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The Spatially Seamless Spatiotemporal Fusion Model
Based on Generative Adversarial Networks

ChenYang Weng , Yulin Zhan , Xingfa Gu , Jian Yang , Yan Liu , Hong Guo , Zilong Lian, Shiyuan Zhang,
Zhangjie Wang, and Xuechun Zhao

Abstract—Spatiotemporal fusion is a method of fusing high spa-
tial resolution low temporal resolution remote sensing images and
low spatial resolution high temporal resolution in order to obtain
high spatiotemporal resolution remote sensing images, which can
provide data support for temporal observation of fine objects, and
plays an important role in the fields of Earth sciences, environ-
mental monitoring, and so on. This article reveals an issue that is
often overlooked in the field of deep learning-based spatiotemporal
fusion: the discontinuity between image blocks and image blocks.
This discontinuity may have an impact on the visualization of
remote sensing images and subsequent applications. In this regard,
this article proposes a spatially seamless stitching approach to
optimize the spatiotemporal fusion model based on deep learning.
By using this method, we successfully obtain high-quality fused
remote sensing images with smoother transitions. The spatiotempo-
ral fusion model used in the experiment is a generative adversarial
network-based spatiotemporal fusion model (GAN-STFM) and the
data are from the Beijing Gaofen-6 dataset (BJGF6). After our
splicing method, the ratio of root-mean-square error (RMSE) at
the splicing seam to the overall RMSE is reduced from 1.28 to 0.99,
which effectively improves the continuity of the image. This new
image splicing method has the potential to improve the utility of
deep learning-based spatiotemporal fusion algorithms, which has
application value for generating large-scale long time series remote
sensing datasets with high temporal and high spatial resolution.

Index Terms—Deep learning, error distribution, Gaofen-6, spa-
tial resolution, spatiotemporal fusion, splicing method.
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I. INTRODUCTION

IN LIGHT of significant progress in remote sensing technol-
ogy, satellite-acquired image data have become instrumental

for Earth observation and environmental monitoring. However,
hindered by hardware constraints and observational limitations,
individual satellites fall short in delivering image data with ex-
tensive spatial and temporal coverage [1]. To fully comprehend
and analyze dynamic spatial and temporal patterns across the
Earth’s surface, and to acquire remote sensing data that are more
expansive spatially and consistent temporally, the necessity for
spatiotemporal fusion techniques in remote sensing imagery has
become paramount.

Spatiotemporal fusion of remote sensing images involves
blending data from sources with low temporal resolution and
high spatial resolution, like MODIS data, with data from sources
featuring high temporal resolution and low spatial resolution,
such as Landsat data. This fusion aims to acquire data with both
high temporal and spatial resolutions, constituting a technique
for blending diverse remote sensing images.

Utilizing spatiotemporal fusion allows for long-term mon-
itoring and change detection at specific locations, providing
insights into the temporal evolution of surface processes. It also
supports the capture and mapping of high-resolution remote
sensing images across extensive geographical areas, aiding in
the analysis of spatial distributions of land features.

Spatiotemporal fusion of remote sensing images plays a cru-
cial role in various fields. In recent investigations, researchers
have applied spatiotemporal fusion to different domains such
as soil carbon emissions monitoring in subtropical forests [2],
the retrieval of suspended particulate matter in saline lakes [3],
the retrieval of daily surface temperatures, and others [4]. The
pronounced utility of spatiotemporal fusion is particularly evi-
dent in its pivotal role within the domains of Earth science and
environmental monitoring.

Since the release of the spatiotemporal adaptive reflectance
fusion model (STARFM) in 2006 [1], the technology of spa-
tiotemporal fusion in remote sensing has continued to evolve.
Zhu et al. [5] categorized algorithms for spatiotemporal fusion
into five types: methods based on unmixing, methods based on
weight functions, Bayesian methods, learning-based methods,
and hybrid methods. Unmixing methods [6], [7], based on linear
spectral theory, use coarse pixels of the target date to unmix and
obtain fine pixels of the target date, such as multisensor multires-
olution technology (MMT). Weight function methods combine
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input images linearly to obtain fine pixels of the target date, as
seen in STARFM and the widely used ESTARFM [8]. Bayesian
methods [9], [10] treat spatiotemporal fusion as a maximum
a posteriori probability problem, generating fine images of the
target date that maximize the probability based on input images.
Hybrid methods [11], such as flexible spatiotemporal data fusion
(FSDAF) [12], aim to improve model accuracy by combining the
strengths of various fusion methods. FSDAF integrates decom-
posed methods, weighted function-based methods, and spatial
interpolation, requiring only a pair of high coarse-resolution
images from reference dates and a coarse-resolution image from
the target date.

The four methods mentioned above are part of the traditional
spatiotemporal fusion of remote sensing images, which involves
linear modeling. However, spatiotemporal changes in features
cannot be simply described as linear changes. Remote sensing
images are affected by hardware performance, physical climate,
noise, and other factors [13]. Simple linear modeling results
in a significant loss of information. Traditional methods often
require numerous manual parameter settings, lack compatibility,
and robustness with algorithms, and are not easily scalable [14].

With the development of deep learning, especially the wide
use of convolutional neural networks (CNNs) in the field of
computer vision [15], [16], [17], [18], [19], an increasing number
of researchers are exploring deep learning-based spatiotemporal
fusion techniques for remote sensing images. Specifically, deep
learning-based methods play an important role in feature extrac-
tion of remote sensing images. For example, DC-Net [20], a hy-
perspectral superresolution framework based on subpixel-level,
is built for extracting information from pixel to subpixel-level
and from image to feature-level. In addition, a hyperspectral
image classification method called GNet [21] is developed using
CNN-based feature extraction module to solve the problem of
uneven distribution of spectral and spatial features. Furthermore,
TDGN [22], a temporal difference-guided hyperspectral image
change detection network is devised based on gated recurrent
unit (GRU) block to reduce the redundance of features and boost
the training efficiency of CNN-based methods. Recently, with
the popularity of generative pretrained transformer (GPT) [23],
some researchers have started to apply the technique of GPT
to the field of remote sensing to fully utilize extensive RS Big
Data [24]. We have counted the methodological literature in the
field of remote sensing image spatiotemporal fusion over recent
years on the Web of Science. As shown in Fig. 1, it can be seen
that spatiotemporal fusion techniques based on deep learning are
receiving increasing attention, and the proportion of spatiotem-
poral fusion algorithms based on deep learning is also rising.

Initially, researchers directly established the mapping rela-
tionship between coarse-resolution images and fine-resolution
images [25], [26], [27] by directly enhancing the coarse-
resolution images of the target date, and certain fine-resolution
images were obtained. Such methods solely rely on coarse-
resolution images as input, limiting their ability to effectively
utilize images from other reference dates. In addition, the gen-
erated images exhibit poor texture details and lower fidelity.

Other methods involve additional reference information [27],
[28], [29], [30], [31], [32], [33]. A commonly used approach

Fig. 1. Yearly literature counts of journal papers introducing spatiotemporal
data fusion methods.

is to include pairs of high and coarse-resolution images be-
fore and after the target date, along with a coarse-resolution
remote sensing image of the target date as input to simulate the
fine-resolution image for the target date. However, this method
can only generate remote sensing images for intermediate dates
and is not applicable to fusion requirements for newer dates.
Moreover, it imposes limitations on the quantity of input data
and time constraints, thereby restricting its application scenarios.

Some methods utilize generative adversarial networks
(GANs) for image fusion to generate more realistically restored
fine-resolution remote sensing images [27], [28], [34], [35].
Approaches like GAN-STFM [28] require only a reference
image from another date and the coarse-resolution image of the
target date as input, significantly reducing the constraints on the
spatiotemporal fusion of remote sensing images. This broadens
the application scenarios of the algorithm.

In order to achieve better fusion results and to improve the
robustness of the model for more complex mappings, a large
number of learnable parameters exist in current end-to-end deep
learning models. The number of these parameters is much larger
than in traditional spatiotemporal fusion models. Because of
this, these parameters require a large amount of computational
resources to process massive amounts of data and perform a
large number of matrix operations when performing training
and tuning. GPUs can execute multiple matrix operations and
parallel computations, expediting the training and inference
speed of deep learning models. However, due to the limitations
of hardware, for relatively large-sized images, using the original
image directly as input often leads to memory explosion. A
typical approach is to slice the original image, simulate each im-
age block individually, and finally stitch together the simulated
image blocks to form a large-scale simulated image [28], [35].

In practical applications, such as spatiotemporal fusion of
remote sensing images on a large scale, tessellated splicing
breaks are a common problem in the results of block imagery
splicing during the processing of analog high-resolution imagery
using simulation. This problem may not be prominent in initial
observations but can become apparent in detailed analysis and
subsequent applications.

Each input image block is a continuous and independent
unit of data subdivided from the fused image. However, if
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these blocks are not properly handled when stitched together
after processing by the fusion model to generate a complete
simulated image, a noticeable discontinuity from block to block
can occur, presenting a phenomenon similar to a tessellated
texture. In other words, we expect a smooth and continuous
visual effect. However, in reality, there is no continuity be-
tween the image blocks, creating many unnatural transitions
that degrade the visual effect of the simulated high-resolution
image.

The existence of this fault phenomenon not only affects the
visual experience but also has a considerable impact on sub-
sequent applications. For instance, in applications like remote
sensing image classification, target detection, and environmental
monitoring, these abrupt transitions can lead to misinterpretation
and affect the accuracy and usability of the results.

Hence, the issue of tessellated splicing sections cannot be
overlooked. To address this problem in a targeted manner, we
need to conduct an in-depth study on the process of image
splicing. The aim is to obtain fused images of higher quality
when dealing with spatial and temporal fusion of a wide range
of remote sensing images, thus further improving the application
value of fused images.

We replicated the GAN-STFM model on a medium-resolution
scale (MODIS-Landsat). The spatiotemporal fusion model per-
forms well on this medium-resolution dataset, demonstrating
good performance in the errors at the seams. The root-mean-
square error (RMSE) between the seams and image blocks
differs by only about 2.08%. We reviewed the performance
of spatiotemporal fusion models in deep learning at higher
resolutions. However, whether in medium-resolution or high-
resolution spatiotemporal fusion, the focus is predominantly on
the overall spectral and spatial accuracy, rather than the accuracy
differences at the seams and across the entire image.

In this article, we have made the following contributions: 1)
comparatively tested the phenomenon of splicing gaps in simu-
lated images at different scales and found that obvious splicing
gap phenomena appeared in the fused images from 16 to 8 m;
2) proposed an optimized generative adversarial spatiotemporal
fusion model based on spatial seamless splicing approach, which
can effectively eliminate discontinuous cross-sections due to the
splicing of image blocks.

The rest of this article is organized as follows. Section II
introduces a spatially seamless stitching method optimized for
GAN-based spatiotemporal fusion models. In Section III, we
present the data used in the experiments, the discontinuity phe-
nomenon of image block transitions at different scales, and the
stitching effects of our proposed method. Finally, Section IV
concludes this article.

II. METHODS

In this chapter, we introduce our proposed spatially seamless
spatiotemporal fusion model. In the first part, we provide an
overview of our spatiotemporal fusion model, from data prepa-
ration to fusion and final stitching. In the second part, we detail
our spatially seamless stitching approach. The last part describes
the deep learning model we used and its features.

Fig. 2. Spatially seamless spatiotemporal fusion model.

A. Spatially Seamless Spatiotemporal Fusion Model

Our model is divided into three parts: training data prepara-
tion, model learning, and model synthesis, as shown in Fig. 2.

In the training data preparation part, we collected the Gaofen-
6 16-m resolution and 8-m resolution data for basic remote sens-
ing image preprocessing, including radiometric and geometric
corrections. Next, the grid file is generated according to the data
range and image block size, image block repetition rate, and the
images are blocked according to the grid to get the image block
database with high and low resolution for different dates. Finally,
the data are encoded in the format of fine image blocks for the
target date, fine image blocks for the reference date, and coarse
image blocks for the target date to obtain the image pair index
table. The image block database and the image pair index table
form the spatiotemporal fusion training set for model learning.
The image pair index table can be used to read the image
block data quickly in the subsequent training stage, while image
blocks with a certain repetition rate can improve the model’s
ability to extract features from neighboring image blocks, thus,
improving the edge quality of the image blocks generated
by the model.

In the model learning part, taking GAN-STFM as an example,
we read the image block pairs from the image pair index file and
input them into the generative adversarial model. The continu-
ous confrontation between the generator and the discriminator
improves the fusion capability of the generator.

In the simulation generation part of the model, we fuse the
fine image of the reference date to be fused with the coarse
image of the target date to obtain the fine image of the target
date. We first preprocess the input data (this is the same as the
preprocessing in the training data preparation part), and then
we slice the image blocks, we slice the image blocks with the
interval of a pixel, and at the same time, each image block is
expanded by b pixels to the surrounding neighboring image
blocks, i.e., we slice the image blocks with the size of ((a +
2b) × (a + 2b)) pixels, and the image block is used as the input
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Fig. 3. Spatially seamless stitching.

to the GAN-STFM network, and the image block is then used
as the input to the GAN-STFM network, and the image block
is then used as the input to the GAN-STFM network. The fused
image blocks are spatially seamlessly stitched together to obtain
a finely simulated image of the target date. (See the next part for
details on the splicing method.)

B. Spatially Seamless Stitching

Although deep learning-based fusion models are capable of
generating enough fused images for general use, these methods
have always had the issue that the splicing between image blocks
may result in tessellated cross-sections in the generated fused
images. In this article, we propose a new method called “spatial
seamless stitching,” which provides a more effective means of
fusing a wide range of images.

First, we will explain the common splicing method and its
issues. The input for the common spatial and temporal fusion
model is processed by dividing the input image into nonoverlap-
ping neighboring image blocks. While this approach is simple
and straightforward, it can lead to discontinuous transitions in
the output. The fusion process is independent from block to
block, resulting in a discontinuous transition between neigh-
boring blocks. This compromises the quality of the resulting
fused image. The ordinary splicing method does not utilize
the transition information between neighboring image blocks,
resulting in obvious breaks in the splicing process of the image
blocks and degrading the visual effect.

To address this issue, we suggest a new splicing method.
Specifically, we focus on the spatially seamless splicing method
discussed in this article. In contrast to the conventional splicing
method, this technique overlaps image blocks, as illustrated in
Fig. 3. The generator of the spatiotemporal fusion model uses
the image blocks with (a) as the interval cut and (a + 2b) as the
side lengths (the range of the black box line) to predict the target
date image. The (a + 2b) × (a + 2b) pixel-sized image blocks
output from the deep learning model are stitched together by
removing the buffer (light blue area) with radius b around them.
The size of the buffer radius b depends on the structure of the
chosen deep learning model and is related to the filling radius

Algorithm 1: Spatially Seamless Stitching.
1: width = image.width
2: height = image.height
3: for x in width, step = a do
4: for y in height, step = a do
5: input = image[x-b:x+a+b, y-b:y+a+b]
6: output = predict(input)
7: output = output[b:a+b, b:a+b]
8: fusionImage[x:x+a, y:y+a] = output
9: end for

10: end for

Fig. 4. Overlapping area between image blocks (take three image blocks as
an example).

of the stacked convolutional layers of the spatiotemporal fusion
deep learning neural network, as shown in the following:

b ≥
N∑

i=1

pi. (1)

According to (1), the buffer radius b must be greater than or
equal to the cumulative sum of the padding radii pi of all the
convolutional layers concatenated in the model. For instance, in
the case of the fusion network GAN-STFM, which we are using
as an example, there are 17 convolutional layers concatenated
on its generator, and the sum of the padding radii is 8. Therefore,
b must be an integer greater than or equal to 8.

The input image blocks are processed using spatially seamless
stitching, as demonstrated in Fig. 4. In contrast to the standard
stitching method, image blocks A and C have a 2b-wide overlap
region (shaded area) with image block B during input. It is
crucial to note that the overlap region plays a significant role
in the model’s comprehension of the input image. The deep
learning model can extract spatial and spectral features between
adjacent image blocks more effectively through this overlap
region. This results in a more continuous transition between
neighboring image blocks when generating the fused image.
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Fig. 5. Whole architecture of the GAN-STFM model for spatiotemporal fusion (GEncoder-ResBlock and GDecoder-ResBlock represent the residual blocks for
the generator encoder and decoder, respectively.

The emergence of the spatially seamless stitching method
undoubtedly brings a new processing method to the field of deep
learning. It greatly reduces the impact of interrupted surfaces
of image blocks and enhances the visual effect and quality of
the generated fused images. Although this method may affect
processing speed, it provides significant help in ensuring overall
quality.

C. GAN-STFM Model

The spatiotemporal fusion model used in this article comes
from the GAN-STFM proposed by Tan et al. [28]. This model
is a spatiotemporal fusion model based on a GAN. As shown in
Fig. 5, this model is divided into a generator and a discriminator,
both of which are constructed by stacking residual blocks based
on convolutional neural networks.

Compared to other models, it has the following features.
1) Fewer inputs are needed: Compared with conventional

spatiotemporal fusion models, GAN-STFM only needs
two images as input. That is, a coarse-resolution image on
the prediction date and a fine-resolution reference image
from any time in the same area. This reduces the difficulty
of data collection and makes practical application more
convenient.

2) Lesser time constraints: Traditional spatiotemporal fu-
sion models have strict time constraints on the choice
of reference images, while GAN-STFM eliminates this
restriction. It can select a fine-resolution reference image
at any time, making data preparation more flexible.

3) Better application prospects: GAN-STFM has shown sim-
ilar to better performance than that of the statistical fusion
model in experiments. Its flexibility and simple data re-
quirements make the data preparation for spatiotemporal
fusion easier, providing better prospects for its practical
application.

D. Model Time Complexity

The runtime of our method is mainly affected by the training
and analysis speed of the chosen deep learning-based spatiotem-
poral fusion network. Different stitching methods can affect
the time complexity of the model by affecting the amount of
data processed by the network. Assume that the time com-
plexity of the selected deep learning network is O(f(n), then

the time complexity of the seamless spatiotemporal fusion
model is O( (a+2b)2

a2 f(n)). With our chosen GAN-STFM model
as an example, when a = 256, b = 8, its time complexity is
O(1.129f(n)). This means that the time complexity of our
method is 1.129 times that of conventional methods.

III. EXPERIMENTS AND RESULTS

In this chapter, from the first to the third part, we sequen-
tially introduced the data used in the experiment, including two
datasets at 500 m-30 m and 16 m-8 m; the design of the experi-
mental scheme; and the quantitative evaluation indicators of the
fusion results. In the fourth part, we compared the discontinuity
phenomena of image blocks under different spatial resolutions.
In the last part, we compared the fusion effects of the spatially
seamless spatiotemporal fusion model and the conventional deep
learning model.

A. Data

The Lower Garonne Catchment (LGC)1 study area data is a
commonly used open-source dataset in the field of spatiotempo-
ral fusion [36]. The LGC study area is located in the north of New
South Wales, Australia, and covers an area of 5440 square kilo-
meters. This dataset consists of 14 cloud-free Landsat-MODIS
pairs from April 2004 to April 2005. The images in the LGC
dataset are cropped to a size of 3072 × 2560. The LGC dataset
has significant land cover type changes.

Current deep learning-based spatiotemporal fusion models
perform well on 500 m-30 m datasets like LGC. We will use
this data to test the transition continuity issue between adjacent
image blocks in the spatiotemporal fusion model.

The Beijing Gaofen-6 (BJGF6) dataset is a dataset created
independently for this study. The Gaofen-6 remote sensing
satellite platform provides two payloads: a 16-m multispec-
tral medium resolution wide swath camera (WFV) and a 2-m
panchromatic/8-m multispectral high-resolution camera (PMS).
The WFV has a swath width of 850 km, while the PMS has only
95 km. As shown in Fig. 6, the middle yellow box is the shooting
range of PMS, and the remaining images are shot by WFV.
By fusing these two images, the coverage of the PMS image

1LGC: http://dx.doi.org/10.4225/08/5111AD2B7FEE6

http://dx.doi.org/10.4225/08/5111AD2B7FEE6
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Fig. 6. Comparison of swath width of WFV and PMS.

Fig. 7. Spatial distribution of Beijing GF-6 Dataset.

can be expanded significantly, thereby improving the temporal
resolution.

The BJGF6 dataset covers a total of 110 cloud-free remote
sensing images from 2019 to 2020 of Beijing and its surrounding
areas. We perform radiometric and geometric corrections on
the images, and register all images to a base map. We then
divide the images into image blocks of size 512 × 512 based
on the image range, and cut and pair them according to the
geographic coordinates of the image blocks. Eventually, we
got about 230 000 pairs of images. Each image pair consists
of the registered coarse image of the target date (16 m), the
fine reference image of other dates (8 m), and the actual image
of the target date (8 m). The first and second images are the
inputs for the fusion model, and the third image is the reference
output when training the deep learning model. Fig. 7 shows the
spatial distribution diagram of the dataset, where the shade of
red represents the number of image pairs in that position. The
darker the color, the more data there are.

The BJGF6 dataset has the following differences compared
with the LGC dataset.

1) The BJGF6 dataset is larger in size, more suitable for deep
learning model learning.

2) The BJGF6 dataset has a higher resolution, and the ratio
difference between high and low spatial resolutions is
smaller, which is conducive for model learning.

Fig. 8. Schematic diagram of stitching seams.

3) With a higher resolution, the BJGF6 dataset can highlight
more easily the issues related to stitching seams when
stitching together large remote sensing images in a deep
learning-based spatiotemporal fusion model.

B. Quantitative Evaluation Indicators

To evaluate the images after spatiotemporal fusion, we divide
the test area into stitching seam areas and the overall image.
Fig. 8 shows a schematic diagram of the adjacent areas of four
image blocks. The white line in the middle is the stitching seam.
Each square in the picture represents a pixel. We have analyzed
the errors of the stitching seam (dark color) and the overall image
(light color + dark color).

In terms of quantitative analysis indicators, we referred to the
error evaluation framework by Zhu et al. [37]. Since the stitching
seam only consists of a two-pixel width, we did not use spatial
accuracy indicators. Instead, we used indicators representing
spectral accuracy: RMSE and average difference (AD).

The range of the RMSE value is [0,1]. A value of 0 represents
a perfectly fused image; the larger the value, the larger the
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Fig. 9. Error spatial distribution of the fused image block. (a) Error spatial distribution of the entire image block. (b) Error distribution of the 16× 16 pixels in
the lower right corner of the image block.

TABLE I
QUANTITATIVE ANALYSIS ON THE TWO DATASETS

spectral error in the fused image. The range of the AD value
is also [−1, 1]. A value of 0 represents a perfectly fused image;
more negative values and more positive values indicate larger
spectral deviations in the fused image. Negative and positive
values represent underestimation and overestimation of spectral
information, respectively.

In addition to RMSE and AD we use RMSEseams
RMSEoverall

to evaluate the
RMSE consistency between the stitching seams and the overall
image region, if RMSEseams

RMSEoverall
is closer to 1,then the error of the

stitching seams is closer to the overall error, and the stitched
image is more continuous.

C. Experimental Design

In the experiment, we trained three sets of weights using the
GAN-STFM code shared by Tan on GitHub. The parameters
were kept the same for all three training sessions, only changing
the dataset used and the size of the image blocks. For the first
set of weights (Weight I), we used the LGC dataset, and the size
of the image block was 256 × 256; for the second set of weights
(Weight II), we used our custom BJGF6 dataset, and the size
of the image block was 256 × 256; for the third set of weights
(Weight III), we also used the BJGF6 dataset, but the size of
the image block was 272 × 272. When training the Weight II
and Weight III, we made necessary modifications to the code for
dataset compatibility.

We used Weight I and Weight II to generate fused image
blocks separately and analyzed the generated image blocks to
study discontinuities between image blocks at different spatial
scales.

We used Weight II and Weight III to generate fused im-
age blocks of different sizes, and we combined these image

blocks into whole images using direct stitching and the spatially
seamless stitching method proposed in this article. Finally, we
performed error analysis on the stitching seams and the overall
image of the stitching result.

D. Discontinuity Phenomenon of Image Blocks

1) Error Comparison At Different Resolutions: As shown
in Table I, we have carried out a comparative analysis of the
errors in the stitching seams and the overall image after directly
stitching the image blocks generated by the deep learning-based
spatiotemporal fusion model under the LGC dataset and the
BJGF6 dataset. It can be seen that, although the error at the
stitching seams in the LGC dataset is larger than the overall
error, the gap between the two is not large. However, in the
BJGF6 dataset, the error at the stitching seams is much larger
than the overall error, and the ratio of the two RMSE values has
increased from 1.02 to 1.279.

Based on our comparative experiments, we believe that the
phenomenon of discontinuity between adjacent image blocks
has a significant correlation with the spatial resolution of the
fused image. The higher the spatial resolution, the more discon-
tinuous the transition between adjacent image blocks, and the
poorer the quality of the fused image.

2) Error Distribution At 8-M Resolution: We continue using
Weight II to perform a qualitative analysis on the performance
of GAN-STFM on the BJGF6 dataset. Our aim in this analysis
is to study the spatial distribution of errors. We carry out an error
analysis on the image blocks and the large-scale remote sensing
images poststitching.

For the image blocks, we extracted training data from the
dataset where fusion times did not exceed 90 days, counting
a total of 92 115 image pairs. We calculated the RMSE by
subtracting the actual image blocks from the simulated image
blocks produced by fusion, and then accumulating these errors.
As shown in Fig. 9, one could observe that the model’s ability to
generate simulated images is not consistent—edges of the image
blocks accrue a significantly larger cumulative error compared to
that in the center. We accordingly refer to edge errors produced
during the generation of image blocks as “edge errors,” which
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Fig. 10. Average error of the fused image in the horizontal and vertical directions. (a) Average error in the horizontal direction. (b) Average error in vertical
direction.

Fig. 11. Comparison of spatiotemporal fusion results of remote sensing images. (a) Input coarse image at target date. (b) Input fine image at other date. (c) Fine
image ground truth at target date. (c) Simulated images spliced using direct splicing method. (d) Simulated images spliced by our method.

is one of the causes that leads to discontinuity when different
image blocks are combined.

Regarding the stitched images, we analyze a simulated image
of 8-m resolution (with a size of 4*4608*4608) generated by
a deep learning model. We square the difference between the
simulated and actual image, and subsequently average these
squared differences in both the horizontal and vertical directions.
The resulting statistical diagram, as shown in Fig. 10, includes
a Fig. 10(a) average cumulative error diagram in the horizontal
direction, and Fig. 10(b) in the vertical direction. It can been seen

that the stitching seams’ errors (occurring every 256 pixels) are
significantly greater than errors found elsewhere in the rows or
columns.

E. Comparison of Model Fusion Effects

1) Qualitative Analysis: We perform a qualitative analysis
on the simulated images of remote sensing spatiotemporal fusion
based on both direct stitching and spatial seamless stitching. To
ensure the consistency of the stitching seam spatial position for
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Fig. 12. Detailed comparison of the fusion results, the red lines are the splicing gaps. (a) Details of our method in urban areas. (b) Details of direct splicing
method in urban area. (c) Details of our method in farmland. (d) Details of direct splicing method in farmland.

both, we use the weight II for direct stitching and the weight
III for spatial seamless stitching. This way, both models use
image blocks of 256 × 256 in size when stitching. We stitch
16 × 16 image blocks into a remote sensing image of 4096 ×
4096 pixels. The first row of Fig. 11(a)–(c) shows the input image
and actual image used for quantitative analysis; the second row
of Fig. 11(d) shows the result of direct stitching, and Fig. 11(e)
shows the result obtained using our spatial seamless stitching
method.

Since Fig. 11 is a thumbnail, the stitching seams cannot be
seen clearly. We have selected urban and farmland areas in the
test region for a detailed comparison. The first row of Fig. 12(a)
and (b) shows the detailed comparisons of the two methods in
the urban area, and Fig. 12(c) and (d) shows the detailed compar-
isons of the two methods in the farmland. The part within the red
solid line is the stitching area. It can be clearly seen that there are
obvious stitching seams in the first column, which represents the
direct stitching method, particularly noticeable on the horizontal
direction in terms of the road stitching cross-section and the
color difference in the farmland stitching. However, the second

column, which represents the spatial seamless stitching method
proposed in this article, can effectively eliminate these stitching
cross-sections and make the transition between image blocks
smoother.

2) Quantitative Analysis: We quantitatively evaluate the fu-
sion effects of the two methods. As shown in Table II, the
error values at different positions of image blocks for the
two methods are presented, revealing that the spatial seam-
less stitching method has relatively consistent errors both at
the stitching seams and in the overall image, while the direct
stitching method produces larger errors at the stitching seams.
Looking at the fourth column of the table for the RMSEseams

RMSEoverall

metrics reveals that the space seamless method has almost the
same RMSE at the spliced seams as the whole, while the direct
splicing method will have an overall 28% higher RMSE at
the spliced seams than the whole. Hence, the spatial seamless
stitching method can effectively diminish errors located at the
stitching seams of the algorithm, thereby increasing the prac-
ticality of the spatiotemporal fusion algorithm based on deep
learning.
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TABLE II
QUANTITATIVE ANALYSIS OF THE TWO STITCHING METHODS

IV. CONCLUSION

The generation of discontinuity in transitions between adja-
cent image blocks primarily arises from two aspects. First, the
edge-padding operations on feature maps during large stacks of
convolutional layers upscaling and downscaling of convolution-
based generative models lead to a degradation in the generation
quality at the edges of the image blocks. Second, the artificial
segmentation between input image blocks results in spatial
discontinuity, thereby affecting the continuity among generated
results. We address this issue of discontinuity between two
neighboring image blocks by expanding the input range and
cropping the output image blocks.

In this article, we comparatively analyze the fusion effects
of deep learning-based spatiotemporal fusion techniques at dif-
ferent resolutions. We find that as the resolution of the fused
images increases, the stitching seam error between image blocks
is larger, and the RMSE at the seam reaches 1.279 times of the
overall RMSE at 8-m resolution, which reveals the problem of
discontinuities in the image stitching process.

In response to the above. We offer an innovative solution: a
spatially seamless stitching approach. This method makes the
input image blocks continuous with each other and cover each
other, thus making the transition between the generated image
blocks more continuous and smooth. The experiments verify that
our approach can significantly reduce transitional discontinuity
and improve visual effects noticeably, and the RMSE at the seam
is kept between 0.99 1 with the overall RMSE.

In summary, this study proposes and validates a new image
stitching method that effectively improves the quality of spa-
tiotemporal fusion of remote sensing images under the burden
of complexity that can be afforded. This is of great signifi-
cance for remote sensing applications such as remote sensing
mapping based on fused images. We expect this new stitching
method to be more widely used in the future deep learning-based

spatiotemporal remote sensing image fusion. In addition, the
factors affecting the quality of spatiotemporal remote sensing
image fusion include the quality of spatial alignment of remote
sensing images and image imaging time differences, in addition
to the spatial resolution of the images. In the future, we will study
the sensitivity analysis of spatiotemporal fusion techniques by
combining these influencing factors.
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