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Abstract—With the continuous development of computer tech-
nology and significant improvements in computing power, deep
learning has found increasing applications in seismic stratigraphy
interpretation, showcasing notable advancements over traditional
methods. However, due to the unique characteristics of seismic
data, labeling such data has become extremely challenging and
time-consuming, necessitating the involvement of professional geol-
ogists. Consequently, few-shot learning has garnered considerable
attention for seismic image segmentation. Nevertheless, two key
challenges remain in few-shot learning: selecting more representa-
tive samples and validating the model during training. As the avail-
ability of labeled samples decreases, we are left with inadequate
data for the validation set. In this article, instead of solely focusing
on enhancing the network structure, we propose the utilization of
spectral clustering sampling (SCS) methods for training data selec-
tion. In addition, we introduce a metric called sum of differences
(SD), which can be computed without the need for labeled data, to
replace the conventional validation set loss employed in traditional
validation approaches. Notably, by employing SCS methods for
training data selection and introducing the SD metric to replace
traditional validation set loss in F3 dataset, we have achieved
remarkable outcomes.

Index Terms—Deep learning, image segmentation, sampling
method, seismic interpretation.

I. INTRODUCTION

G EOLOGY plays a vital role in our understanding of the
Earth’s composition [1]. Seismic exploration specifically

utilizes the principles of wave propagation to study subsurface
structures and material properties. By studying the intricate
nature of seismic wave propagation, we can effectively analyze
and interpret the distribution of valuable energy resources, such
as petroleum and natural gas [2].

Seismic stratigraphy interpretation is a critical aspect of
seismic exploration; however, manual interpretation of seismic
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stratigraphy is known to be inefficient and time-consuming.
This is primarily due to the fact that accurate interpretations
require specialized knowledge and expertise from geological
experts. In recent years, with the advancements in deep learning
techniques [3], an increasing number of researchers have started
integrating these techniques into the interpretation of seismic
images [4], [5], [6]. By leveraging deep learning methods,
researchers aim to improve the efficiency and accuracy of seis-
mic stratigraphy interpretation, allowing for more reliable and
expedited analysis of subsurface structures.

Segmentation is a common problem in computer vision, and
seismic stratigraphic interpretation can be viewed as a seg-
mentation problem as well. The use of a convolutional neural
network-based encoder allows for automatic feature extraction
and facilitates the segmentation of seismic images [7]. One pop-
ular network architecture for segmentation tasks is U-Net [8],
which has been successfully applied in various domains, includ-
ing cell segmentation. In the field of seismic data segmentation,
researchers have extensively utilized U-Net to achieve remark-
able results [2], [9], [10]. To address the challenge of limited
labeled seismic data, Ferreira et al. [11] incorporated generative
adversarial networks to generate synthetic seismic images. This
approach helps augment the available data and improves the
performance of segmentation models.

In response to the limited availability of labeled seismic
data, researchers have increasingly focused on few-shot seismic
image segmentation in recent years. Alaudah et al. [12] proposed
an automated strategy for generating weak labels to train the
model effectively. Babakhin et al. [13] introduced an iterative
loop that continuously incorporates high-confidence unlabeled
samples during training, enabling few-shot learning. Seismic
feature self-learning [14] and semisupervised learning [15] tech-
niques leverage abundant unlabeled data by utilizing pretext
tasks, which improve the efficiency of training models with
limited labeled data. In addition, Gu et al. [16] incorporated
spatial structural constraints of seismic volumes by introducing a
structural loss function alongside the conventional loss function.

It is true that geological formations often exhibit spatial
continuity, and seismic data collected from these formations
demonstrate strong lateral similarity [17]. As a result, seismic
datasets tend to have a higher degree of similarity among ad-
jacent images, leading to the presence of redundant informa-
tion. To address this issue, one effective approach is to select
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representative samples from the dataset. Uniform sampling at
equal intervals is a commonly used method in seismic data
segmentation [10], [18], [19], [20]. However, itis important to
consider that seismic data often possesses distinct structural pat-
terns that should be taken into account during sample selection.
Recent research by Chen et al. [21] has proposed the use of
principal component analysis-based dimensionality reduction
sampling and spatial pyramid sampling (SPS) methods to obtain
more representative samples for training segmentation network
models. These methods help capture the structural character-
istics of the seismic data and improve sample selection. When
dealing with a limited sample size, active learning (AL) has been
shown to be more effective in iteratively selecting representative
samples throughout the training process [22], [23]. AL allows
for the targeted selection of informative samples, but it does
increase training time significantly due to the iterative process
of sample selection.

Clustering is a commonly employed approach for selecting
representative samples. However, conventional clustering meth-
ods often fail to produce satisfactory results when applied to
seismic data. This phenomenon arises from the inherent spatial
structure present in seismic data [17], which is often overlooked
by conventional clustering methods, leading to unexpected
outcomes. Therefore, this article introduces a seismic image
sampling method based on spectral clustering [24]. Spectral
clustering is a leading and popular technique in unsupervised
data analysis [25]. It leverages the spectral properties of the
Laplacian matrix to partition the data into meaningful clusters,
even in cases where the clusters are not linearly separable in
the original feature space [26], [27]. This method takes into
account prior information about the structural characteristics of
seismic images. Compared with AL and equal interval sampling,
it demonstrates improved performance during training.

In addition to data selection, model selection is a crucial issue
in few-shot learning. The scarcity of labeled data implies the
unavailability of a validation set, which is a common problem
in seismic image segmentation with limited samples. Previous
studies [19], [23], [28] have also lacked a validation set for model
selection during the training process. The absence of a valida-
tion set remains a concerning matter, despite the availability
of various techniques to mitigate overfitting. To address this
issue, we propose a novel approach in this study. We introduce
an unsupervised validation method for model selection based
on the continuity characteristics of seismic images. The main
contributions of this article are summarized as follows.

1) We applied a clustering approach specifically tailored to
the structure of seismic data to select training samples.
This approach outperforms interval sampling and AL
methods, leading to improved model training.

2) To address the model selection problem in few-shot learn-
ing, we introduce an unsupervised validation method. This
method utilizes the continuity of seismic data to overcome
the challenge of lacking a partition for a validation set due
to limited labeled data.

The rest of this article is organized as follows. In Section II, We
present theoretical approaches to spectral clustering sampling
(SCS) and unsupervised validation. In Section III, we conduct

Fig. 1. First image represents the 3-D seismic data of the inline 400 profile,
while the second image corresponds to the inline 405 profile. Subsequently, the
labels corresponding to each profile are provided.

experiments and do analyses. In Section IV, We discuss the
significance of the proposed methods in seismic image segmen-
tation. Finally, Section V concludes this article.

II. THEORY

In this chapter, for the sake of facilitating subsequent explana-
tions, we will begin by providing a detailed introduction to the
dataset used in our study. Subsequently, we will elaborate on the
effectiveness of SCS in seismic data and discuss the fundamental
principles of unsupervised validation.

A. Datasets

The proposed method will be implemented on the F3
dataset [29], which comprises six distinct seismic phases as
follows:

1) the upper N.S. group;
2) the middle N.S. group;
3) the lower N.S. group;
4) the Rijnland/Chalk group;
5) the Scruff group;
6) the Zechstein group.
To facilitate model training, each profile in this dataset has

been resized to dimensions of 256× 896. The dataset consists of
a total of 601 profiles spanning the inline range of 100–700. The
F3 dataset is characterized by two key aspects that differentiate
it from typical natural image datasets.

Initially, as demonstrated in Fig. 1, the seismic profiles exhibit
robust spatial continuity between adjacent profiles. A cursory
observation of the figure reveals that the inline 400 and 405
profiles in this dataset look nearly indistinguishable. Here, the
similarity implies that if a model performs well in segmenting
the 400 profile, it is likely to perform well in segmenting the 405
profile as well.
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Fig. 2. Proportions of the six seismic facies in the overall F3 dataset.

Another notable characteristic of the F3 dataset is the im-
balanced distribution of seismic facies classes. The lower N.S.
group, comprising nearly 50% of the dataset, exhibits the largest
proportion, while the Zechstein group is limited to a mere 1.9%
of the dataset. Fig. 2 provides a comprehensive visualization of
the category distribution across the six geological layers present
in the F3 dataset.

B. Spectral Clustering Sampling

In our previous discussion, we noted the strong similarities in
seismic profiles within 3-D seismic data cubes. When choosing
seismic profiles to predict the entire 3-D data cube, there may be
redundant information present within the profiles. Clustering of-
fers an unsupervised means to categorize the data, partitioning it
into different classes, each exhibiting unique features. Sampling
profiles through clustering can help circumvent the selection of
profiles containing redundant information. However, in seismic
data, clustering methods often produce results that conflict with
geological principles. The Euclidean distance is defined by the
following formula:

D(X,Y ) =

√∑m

i=1

∑n

j=1
(xij − xij)2 (1)

where X and Y represent two distinct seismic profiles. As
illustrated in Fig. 3(a) represents the European distance from
inline 100–700 profiles to inline 400 profile. The three red
dots correspond to (b) inline 360, 400, and 655 profiles. It is
counterintuitive to observe that, although inline 360 and inline
400 appear more similar, they are farther apart in Euclidean
distance. Using this distance metric for clustering might lead to
clustering inline 400 and inline 655 together. In such a scenario,
if the inline 400 profile is chosen for training the model, it may
not predict the inline 655 profile accurately. The authors give a
more detailed explanation of how spectral clustering solves this
problem next.

Spectral clustering is a traditional clustering algorithm that
follows a two-step process. First, it constructs a similarity matrix,

Algorithm 1: SCS.

Input: Data X ∈ RN×d, Similarity matrix W ∈ RN×N ,
Sample size k

Output: x∗
1,. . .,x∗

k

1: Based on W using Spectral Clustering algorithm to
obtain k sets A1,. . .,Ak[30].

2: for each i ∈ [1, k]

ai =
1

|Ai|
∑

xj∈Ai

xj

3: end for
4: for each i ∈ [1, k] do

x∗
i = argmin

xj∈Ai

‖ai − xj‖22

5: end for
6: return x∗

1,. . .,x∗
k

denoted as W

W =

⎡
⎢⎢⎣
w11 w12 · · ·
w21 w22 · · ·

...
...

. . .

⎤
⎥⎥⎦
N×N

(2)

where N is the total number of data points and wij is the
similarity between the ith data point and the jth data point. This
similarity matrix captures the pairwise similarities between all
data points. Subsequently, spectral clustering performs cluster-
ing based on this similarity matrix, leading to the formation of
distinct clusters. When generating the similarity matrixW , there
are three available methods [30], and in this case, we choose
to establish the similarity matrix based on k-nearest neighbor
(KNN) graphs. For each data point x, if it is among the KNN
of another point, we compute the similarity value wij between
them, which is defined as follows:

wij =

{
0 xi /∈ K(xj) or xj /∈ K(xi)

1 xi ∈ K(xj) and xj ∈ K(xi)
(3)

where K(xi) is defined as the set of M data closest to xi in
the entire dataset X . As depicted in Fig. 3(a), it aligns with the
observation that, as the spatial distance increases, the Euclidean
distance also increases within a specific range around the 400
profile. Notably, from profiles 380 to 420, representing the
nearest 40 points, satisfy this criterion. To ensure all profiles
adhere to this condition, we set the value of M for nearest
neighbors to M = 30 (a little smaller than 40). As long as M is
less than 30, we can then guarantee that the M nearest points to
xi under the Euclidean distance are also around xi in the actual
spatial sequence. After calculating the similarity matrix W , the
detailed procedure of the SCS algorithm is as follows.

When dealing with seismic image profiles that exhibit spatial
continuity, using the nearest-neighbor method to construct the
similarity matrix in spectral clustering ensures that the clustering
results will also display continuity. In other words, the results
obtained from such spectral clustering will not exhibit abrupt
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Fig. 3. (a) European distance from inline 100–700 profiles to inline 400 profile. The three red dots correspond to (b) inline 360, 400, and 655 profile. We find
that the inline 400 profile is further away from the inline 360 profile and closer to the inline 655 profile in terms of Euclidean distance, but intuitively the 360 and
400 profiles are more similar.

changes or jumps. In Fig. 4, we depict the clustering results of
three methods—K-means, spectral clustering, and SPS [21]—
applied to the F3 dataset. A comparison of these methods reveals
that both SPS sampling and K-means clustering results exhibit
jumps or discontinuities. In Fig. 4(a), the portion highlighted
by the red line illustrates that the inline 400 and 600 profiles
are clustered together, despite the presence of an intermediate
cluster separating them. This clustering result clearly violates
the assumption of spatial continuity inherent in seismic data.

Spectral clustering not only produces superior results but also
demonstrates enhanced stability, thereby being less susceptible
to variations caused by random seed initialization. In contrast,
both k-means and SPS are inclined to yield varying outcomes
when the random seed is altered. Unstable clustering results
can be especially problematic when training a model since
it becomes uncertain whether the obtained results will prove
satisfactory or unsatisfactory.

C. Unsupervised Validation

In the field of few-shot learning, specifically in seismic
segmentation, the scarcity of labeled samples poses challenges
in establishing a separate validation set. The concept of unsu-
pervised validation is based on the recognition that, due to the
spatial continuity of adjacent seismic profiles, the performance
of a network model may be inferred from the continuity of the
predicted labels of adjacent profiles. Simply put, as a network
model’s performance improves, the predicted labels should
exhibit a more pronounced continuity. Fig. 5 presents the
prediction results of two models possessing mean intersection
over union (MIoU) values of 67% and 86%, respectively, for
inline 650 and 649 profiles. The figures illustrate that the model
with poorer performance displays substantial differences in the
predicted results for adjacent profiles due to its unpredictable
nature. Conversely, the model with higher performance exhibits
minimal variations in the predicted results for neighboring

profiles, which can be discerned visually. We define the
distance D(X,Y ) between two processed labels as follows:

δ(xij , yij) =

{
0, xij = yij

1, xij �= yij
(4)

D(X,Y ) =

n∑
i=1

m∑
j=1

δ(xij , yij) (5)

where X and Y is the input matrices, while n and m are their
respective sizes. To increase the stability and reliability of the
sum of differences (SD) indicator, we employ the following
procedure to handle the labels generated by the model: if the
probability value of the predicted class for a pixel falls below
a threshold, denoted as T , we assign a class label of 0 to that
particular pixel. This approach ensures that any pixel whose
predicted class probability is below the threshold is effectively
classified as 0. This is mathematically expressed as follows:

Softmax(x) :

⎡
⎢⎢⎢⎢⎣
x1

x2

...

xc

⎤
⎥⎥⎥⎥⎦ →

⎡
⎢⎢⎢⎢⎣
p1

p2
...

pc

⎤
⎥⎥⎥⎥⎦ (6)

Threshold(p) =

{
argmax(pi) max(pi) >= T

0 max(pi) < T.
(7)

Processing all the pixel points pij of a profile in this way, we
can obtain Y . The new metric for unsupervised validation SD
is the sum of the differences in the high-confidence regions of
all profiles, can be expressed as follows:

SD =
N−1∑
i=2

D(Yi, Yi−1) +D(Yi, Yi+1) (8)
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TABLE I
RELATIONSHIP BETWEEN THE VALUE OF SD AND MIOU AND MFIOU

Fig. 4. Clustering results of the three different methods on the inline 100–700
profiles. (a) K-means clustering. (b) Spectral clustering. (c) SPS. In the K-means
method, the red line indicates that the data points have been clustered into one
group.

where N is the size of the data. The relationship between the
metric SD and the model metrics MIoU and frequency-weighted
intersection over union (FWIoU) is given in Table I. It is evident
that as the metrics FWIoU and MIoU improve, the value of SD
gradually decreases, indicating a strong correlation between
them. When calculating the SD using the ground truth labels
(i.e., with a 100% accurate model), the SD value is minimal.

Fig. 5. (a) and (b) is the prediction results of the model with an MIoU of 67%,
(c) and (d) is the prediction results of the model with an MIoU of 86%, and
(e) and (f) are seismic data profiles of inline 650 and 649, respectively.

In the context of few-shot learning for seismic segmentation,
conventional validation methods suffer from the limitation of
utilizing only a small number of seismic profiles as the validation
set. Due to this limited data, the validation set fails to provide
a comprehensive representation of the overall data distribution,
resulting in substantial bias during model selection. To address
this issue, we propose the use of the SD value, which calculates
the differences in spatial continuity between each seismic profile
and its neighboring profiles. By considering the entire dataset,
the SD value enables us to select a more optimal model that better
captures the underlying patterns and structures in the seismic
data. This approach helps mitigate the bias introduced by using
a small validation set and enhances the overall robustness of the
model selection process.

III. EXPERIMENTS

A. Implementation Details

In our experiments, we utilize the U-Net++ architecture [31]
as the backbone network, which is a state-of-the-art deep
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TABLE II
PERFORMANCE OF DIFFERENT METHODS FOR SELECTING TRAINING DATASETS

learning architecture that enhances skip connections compared
with U-Net and demonstrates superior performance in seg-
mentation tasks. Furthermore, we employ ResNet34 [32] as
the encoder while keeping the decoder part unchanged. The
model is trained using the Adam optimization method [33],
with a learning rate of 0.0002. Detailed information about the
dataset can be found in Section II-A. After selecting the training
samples, the remaining samples are designated as the testset for
evaluation. To augment the data, in addition to traditional tech-
niques, such as flipping and Gaussian noise, we also employ the
TPS method [23]. The model follows a section-based paradigm
with a batch size of 16. The spectral clustering algorithm is
implemented using Scikit-learn, while the segmentation task is
implemented using the PyTorch framework [34] on an NVIDIA
GeForce GTX 4090 GPU.

B. Metrics

MIoU is one of the most commonly used metrics in segmen-
tation tasks, and its calculation can be expressed as follows:

MIoU =
1

k

k∑
i=1

pii∑k
j=1 pij +

∑k
j=1 pji − pii

. (9)

Here, k represents the number of categories or classes. pij
denotes the classification outcome where a pixel originally
belonging to category i is predicted to fall under category j. This
metric provides a visual representation of the ratio between the
predicted segmentation and the ground truth.

Mean pixel accuracy (MPA) is considered one of the fun-
damental evaluation metrics in segmentation tasks, which is
defined as follows:

MPA =
1

k

k∑
i=1

pii∑k
j=0 pij

. (10)

Given the imbalanced nature of class distribution in the F3
dataset, it is crucial to incorporate the frequency-weighted in-
tersection over union (FWIoU) metric. FWIoU is defined as
follows:

S =
1∑k

i=1

∑k
j=1 pij

(11)

FWIoU =
1

S

k∑
i=1

∑k
j=1 pijpii∑k

j=1 pij +
∑k

j=1 pji − pii
. (12)

In our experiments, it can be observed that the MIoU metric dis-
plays larger fluctuations, whereas FWIoU demonstrates greater
stability.

One important point to note is that all the aforementioned
metrics are calculated based on the predicted outcomes for a
single profile. However, in later sections of the article, these
metrics are averaged over all profiles when evaluating a model.
If a category does not appear in both the predicted and true labels
of a profile, that particular profile is excluded when calculating
the model’s single IoU for that specific category.

C. Experiments of SCS

To validate the effectiveness of SCS in seismic data analysis,
we compared it with interval sampling and AL. In addition, we
evaluated the performance across different sample sizes ranging
from 2 to 5. The results are presented in Table II. From the
table, we observe a significantly superior performance of SCS
sampling when compared to interval sampling. Particularly, for
sample sizes of 2 and 5, the MIoU metric improved by 3.36% and
4.31%, respectively. However, for sample sizes 3 and 4, the SCS
method did not exhibit a notable improvement over the interval
sampling. This can be attributed to the fact that interval sam-
pling does not incorporate the inherent structural information of
the data, rendering it less stable. Consequently, while interval
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sampling may occasionally yield favorable results, it can also
lead to highly unfavorable outcomes in other cases.

In terms of trained model performance, the SCS method
exhibits slightly superior outcomes to AL, although the dif-
ference is not statistically significant. Nonetheless, SCS pro-
vides two additional advantages over AL. First, as illustrated
in Table II, SCS demonstrates remarkable stability due to its
clustering mechanism based on the structure of seismic data.
It is highly robust and immune to any fluctuations resulting
from random seed initialization. Given the same dataset, SCS
produces identical results consistently. On the other hand, the
AL selects varied samples each time, leading to significant fluc-
tuations in the corresponding outcomes, which may not always
be favorable. Second, the AL algorithm is inherently complex,
requiring consideration of initial sample selection during the
iterative process. Conversely, the SCS algorithm significantly
reduces the computational time. For instance, when selecting 5
samples, AL takes approximately 1 h to complete, whereas the
SCS method only requires 4 s.

From the table, we can observe a gradual improvement in
the performance of the SCS method compared with the AL
sampling method as the number of samples increases. This can
be easily understood as the AL method selects certain samples
and then fixes them, subsequently adding new samples on top of
those fixed ones. In this process, the AL method may obtain a
suboptimal solution. This can be analogous to feature selection,
where it is known that a single optimal combination of a few
features may not necessarily yield superior performance, as
interference between features can arise.

D. Experiments of Unsupervised Validation

In Table II, we can see that regions upper N.S., middle N.S.,
and lower N.S. have the highest IOU scores. With a small size
of samples in the training set, we can achieve excellent results
in the test set, and itit is stable and difficult to further improve
their accuracy. Due to their smaller proportion in the overall
data, Scruff and Zechstein exhibit greater variability in their
predictions. Selecting a model using unsupervised validation
means choosing a better model among these variations. As
shown in Fig. 6, a total of nine experiments were conducted, and
the significant variations in the results between experiments can
be attributed to the stochastic nature of data augmentation and
the limited number of samples in classes Zechstein and Scruff.
In these experiments, the indexes of the profiles used in training
set and in the validation set of the traditional validation method
are, respectively

Train Index = {156, 243, 382, 550, 651} (13)

Validation Index = {450} . (14)

The profile with index 450 was chosen as the validation set
because it is relatively distant from all five profiles in the training
set. In the “no validation” method, we selected the model from
the final training iteration for evaluation. The experimental re-
sults clearly demonstrate that in all nine trials, the worst results
consistently occurred in the absence of a validation set. This
observation indirectly highlights the necessity of a validation
set in networks where overfitting is not severe. Futhermore,

Fig. 6. Comparison of three methods, the method of not using the validation
set, the traditional validation method and the unsupervised validation in nine
training sessions. (a) MIoU. (b) IoU of Scruff. (c) IoU of Zechstein.

there is generally minimal difference between the traditional
validation method and the “no validation” method. This can be
attributed to the limited size of the validation set, which fails to
fully represent the overall data distribution, thereby limiting its
effectiveness in selecting models during the training process.
To choose a superior model, it becomes crucial to increase
the sample size of the validation set. However, this approach
contradicts the essence of few-shot learning, which aims to train
better models with a small number of training examples. The
requirement for a larger labeled validation dataset goes against
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Fig. 7. Displays the values of FWIoU, SD, and traditional val loss for the trained model across 600 rounds of the training process. The gray dotted lines indicate
points where the FWIoU experienced sudden fluctuations during the model training, specifically indicating deteriorations. The numbers located at the top indicate
the corresponding epochs for each dotted line.

this principle and becomes counterproductive. By employing the
unsupervised validation method, we utilized the entire dataset
and leveraged the full information available, resulting in superior
performance compared to traditional methods. This approach
consistently identifies better models, as it takes advantage of the
complete dataset and its inherent properties.

E. More Experiments

In order to get a more intuitive feel for how the SD value
screening model works, as shown in Fig. 7 we then evaluated it
once more with the test set after each epoch of one training was
completed. There were 600 epochs in total.

The training set and validation set used in the traditional
method remained the same as previously established. The overall
trend of the SD value curve closely resembles that of the tra-
ditional validation method, gradually decreasing from a higher
value. The SD values in the initial 100 rounds exhibit instability,
which can be attributed to the model’s instability during this
stage, causing greater fluctuations in the probability values for
each pixel point. Consequently, pixel points with probability
values below the threshold of T may have been set to 0, leading
to a decrease in the SD value. After training the model for 200
epochs, the FWIoU stabilizes, but there are sporadic instances
where the model’s performance deteriorates and jitter occurs.
Notably, such an occurrence is observed at 460 epochs, with
the FWIoU abruptly dropping from 95% to below 88%. This
anomaly was effectively identified using both the traditional
validation method and the method proposed in this chapter,
resulting in a sudden increase in both the SD and traditional
val loss values.

But in some instances, the degradation of model performance
goes unnoticed by traditional validation methods. At epochs

416, 513, and 553, the FWIoU experienced a slight drop,
albeit not as significant as the earlier mentioned one. During
these epochs, the SD values exhibited pronounced spikes in
the corresponding positions. However, the traditional method
failed to detect this information, resulting in a flat curve at those
points. The one-to-one correspondence between FWIoU and
SD values in the model training process serves as compelling
evidence for the importance of SD values in model selection.
Furthermore, the fact that the SD increases when the model
performance worsens further validates the effectiveness of the
method in the opposite direction.

IV. DISCUSSION

SCS algorithms and unsupervised validation are relevant for
the task of segmentation of seismic image. Instead of focusing on
improving the deep network structure, the application scope of
our proposed methods will be broader. Regardless of the training
method used for the network, the selection of samples and model
selection are necessary. In Fig. 6, it appears that including or
excluding the validation set does not significantly affect the
final model results. This observation suggests that overfitting
is not prominent in this network. However, it is important to
note that we cannot guarantee this is the case for every network.
Undoubtedly, processing the SD values after each training epoch
would entail a substantial computational overhead. For instance,
in the case of 600 total training epochs, calculating the SD value
for each round in the F3 dataset alone would incur an additional
hour of computational time.

Another important issue in few-shot learning for seismic im-
ages is determining the appropriate sample size, i.e., the number
of clusters in spectral clustering. If the distribution of profiles
within a 3-D seismic volume exhibits greater variability and
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complexity, it is likely to contain less redundant information.
Consequently, it may be necessary to sample a larger number
of instances from this volume to train a more effective model.
This is a very challenging problem, selecting samples with
different sampling methods and then training with the samples
is a two-stage problem. Whether the selected samples are good
or not is determined by the training results, but you have to know
the labels of the samples to get the training results. This creates
a contradiction, which will increase the amount of labelling of
seismic data, contrary to our original intention.

V. CONCLUSION

In this article, we propose methods for data sampling and
model selection in seismic image segmentation using deep learn-
ing models based on the spatial structure of seismic data. Our
data sampling method, called SCS, constructs a similarity matrix
for spectral clustering using the nearest-neighbor method, ensur-
ing that the clustering results align with the spatial characteristics
of the seismic data. We conducted experiments on the F3 dataset
and compared SCS with AL [16]. The results demonstrate that
SCS selects superior samples within seconds compared with the
hours taken by AL, making it a simple yet effective approach
for sampling seismic data.

Given the scarcity of labeled data in few-shot learning sce-
narios, we propose an unsupervised validation approach. After
each round of training, we generate processed labels for all the
data based on the model. Subsequently, we designed a metric to
quantify the differences between these labels, which is the value
of sum of difference (for). This unsupervised validation method
outperforms traditional supervised validation approaches, en-
abling the selection of better models during the training process.
Moreover, the unsupervised validation approach eliminates the
need to allocate a portion of labeled data as a separate validation
set, allowing us to utilize the entire dataset for training purposes.
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