner, “Measurement of air-broadening line
shape parameters and temperature dependence parameters of H2O lines
in the spectral ranges 1850–2280 cm(-1) and 2390–4000 cm (-1),” J.
Quantitative Spectrosc. Radiative Transfer, vol. 203, pp. 103–118, 2017.
[Online]. Available: http://WOS:000414107400005

[46] F. Hase, L. Wallace, S. D. McLeod, J. J. Harrison, and P. F. Bernath, “The
ACE-FTS Atlas of the infrared solar spectrum,” J. Quantitative Spectrosc.
Radiative Transfer, vol. 111, no. 4, pp. 521–528, 2010.

[47] P. F. Bernath et al., “Atmospheric chemistry experiment (ACE): Mission
overview,” Geophys. Res. Lett., vol. 32, no. 15, 2005.

[48] C. D. Boone et al., “Retrievals for the atmospheric chemistry ex-
periment Fourier-transform spectrometer,” Appl. Opt., vol. 44, no. 33,
pp. 7218–7231, 2005.

[49] E. Dupuy et al., “Validation of ozone measurements from the atmospheric
chemistry experiment (ACE),” Atmospheric Chem. Phys., vol. 9, no. 2,
pp. 287–343, 2009.

[50] C. D. Boone, K. A. Walker, and P. F. Bernath, “Version 3 retrievals for the
atmospheric chemistry experiment Fourier transform spectrometer (ACE-
FTS),” in The Atmospheric Chemistry Experiment ACE at 10: A Solar
Occultation Anthology. 2013, pp. 103–27.

[51] C. D. Boone, P. F. Bernath, D. Cok, S. C. Jones, and J. Steffen, “Version
4 retrievals for the atmospheric chemistry experiment Fourier transform
spectrometer (ACE-FTS) and imagers,” J. Quantitative Spectrosc. Radia-
tive Transfer, vol. 247, 2020, Art. no. 106939.

Shuanghui Liu received the B.E. degree in remote
sensing science and technology from the Shandong
University of Science and Technology, Qingdao,
China, in 2019, and the M.E. degree in electronic
and communication engineering from the University
of Chinese Academy of Sciences, Beijing, China, in
2022. In 2022, she joined the National Space Sci-
ence Center, Chinese Academy of Sciences, Beijing,
China.

Her research interests include atmospheric com-
position inversion and quantitative remote sensing
applications.

Xiaoying Li received the B.S. degree in geography
from Fujian Normal University, Fuzhou, China, in
1999, and the M.S. degree in geography from Beijing
Normal University, Beijing, China, in 2002, and the
Ph.D. degree in quantitative remote sensing from the
Institute of Remote Sensing Applications, Chinese
Academy of Sciences, Beijing, in 2006.

She is working as an Associate Research Fellow
with the Aerospace Information Research Institute,
Chinese Academy of Sciences. Her research interests
include research on atmospheric composition inver-

sion algorithms and quantitative algorithms for optical image remote sensing
information.

Jian Xu (Senior Member, IEEE) received the B.E.
degree in geographic information systems from Hohai
University, Nanjing, China, in 2004, and the M.S. de-
gree in Earth-oriented space science and technology
and the Ph.D. degree in atmospheric remote sensing
from Technische Universität München, Münich, Ger-
many, in 2009 and 2015, respectively.

From 2010 to 2021, he was with the Remote Sens-
ing Technology Institute (IMF), German Aerospace
Center (DLR), Oberpfaffenhofen, Germany. He was
involved in the development/refinement of atmo-

spheric retrieval algorithms for ESA’s Sentinel-5P and Sentinel-4 satellite mis-
sions. He is currently a Professor with the National Space Science Center,
Chinese Academy of Sciences, Beijing, China. His research interests include
remote sensing of planetary atmosphere, radiative transfer modeling, and ill-
posed inverse problems.

Hailiang Shi received the B.S. degree in surveying
and mapping engineering from the Xi’an University
of Science and Technology, Xi’an, China, in 2004,
and the Ph.D. degree in optics from the Chinese
Academy of Sciences (CAS), Hefei, China, in 2012.

He is the Principle Investigator of the Greenhouse
Gas Monitoring Instrument (GMI) data processing
and has developed the ground data processing sys-
tem for this payload with the CAS. His main re-
search interests include hyperspectral atmospheric
remote sensing, instrument calibration, and data
characterization.

https://dx.doi.org/10.1142/3171
http://000255594400001
http://000255594400001
https://mls.jpl.nasa.gov/data/v4-2_data_quality_document.pdf
https://mls.jpl.nasa.gov/data/v4-2_data_quality_document.pdf
http://WOS:A1996UJ40400022
http://WOS:A1996UJ40400022
http://WOS:000326482100004
http://WOS:000326482100015
http://WOS:000184738800011
http://WOS:000414107400005


7956 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Yuhang Guo received the B.E. degree in geographic
information science from the Taiyuan University of
Technology, Taiyuan, China, in 2021. He is currently
working toward the M.E. degree in resources and en-
vironment from the University of Chinese Academy
of Sciences, Beijing, China.

His research interests include atmospheric com-
position inversion and optimal estimation methods
researches.

Xingying Zhang received the B.S. degree in material
science and engineering from the Beijing University
of Aeronautics and Astronautics, Beijing, China, in
2001, and the Ph.D. degree in atmospheric chemistry
from Beijing Normal University, Beijing, in 2006.

He is currently the Deputy Director of Technology
and Climate Change, China Meteorological Admin-
istration, Beijing. He has authored and co-authored
more than 80 research articles in science journals
and books. His research interests include satellite
observation and in situ measurement of atmospheric

components and its applications to climate and environmental problems.

Shule Ge received the B.S. degree in electronic sci-
ence and technology and the Ph.D. degree in optical
engineering from the Beijing Institute of Technology,
Beijing, China, in 2005 and 2010, respectively.

He is currently a Researcher with the China Center
for Resources Satellite Data and Application, Bei-
jing. His research interests include processing and
calibration of hyperspectral and multispectral remote
sensing data, atmospheric LiDAR data processing,
and hyperspectral image classification.

Yapeng Wang received the master’s degree in elec-
tronics and communication engineering and the Ph.D.
degree in cartography and geographic information
systems from the Institute of Remote Sensing and
Digital Earth, Chinese Academy of Sciences, Beijing,
China, in 2017 and 2020, respectively.

She joined the National Satellite Meteorological
Center (National Center for Space Weather), Beijing,
as a Research Assistant, in 2020. Since 2020, she has
been participating in the ground data processing sys-
tem construction of the FengYun satellite project and

responsible for the algorithm research of ozone products based on hyperspectral
infrared atmospheric sounder (HIRAS) and geostationary interferometric in-
frared sounder (GIIRS). Her research interests include atmospheric components
retrieval from hyperspectral satellite data, mainly involved in the development
of ozone precursors and ozone profiles retrieval algorithms.

Hongmei Wang received the master’s degree in
cartography and geographic information engineering
from the Kunming University of Science and Tech-
nology, Kunming, China, in 2015, and the Ph.D.
degree in cartography and geographic information
systems from the Institute of Remote Sensing and
Digital Earth, Chinese Academy of Sciences, Beijing,
China, in 2019.

In 2019, she joined Nantong University, Nantong,
China. Since 2012, she has been a Researcher in
remote sensing. Her research interests include remote

sensing application, ultraviolet limb, infrared occultation, and terahertz limb
atmospheric composition inversion.

Xifeng Cao received the B.E. degree in remote sens-
ing science and technology from the Shandong Uni-
versity of Science and Technology, Qingdao, China,
in 2018, and the M.E. degree in electronic and com-
munication engineering from the University of Chi-
nese Academy of Sciences, Beijing, China, in 2021.
In 2021, she joined China Meteorological Adminis-
tration, Beijing.

Her research interests include carbon dioxide
inversion based on LiDAR.

Lanlan Rao received the master’s degree in cartogra-
phy and geographic information engineering from the
China University of Mining and Technology, Xuzhou,
China, in 2017, and the Ph.D. degree in atmospheric
remote sensing from the German Aerospace Center
(DLR), Remote Sensing Technology Institute (IMF),
Weßling, Germany, and the Technical University of
Munich (TUM), Munich, Germany, in 2022.

Her research interests include remote sensing of
aerosol properties from satellite data.

Jiancheng Shi (Fellow, IEEE) received the M.S.
degree and the Ph.D. degree in school of computa-
tional earth systems science from the University of
California, Santa Barbara, USA, in 1987 and 1991,
respectively.

He is currently a Senior Research Scientist with
the National Space Science Center, Chinese Academy
of Sciences, Beijing, China. He has authored and
co-authored more than 500 papers with nearly 14 000
citations. His research interests mainly include re-
mote sensing theory and techniques; remote sensing

of cryosphere components, water cycle components, and radiation energy bal-
ance; development of new satellite missions; and synergy of remote sensing
observations and Earth process models for hydrology and climatic change.

Dr. Shi is the Fellow of the SPIE.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


