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Abstract—The location and number of individual fruit trees
(IFTs) are critical for investigations on planting areas, fruit yield
predictions, and smart orchard planning and management. These
data are conventionally obtained through manual and statistical in-
vestigations that require long, laborious, and costly efforts. Object
detection models of deep learning could provide an opportunity
to detect IFTs accurately, which is essential for rapidly obtaining
these data and reducing human operation errors. This study pro-
posed an approach for detecting IFTs and mapping their spatial
distributions by integrating deep learning with unmanned aerial
vehicle (UAV) remote sensing. UAV remote sensing was used to
collect high-resolution images of fruit trees in pomelo orchards in
Meizhou, South China. Based on these images, a new individual
pomelo tree image sample dataset was created through manual
interpretation and field investigation. The evaluation results re-
vealed that YOLOv5s was the best model among the five YOLOv5
models (i.e., YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x, whose layers, parameters, and floating-point operations
all increased with the depth and width of layers) of different scales
considered for optimization. Moreover, the coordinate attention
(CA) optimized YOLOv5 model (YOLOv5s-CA) is the best model
(named FruitNet) with the best overall accuracy for detecting IPTs
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among all seven attention-optimized YOLOv5 models and other
state-of-the-art object detection models, such as faster R-CNN
and YOLOv8s. The IPTs in the study areas were detected using
FruitNet, their number and planting area were counted, and their
spatial distributions were mapped based on the predicted results
of the IPTs. This study suggested that our proposed approach
could provide key data and technical support for smart orchard
management.

Index Terms—Deep learning, individual tree detection, remote
sensing, spatial distribution, unmanned aerial vehicle (UAV).

I. INTRODUCTION

S PATIAL and attribute data on individual fruit trees (IFTs)
in orchards play an important role in the accurate surveys of

planting areas, rapid pest and disease control, precise fruit yield
prediction, and smart orchard management [1]. Field investi-
gations and statistics, including spatial distribution, location,
and number of IFTs, are traditionally used to collect these
data orchards. These investigations are time-consuming, labor-
intensive, and costly [2], and the data obtained from traditional
methods cannot meet the needs of smart orchards due to the
insufficiently accurate IFT location information they provide.
Therefore, developing a fast, inexpensive, and accurate method
for investigating and mapping IFTs is necessary to obtain these
data to advance the development of precision agriculture.

Remote sensing images of fruit trees in relatively large or-
chards can be captured via satellite or aerial imaging. In the case
of satellite remote sensing, cloudy weather is a major challenge
that makes it difficult to detect fruit trees due to the possibly
poor quality of the images captured [3], [4]. The limitation
of the spatial resolution of satellite images is another major
challenge for the accurate detection of IFTs. Aerial imaging
includes photography using a manned or unmanned aircraft [5].
Human-crewed aircraft are unsuitable for detecting IFTs due
to high costs and inconvenient operations. Unmanned aerial
vehicle (UAV) remote sensing is the best alternative for capturing
images of fruit trees in relatively large orchards. UAV remote
sensing has the advantages of automation, intelligence, and
specialization and can be used to quickly obtain spatial re-
mote sensing information about land, resources, environments,
events, etc., and to conduct real-time processing, modeling, and
analysis of advanced emerging aerial remote sensing technology
solutions [6]. IFT detection is a fundamental task for UAV-based
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site-specific management in orchards [7]. UAV remote sensing
has great potential for acquiring the image data from IFTs in
orchards quickly and economically for integration with deep
learning to carry out IFT detection.

Over the past decade, with the rapid progress of computer
hardware and the rapid development of artificial intelligence
technology, convolutional neural networks (CNNs) used in deep
learning have been used to pioneer new ways to detect objects
and extract features in remote sensing images [8], [9], [10],
[11], [12]. Many CNN architectures have been proposed for
object detection in computer vision and image analysis, and
they can be divided into two categories: two-stage and one-stage
models [13]. Two-stage models divide the detection process into
region proposal and classification stages, while one-stage detec-
tors contain a single feedforward fully convolutional network
that directly provides bounding boxes and object classification.
Girshick et al. [14] proposed a two-stage object detection region-
based CNN (R-CNN) model based on classification problems.
Based on R-CNN, fast R-CNN and faster R-CNN were sub-
sequently proposed to improve the efficiency and accuracy of
object detection. Two years later, Redmon et al. [15] proposed
a single-stage-based object detection model called You Only
Look Once (YOLO). The YOLO model not only simplifies
the size of the neural network but also improves the detection
speed and accuracy. Etten [16] proposed a You Only Look Twice
(YOLT) pipeline based on YOLOv2 to achieve rapid multiscale
object detection in large-scale satellite imagery. Yan et al. [17]
recognized Rosa roxbunghii in the natural environment based on
an improved faster R-CNN, for which the average recognition
accuracy was 92.01% for 11 classes of Rosa roxbunghii fruit.
Xiong et al. [18] demonstrated that deep transfer learning based
on YOLOv2 could be used as a new archaeological remote
sensing method to detect historical buildings accurately and
rapidly in aerial photographs. Liu and Wang [19] proposed a
tomato disease and pest detection algorithm based on YOLO,
whose results showed that YOLO outperforms faster R-CNN.
Xiong et al. [20] proposed a visual detection method that used
UAV images and YOLOv2 to rapidly detect green mangoes on
the surface of tree crowns and estimate the number of mango
fruits in orchards. YOLO-v5m can be a useful component of
an automated plantation management system and helps forecast
date production and monitor the condition of date palm trees
[21]. Recently, Liu et al. [22] proposed a method for detecting
and localizing pineapples in natural environments based on
binocular stereo-vision and an improved YOLOv3 model. The
above research indicates that deep learning object detection
via YOLO models in remotely sensed images has drawn great
interest from researchers from multidisciplinary communities,
including remote sensing, computer vision, and precision agri-
culture. However, there is still not in consensus on which YOLO
model can best be used to detect objects, especially individual
trees.

More recently, several deep learning object detection and
segmentation models have been adopted for the detection and
segmentation of individual trees, such as olive, palm, and co-
conut trees, based on high-resolution visible and light detection
and ranging (LiDAR) images acquired from satellites and UAVs

[5], [21], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43].
For instance, Santos et al. [44] proposed and evaluated the
use of CNN-based methods combined with UAV high spatial-
resolution red–green–blue (RGB) imagery for the detection of
law-protected tree species and reported that RetinaNet achieved
more accurate results than did faster R-CNN and YOLOv3. An
analysis of satellite images by Brandt et al. [34] pinpointed
individual tree canopies over a large area of West Africa. Their
results suggest that, with certain limitations, it will soon be
possible to map the location and size of every tree worldwide
using deep learning [34], [35]. Safonova et al. [45] used mask
R-CNN and UAV images for olive tree crown and shadow
segmentation to further estimate the biovolume of individual
trees. Jintasuttisak et al. [21] carried out the automatic detection
of crowded date palm trees in drone imagery using YOLOv5 and
a comparison of one-stage object detection methods [YOLOv3,
YOLOv4, and the single-shot multibox detector (SSD300)] for
date palm tree detection. The authors found that the YOLOv5m
model had the highest accuracy with a mean average precision
of 92.34%. Hu et al. [43] presented a pipeline for monitoring and
clustering of 259 peach tree crowns based on the UAV images
of a peach orchard in Southeast China and designed conditional
generative adversarial networks to extract the crown area. Yu
et al. [46] showed that the mask R-CNN model achieved the
highest accuracy in individual tree detection compared with
the local maxima algorithm and marker-controlled watershed
segmentation. Most of the detection objects (trees) mentioned
above are sparsely and evenly distributed in orchards or areas
under simple conditions but not complex natural conditions (e.g.,
the natural environment of pomelo trees planted in plains and
hilly areas and mixed with other roadside and forest trees, such
as loquat trees, lychee trees, and eucalyptus trees).

Several recent studies have demonstrated that the integration
of deep learning CNNs with UAV images can be used to realize
the accurate detection of individual trees, including fruit trees,
such as coconut [47], citrus [48], and peach [43] trees. However,
most of those previous works needed to improve the architecture
of CNN networks to increase the performance of deep learning
models. Yuan et al. [49] proposed an improved YOLOx-nano
algorithm to detect pomelo trees and compared it with several
state-of-the-art object detection algorithms, such as faster R-
CNN, SSD, YOLOv3, and YOLOv4-tiny. Their method showed
better suitability for pomelo tree detection in UAV images with
better performance and fewer parameters. However, accurately
carrying out IPT detection and mapping in a large orchard
area in a complex natural environment while interfering with
other coexisting objects for smart orchard management is still
a challenge. One reason for this is the need for open-source,
high-resolution, and high-quality IPT samples for training and
validation because preparing these samples is extremely time-
consuming and labor-intensive. Most of those previous studies
on individual trees focused on other fruit trees or forest trees,
such as coconut, palm, olive, or pine trees, yet did not involve
pomelo trees, which are widely planted in South China (e.g.,
in the provinces of Guangdong, Guangxi, Fujian, Jiangxi, and
Hunan), Southeast Asia, and South America. There is a lack of a
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dataset of high-quality IPT samples. The second and key reason
is that a specific fruit tree detection model based on deep learning
requires training, validation, and testing on a large dataset of
high quality with massive computational resources since deep
learning is a data-driven science and application. At present,
there is no CNN model trained for IPT detection on the IPT
dataset. Although there has been substantial work in individual
tree detection using deep learning and UAV images, previous
models cannot work well for pomelo orchards for the above
two reasons. This topic merits in-depth study on optimizing
IPT detection models, especially regarding mapping IPTs with
an optimal deep learning model for use in complex natural
environments.

Inspired by the great progress in deep learning and UAV
remote sensing, an approach to establishing the accurate IFT
detection model by integrating an optimized YOLOv5 model
with UAV remote sensing images of IFTs is proposed to address
the gap mentioned above. With this approach, the spatial distri-
bution of IFTs can be rapidly and accurately mapped, and the
number and planting area of IFTs can also be quickly determined
for precision agriculture and smart orchard management. It
is hypothesized that IFTs can be detected in high-resolution
true-color images at low cost, with high accuracy and with
high efficiency and that a thematic map of IFTs can be made
using our proposed approach. Pomelo trees were selected as the
fruit trees in this study, and YOLOv5 was empirically selected
as the baseline deep learning model to test our hypotheses.
Based on the previous studies, multiple state-of-the-art channels
and/or spatial attention mechanisms were applied to optimize the
YOLOv5 models.

This study aimed to integrate deep learning methods with
UAV-based images for detecting and mapping individual pomelo
trees (IPTs) and to provide a set of reliable and timely basic
data and technical support for smart orchard management and
precision agriculture development.

The main contributions of our study are given as follows.
1) A novel approach for IPT detection and mapping was

proposed.
2) An IPT image sample (IPTIS) dataset was created with

high-resolution images captured by UAV remote sensing.
3) YOLOv5s was verified to be the best among all YOLOv5

family models and was optimized by adding seven popular
attention mechanisms.

4) The performance and robustness of the seven attention-
optimized YOLOv5 models were compared and the best
model (called FruitNet) was used to detect IPTs.

5) IPTs in two large-scale pomelo orchards were detected
and their locations and spatial distributions were mapped
using our proposed approach.

II. MATERIALS AND METHODS

A. Study Areas and Pomelo Trees

Two large pomelo orchards (site A and site B), which cover
the areas of approximately 36.51 ha and 48.15 ha, respectively,
were selected as the experimental study areas. These sites are
located in the towns of Shishan and Sanxiang, Meixian district

in Meizhou, a city (23°23′–24°56′ N and 115°18′–116°56′ E)
situated in northeastern Guangdong Province, South China [see
Fig. 1(a)]. Meizhou city has jurisdiction over two districts,
Meijiang and Meixian; five counties, Pingyuan, Jiaoling, Dabu,
Fengshun, and Wuhua; and one city, Xingning [see Fig. 1(b)],
with a total land area of 15 876 km2. Hilly and mountainous
Meizhou is a very suitable location for growing fruit trees, such
as pomelo trees. The city of Meizhou, which is the hometown
of golden pomelo fruit, is the largest pomelo fruit-producing
area in Guangdong Province. Its yield accounted for 90% of
the total pomelo output of Guangdong Province, 20% of that of
China, and 10% of that of the world in 2018. Meixian is one
of the regions with the most pomelo trees planted in the city
of Meizhou. The towns of Shishan and Sanxiang in Meixian
are abundant in pomelo trees and convenient for field investiga-
tion and UAV remote sensing monitoring. For this reason, two
pomelo orchards in these two towns were selected as the areas
of our experimental study. The two study sites lie in a hilly area
[see Fig. 1(c)] and a plain surrounded by low mountains [see
Fig. 1(d)]. Fig. 1(e) shows a typical pomelo orchard landscape at
site A. Fig. 1(g) shows a field scene of IPTs at site A. In addition,
another orchard near site A in Shishan (i.e., site B in Sanxiang)
was selected to validate the robustness of our optimized model.

Pomelo (Citrus maxima) is a large citrus fruit [see Fig. 1(f)]
with thick yellow skin that tastes similar to grapefruit but is
sweeter than it is. It is a delicious and popular fruit due to
its rich nutritional and medicinal value. The pomelo tree is
a medium- and large-scale evergreen broad-leaved tree of the
family Rutaceae that is more commonly known as Citrus. Most
of the pomelo trees in the study areas are 3–10 years old, their
heights go to 3–6 m on average, and their crown diameters gen-
erally reach 2–8 m. They can be easily recognized in UAV-based
high-resolution images by visual interpretation with fieldwork
assistance. Therefore, we hypothesize that their crowns can
be individually detected via deep learning from UAV-based
high-resolution images. However, most pomelo trees grow in
hilly areas mixed with other roadside and forest trees, and their
crown forms and shapes are also similar to those of surrounding
trees; consequently, pomelo trees are not easily distinguished
from some other trees in UAV images only from human vision
without fieldwork. It is challenging to detect and map IPTs in
large orchard areas in complex natural environments.

B. Our Proposed Approach for Detecting and Mapping IFTs

We propose a new systematic approach for detecting IFTs,
mapping their spatial distribution, and counting their planting
area and number by integrating an attention-optimized YOLOv5
model with high-resolution and low-altitude UAV remote sens-
ing images. The workflow of our proposed approach is illustrated
in Fig. 2 and is composed of the following six phases.

1) Capturing and preprocessing UAV images.
2) Creating a new dataset of individual fruit tree image

samples (IFTIS).
3) Training and validating the five standard YOLOv5 models

on the IFTIS to evaluate their performance.
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Fig. 1. Overview of the experimental study areas. (a) Location of Meizhou in Guangdong. (b) Administrative map of Meizhou showing the study areas (sites A
and B) in red circles. (c) DSM map of site B. (d) DSM map of site A. (e) Typical pomelo orchard landscape at site A. (f) Matured pomelos on the trees. (g) Field
scene showing the IPTs at site A. (h) DJI Phantom 4 multispectral drone with RTK photographed near a pomelo tree at site A.

Fig. 2. Workflow chart of our proposed approach for detecting and mapping
IFTs via YOLOv5 integrated with UAV remote sensing. IFTIS denotes the
individual fruit tree image samples.

4) Selecting the YOLOv5 model with the best performance
for further optimization by using multiple attention mech-
anisms and training them on the IFTIS.

5) Predicting IFTs by the attention-optimized YOLOv5
model with the best performance (named FruitNet).

6) Making thematic maps of the IFTs of the study areas based
on the predicted results of FruitNet.

To test and validate the feasibility of our proposed approach,
we carried out an experimental study on IPT detection and map-
ping in Meizhou. The key procedures of our proposed approach
are described in detail in the following sections.

1) UAV Remote Sensing Image Capture and Preprocessing:
The DJI1 Phantom 4 multispectral drone [see Fig. 1(h)] was
used as a UAV system to capture low-altitude high-resolution
remote sensing images. It is equipped with six 1/2.9′′ com-
plementary metal–oxide–semiconductors, including one RGB
sensor for visible light imaging and five monochrome sensors
(blue, green, red, red-edge, and near-infrared bands) for multi-
spectral imaging. It uses a real-time kinematic (RTK) enabled
global navigation satellite system (GNSS), including the global
positioning system, BeiDou, and Galileo. It can provide efficient

1[Online]. Available: www.dji.com

www.dji.com
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Fig. 3. Examples of the raw true-color (RGB) and multispectral (five bands) images captured by UAV remote sensing. (a) 3 February 2021. (b) 12 March 2021.
(c) 12 April 2021.

tools for farmers and researchers in precision agriculture, greatly
improving the efficiency of environmental data acquisition. In
this study, high-quality true-color and multispectral remote sens-
ing images were captured using this drone without the ground
control points required in traditional aerial surveys.

Because pomelo trees exhibit different morphological and
spectral characteristics during different growth and phenological
periods, it is particularly necessary to construct a dataset of
pomelo samples consisting of UAV remote sensing images from
different phenological periods. In the present study, three flight
plans for aerial photography tasks were set to capture images
from site A on three days in late winter and spring 2021 (i.e., 3
February, 12 March, and 12 April 2021, during which pomelo
trees develop spring sprouts and grow quickly), and one flight
plan was used for capturing images from site B on 16 January
2022. A flight altitude of 120 m with both 60% heading and
lateral overlaps was set to capture UAV raw images, resulting in
a spatial resolution of approximately 0.06 m for sites A and B.
To obtain high-quality UAV raw data, we used the same flight
parameters but different extents for the three aerial photography
tasks before takeoff. Fig. 3 shows the examples of the raw true-
color (RGB) and multispectral (five bands) images collected via
UAV aerial photography. Only the true-color images (column 1
in Fig. 3) were used to construct a dataset of true-color image
samples of IPTs, while multispectral images were not used in
the present study. The reason is that, currently, only RGB images
can be used to train standard YOLOv5 object detection models.

The original images obtained by UAV remote sensing on each
date were preprocessed to generate a digital orthographic mosaic
image model using DJI Terra.2 The preprocessing steps include
the following aspects.

1) Confirming the integrity and quality of original image
data, including camera parameters, image clarity, and
GNSS information.

2[Online]. Available: www.dji.com

2) Establishing project files and importing original image
data, performing engineering, adding image data, setting
image attributes, and camera model parameters in DJI
Terra.

3) Processing the UAV images automatically, including ini-
tialization, point cloud generation, 3-D reconstruction,
and digital orthographic model (DOM) and digital surface
model (DSM) generation in DJI Terra.

The four mosaic DOMs of the study areas generated through
these processes are shown in Fig. 4, which reveals the different
characteristics of the color tones. Because the pomelo trees grew
quickly from February to April, many trees in the images became
greener with time. Notably, the three DOMs at site A, including
boundaries and shapes, have different actual extents. UAV aerial
photography took approximately 40–50 min and three or four
flights, depending on the weather conditions and flight point
limitations of the DJI P4 drone, to complete the remote sensing
image acquisition tasks at each site. The DOM of site B looks
different in color because its images were acquired in a different
lighting environment compared with those from site A.

2) Creating the Dataset of IPTISs: The processed mosaic
orthographic images of pomelo trees were imported into ArcGIS
10.8,3 where the deep learning module was used to annotate the
IPT samples. After labeling, cropping, and exporting, an IPT
dataset based on UAV remote sensing image chips was generated
and named the IPTISs dataset. The steps are shown in detail as
follows.

First, a polygon feature-class shapefile for each month’s im-
age was created in ArcGIS 10.8. Professionals manually drew
circle features for the pomelo sample annotations according to
the records of field investigations. Two fields, ClassName and
ClassType, were added to the property tables of these shapefiles,
and their values for the IPT sample category were identified

3[Online]. Available: www.esri.com

www.dji.com
www.esri.com
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Fig. 4. Digital mosaic orthographic images in the study areas for the four dates; site A with (a) 10 279 × 16 272 pixels, (b) 9453 × 15 186 pixels, and (c) 10 289
× 17 692 pixels and site B with (d) 17 959 × 15 774 pixels. (a) 3 February 2021. (b) 12 March 2021. (c) 12 April 2021. (d) 16 January 2022.

as “P” and “0,” respectively. Three annotated clipped image
examples are shown in Fig. 5(a1)–(c1).

Second, polygon feature-class shapefiles were used to export
the images and their corresponding annotations, which were
suitable for subsequent research. The digital orthographic image
of the study area taken each month was cropped into clipped
images with a size of 640 × 640 pixels and zero overlaps using
the deep learning module of ArcGIS. Images without pomelo
tree annotations were excluded when exported from ArcGIS
software.

Finally, the IPTIS dataset was created in PASCAL VOC data
format [50] by combining all the exported clipped images for the
three months, for a total of 438 images. Three labeled examples
of the clipped images of the dataset obtained after cropping and
exporting are shown in Fig. 5(a2)–(c2). The actual label of an
IPT is the minimum bounding rectangle of the drawn circle,
which is the ground truth for model training, validation, and
testing for the task of IPT detection. In addition, 42 chip image
samples acquired on 16 January 2022, from another site B in
Meixian, were used to supplement the IPTIS dataset, for a total
of 480 images. This dataset is small but suitable for proportional
division for deep learning training, validation, and testing.

3) Attention-Optimized YOLOv5 Models: YOLO is a state-
of-the-art, real-time, one-stage object detection algorithm cre-
ated by the Ultralytics team in 2015. It uses a single neural
network to process an entire image. The image is divided into
regions, and the algorithm predicts each region’s classes, proba-
bilities, and bounding boxes [51]. Since 2015, the Ultralytics
team has been working on improving this model, and many
versions of the model have been released. The latest version is
YOLOv8, released by Ultralytics in January 2023. It is a cutting-
edge, state-of-the-art model that can perform a wide range of
object detection, image segmentation, and image classification
tasks [52]. The fifth version of this algorithm, YOLOv5, was
officially released in June 2020 (YOLOv5-v1.0). Since then,

YOLOv5 has been updated several times for a series of releases.
The newest one (YOLOv5-7.0) was released in November 2022.

YOLOv5 has been broadly used in the detection of many
objects, such as faces, vehicles, and ships, due to its high speed
and accuracy. In the present study, YOLOv5-6.0 (henceforth
YOLOv5), released in October 2021, was empirically selected
for the task of IPT detection due to its ease of use, high perfor-
mance, and flexibility.

Inherited from its predecessors in the YOLO family [51], the
architecture of YOLOv5 consists of two components: backbone
and head, and the head network is composed of the neck and
detect parts (see Fig. 6).

1) Backbone: The backbone network extracts rich feature
representations from images. It helps reduce the spatial
resolution of the image and increase its feature (channel)
resolution.

2) Neck: The neck network is used to extract feature pyra-
mids. It helps the model to generalize to the objects of
different sizes and scales.

3) Detect: The detection network is used to perform the final
stage operations. It applies anchor boxes on feature maps
and renders the final output: classes, confidence scores,
and bounding boxes.

YOLOv5 was released at five different scales (see Table I):
YOLOv5n (nano, extra small), YOLOv5s (small), YOLOv5m
(medium), YOLOv5l (large), and YOLOv5x (extra large). Their
layers, parameters, and floating-point operations (FLOPs) in-
crease with the depth and width of layers, boosting the complex-
ity of neural-network models [51]. Furthermore, the complexity
of the model increases accordingly, resulting in more weights
and biases being trained and accuracy improvements being pre-
trained on the COCO dataset [51]. Fig. 6 shows the architecture
of the standard YOLOv5s model. The other scales of YOLOv5
have similar architectures but different layers and parameters
(see Table I).
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Fig. 5. Annotated samples (640 × 640 pixels). Images a1, b1, and c1 are clipped in ArcGIS, and trees are indicated by the labeled circles in yellow, brown, and
cyan on the clipped images. Images a2, b2, and c2 were clipped in LabelImg, and the counterparts of the labeled trees are all shown in white. Some other trees and
crops lie in the same clipped images, and IPTs of different sizes exist sparsely or densely, which negatively affects the detection of IPTs. (a1) 3 February 2021.
(b1) 12 March 2021. (c1) 12 April 2021. (a2) 3 February 2021. (b2) 12 March 2021. (c2) 12 April 2021.

TABLE I
CONFIGURATION OF VARIOUS SCALES OF YOLOV5 MODELS

Based on the standard YOLOv5s model, seven optimized
YOLOv5s models were created and trained to improve the
performance of IPT detection by integrating attention mod-
ules. An attention mechanism is a powerful tool developed to
enhance the performance of the encoder–decoder architecture
on neural-network-based tasks, such as natural language pro-
cessing and computer vision [53]. A great number of attention
mechanisms have been proposed to improve the performance
of deep learning models over the past decade. In the present

study, seven state-of-the-art attention mechanism modules were
inserted into the end of the neck network (i.e., the C3_1_F
module in Fig. 6) before the Conv layer of the detection part
of YOLOv5s, as shown in Fig. 7. Instead of replacing some
C3 modules in the backbone, as in other researchers [54], our
aim is to directly optimize the detection structure and enhance
the channel and/or spatial feature extraction capacity and output
performance. These attention modules include seven attention
mechanisms, namely, coordinate attention (CA), split atten-
tion (SA), squeeze-and-excitation (SE), convolutional block
attention module (CBAM), Ghost, simple attention mechanism
(SimAM), and the transformer encoder, which are explained as
follows.

a) Coordinate attention: The CA mechanism [see
Fig. 8(a)] captures not only cross channel but also
direction-aware and position-sensitive information, which
helps models locate and recognize the objects of interest
more accurately [55]. It can fuse both channel and spatial
information to enhance the localization accuracy of object
detection. Recently, the CA-based YOLOv5s model was used
for mummy berry disease detection, which showed that the
overall performance of the improved YOLOv5s-CA network
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Fig. 6. Architecture of the standard YOLOv5s model.

Fig. 7. Attention-based optimization of YOLOv5s.

model was superior to that of the original YOLOv5s model
[56].

b) Split attention: SA, as a simple and unified computation
block [see Fig. 8(b)], applies channelwise attention to different
network branches to leverage their success in capturing cross-
feature interactions and learning diverse representations; ResNet
outperforms EfficientNet in accuracy and latency tradeoff on
image classification and has achieved superior transfer learning
results on several public benchmarks serving as the backbone
[57].

c) Squeeze-and-excitation: The SE module [see Fig. 8(c)]
adaptively recalibrates channelwise feature responses by ex-
plicitly modeling interdependencies between channels, which
significantly improves the performance of the existing
state-of-the-art CNNs at a slight additional computational
cost [58].

d) Convolutional block attention module: CBAM [see
Fig. 8(d)], a simple, lightweight, yet effective attention module
for feedforward CNNs, sequentially infers attention maps along
two separate dimensions, channel and spatial. The attention
maps are multiplied by the input feature map for adaptive feature
refinement, which can be seamlessly integrated into any CNN

architecture with negligible overhead, and CBAM is end-to-end
trainable along with base CNNs [59]. The CBAM module has
two sequential submodules: channel and spatial. The interme-
diate feature map is adaptively refined through CBAM at every
convolutional block of the deep networks [see Fig. 8(d)].

e) YOLOv5s-ghost: The ghost module [see Fig. 8(e)], as
a lightweight and plug-and-play component for existing CNNs,
generates more feature maps that apply a series of linear transfor-
mations at low cost to generate many ghost feature maps that can
fully reveal the information underlying intrinsic features based
on a set of intrinsic feature maps. Ghost provides an impressive
alternative to convolution layers in baseline models and has a
higher recognition performance than MobileNetV3 [60].

f) Simple attention mechanism: SimAM is a conceptually
simple, parameter free but highly effective attention module
[see Fig. 8(f)] for CNNs that infer 3-D attention weights for
the feature map in a layer without adding parameters to the
original networks; moreover, SimAM is flexible and effective in
improving the representation ability of many CNNs evaluated
on various visual tasks [61].

g) Transformer encoder: The transformer is a new simple
network architecture based on self-attention [see Fig. 8(g)]
that dispenses recurrent information and convolutions entirely;
this architecture performs very well on tasks, such as machine
translation [53], ChatGPT [62], image generation [63], and
classification [54]. Based on YOLOv5, Zhu et al. [54] replaced
the original prediction heads with transformer prediction heads
(TPHs), demonstrating that the improved TPH-YOLOv5 has
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Fig. 8. Seven attention mechanism modules used for the optimization of YOLOv5s. (a) CA block [55], (b) SA block [57], (c) SE block [58], (d) CBAM [59], (e)
ghost module for outputting the same number of feature maps [60], (f) SimAM [61], and (g) transformer encoder module [64].

good performance with impressive interpretability in scenarios
with drone-captured data.

In this work, the attention mechanisms mentioned above
were integrated into YOLOv5s to enhance its channel and
spatial feature extraction ability and increase its performance in
IPT detection, resulting in seven optimized YOLOv5s models,

i.e., YOLOv5s-CA, YOLOv5s-SA, YOLOv5s-SE, YOLOv5s-
CBAM, YOLOv5s-Ghost, YOLOv5s-SimAM, and YOLOv5s-
Transformer. It is desirable to compare the accuracy of these
methods and select the optimal method for IPT detection. Five
steps were implemented to obtain the optimal model based on
YOLOv5 as follows.
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First, the five scales of the YOLOv5 models were trained and
validated on the IPTIS dataset.

Second, the YOLOv5 model, which had the highest accuracy
metric (YOLOv5s), was selected as the best choice for optimiza-
tion.

Third, all the optimized YOLOv5 models were trained from
scratch on the IPTIS dataset.

Fourth, the optimized YOLOv5s model, which we call Fruit-
Net, had the highest accuracy metrics and was determined to be
the preferred IPT detection model.

Fifth, the FruitNet model was additionally tested on images
from other areas to confirm its robustness and generalizability.

4) Mapping Spatial Distributions and Counting the Number
and Planting Area of IPTs: Due to the limited memory of the
graphics card and the input image size of the model, a large-scale
UAV high-resolution image of the whole area cannot be directly
detected and predicted using the default YOLOv5 detection
code. Etten [16] proposed the YOLT method based on YOLOv2
to perform object detection in large-scale remote sensing images.
In accordance with the postprocessing idea of YOLT, the whole
DOM images of the two study areas were cropped in memory
by slicing and input to the model for prediction based on a
specific image size (i.e., 640 × 640 pixels) and a given overlap
degree (i.e., 50%). The cropped images were not stored on a
hard drive but were stored in memory for rapid detection. The
50% overlap ensured that all regions were detected and avoided
dividing an IPT at the edge of an image into more than one
part. However, this overlap results in the necessary elimination
of many redundant detection boxes. Nonmaximum suppression
(NMS) is a postprocessing technique used in object detection
to eliminate duplicate detections and select the most relevant
detected objects. This helps reduce false positives and the com-
putational complexity of a detection algorithm. Originally, the
criteria used to arrive at the desired results were most commonly
some form of probability number and some form of overlap mea-
sure (e.g., intersection over union). To better remove redundant
detection boxes, we applied an improved NMS method to obtain
the final prediction results of the bounding boxes. Because an
IPT has a round crown, the width-to-height and height-to-width
ratios (both set to 0.80) of a predicted bounding box were added
to the eliminated conditions of redundantly predicted boxes in
the original NMS algorithm. This approach helped delete the
redundant prediction boxes of the split IPTs at the boundaries
of the sliced images as much as possible and, thus, increased
the accuracy of the IPT detection. The final bounding boxes
were stored in a shapefile with actual geographic coordinates
stemming from the original DOM image, which made it easy to
overlay the DOM image.

In general, the following four steps were adopted to construct
spatial distribution maps of IPTs.

First, the optimized YOLOv5 model (FruitNet) was used to
detect IPTs and obtain the coordinates of the detected trees in a
whole DOM image by slicing the image.

Second, based on the overlap degree of 50% of neighboring
slices, the repeatedly detected boxes in the overlapping slice
area were deleted by using our improved NMS algorithm for
bounding boxes.

TABLE II
CONFUSION MATRIX FOR IPT DETECTION

Third, the two shapefiles of the final detection results of the
IPTs and the original mosaic DOM images were imported into
ArcGIS to map the IPTs. The numbers of detected IPTs in
the study areas were recorded from the attribute tables of the
shapefiles. The planting areas of the detected IPTs in the study
areas were summed with the attribute tables of the shapefile
layers in ArcGIS.

Finally, two thematic maps of the detection results of the IPTs
and their spatial distributions were constructed using ArcGIS
software. The numbers and planting areas of the detected IPTs
were added to the thematic maps as important statistical anno-
tation information.

C. Evaluation Metrics

In deep learning, it is highly important to evaluate models
[65]. The present study used a confusion matrix (see Table II) to
help evaluate the performance of the selected object detection
models. Table II presents the confusion matrix for IPT detection,
where each column represents the predicted value and each row
represents the actual pomelo category. The precision, recall, F1

score, and average precision metrics were used as evaluation
metrics based on the confusion matrix of each model.

1) Precision and Recall: According to Table II, the precision
(P) and recall (R) metrics are defined in (1) and (2), respectively.
The precision denotes the proportion of actual positive IPT
samples among all the results predicted as positive IPT samples.
The recall, also known as the sensitivity, denotes the proportion
of the IPT samples predicted as positive IPT examples by the
classifier to the actual number of positive IPT examples and
describes the classifier’s sensitivity to the category of positive
IPT examples

P = TP/ (TP + FP) (1)

R = TP/ (TP + FN) (2)

where P and R denote the precision and recall, respectively; TP,
FP, and FN have the same meanings as in Table II.

2) F1 Score: The F1 score is the harmonic mean of precision
and recall, and is calculated as follows:

F1 = 2× P ×R/ (P +R) (3)

where F1 denotes the F1 score and P and R denote the precision
and recall, respectively.

3) Average Precision: The average precision (AP) was cal-
culated from the precision–recall (PR) curve drawn after train-
ing. The area below the PR curve of a specific category is referred
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Fig. 9. Intersection over union of the ground truth and prediction bounding
box.

to as the AP of that category, as defined in the following equation:

AP =

∫ 1

0

f (c) d (c) (4)

where AP represents the average precision and f(c) represents the
precision–recall curve of category c. In the PR plot, the closer
the curve is to the upper right corner, the higher the model’s
accuracy.

4) Intersection Over Union: The ratio of intersection over
union (IoU) is used to evaluate the degree of matching of the
predicted IPT bounding box and the ground truth IPT box (see
Fig. 9), calculated as follows:

IoU =
Area(P ) ∩ Area(G)

Area(P ) ∪ Area(G)
(5)

where Area(P) represents the area of the predicted IPT box, and
Area(G) represents the area of the ground truth IPT bounding
box. The higher the ratio is, the better the degree of matching.
The predicted box and ground truth box overlap completely in
an ideal result, and the IoU is 1 in this case.

The IoU is generally negatively correlated with the AP of
a model. The present study’s threshold for positive cases was
IoU > 0.5; otherwise, the case was negative. The AP@0.5 used
below denotes the average precision when the IoU > 0.5, and
the AP@0.5:0.95 used below represents the average precision
when the IoU lies between 0.5 and 0.95.

In addition, the inference time is an important indicator of a
model’s ability to detect objects. Frames per second (FPS) were
used to measure the model’s inference speed in the study.

D. Implementation Details

1) Hardware and Software Environment: A high-
performance computing environment is necessary to conduct
deep learning object detection tasks. A suitable experimental
environment was set up to fulfill the task of the present study
and was configured as follows.

1) CPU: Intel (R) Core (TM) i7-7700K @ 4.20 GHz/i3-
10100F CPU @ 3.60 GHz (virtual machine).

2) Memory: Kingston DDR4 3200 MHz 2×16 GB.
3) GPU: NVIDIA GeForce RTX 2080 Ti, 11 GB.
4) OS: Windows 10/Linux-5.4.0 Debian 64-bit.
5) Language: Python-3.7.11+torch-1.9.0+cu111 CUDA.

TABLE III
CONFIGURATION OF THE IPT DATASET FOR CROSS VALIDATION AND TESTING

TABLE IV
CONFIGURATION OF THE IPT DATASET FOR CROSS VALIDATION AND TESTING

6) IDE: PyCharm Community 2022.1.
7) Source code: https://github.com/iscyy/yoloair.
2) Dataset Division and Data Augmentation: For cross val-

idation and testing, 384 clip images were randomly selected
as the training set (80%) and 48 clip images were used as the
validation set (10%). The remaining 48 clip images were used as
the testing set (10%) to test the robustness of the final model (see
Table III). For comparison, four datasets of different dates with
different numbers of samples (see Table III) were used to train,
validate, and test the performance of the optimized YOLOv5s
models.

The UAV images of the same area from the three periods were
combined to create the dataset, which can be considered data
augmentation. No additional offline data augmentation was ap-
plied, but the online data augmentation was applied to ensure the
stability and robustness of the model training and validation. The
online methods include the following: illumination distortions of
hue, saturation, and lightness; translation; geometric distortions
of left–right flipping, scaling, and rotation; and mosaicking of
four clip images (see Table IV).

3) Hyperparameter Setup: All the models were trained from
scratch with no pretrained weights on the IPT dataset to obtain
the IPT detection models, which were subsequently validated
on the validation set. The default hyperparameters were used

https://github.com/iscyy/yoloair
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Fig. 10. Visualization of the evaluation metrics of the five YOLOv5 models for training and validation. (a) Training precision. (b) Training recall. (c) Training
AP@0.5. (d) Training AP@0.5:0.95.

to train from scratch with the hyp.scratch-low.yaml file and are
mostly shown in Table IV.

To take the full advantage of the memory utilization of the
GPU and obtain good accuracy, the maximum number of epochs
was set to 200, and the minimum batch size was set to different
numbers depending on the needs of the models and the capacity
of the GPU. The learning rate was initially set to 0.01 and it
decayed dynamically to 0.0002 at the end of the 200th epoch
for the standard YOLOv5 models. All the models were trained
using a stochastic gradient descent with momentum (SGDM)
strategy to avoid overfitting and underfitting.

III. RESULTS

A. Performance of the Five Standard YOLOv5 Models

First, five standard YOLOv5 models were trained and vali-
dated on the IPTIS dataset to compare their accuracy metrics
and performance. The results are shown as follows.

1) Accuracy Metrics of Training and Validation: As shown in
Fig. 10, the precision [see Fig. 10(a)], recall [see Fig. 10(b)], and

AP [see Fig. 10(c) and (d)] of the five YOLOv5 models essen-
tially stabilize after 150 epochs; the metric values of YOLOv5s
are higher than those of the others. This characteristic was
confirmed by the PR curve [see Fig. 11(a)], which demonstrated
that the comprehensive performance of YOLOv5s was better
than that of all the other models selected. This finding suggested
that YOLOv5s has the best accuracy and is the best option for
optimizing IPT detection.

Table V and Fig. 11(b) present that the precision, recall, F1

score, and AP metrics of YOLOv5s are the highest among those
of the five standard YOLOv5 models evaluated on the IPTIS
validation set, followed by YOLOv5x; the metrics of YOLOv5n
are the lowest. Interestingly, the F1 score and AP metrics do
not increase with the scale of YOLOv5, which is not in line
with the results of the YOLO series tested on the COCO dataset
[51]. The reason for this could be that the size of our dataset
is much smaller than that of the COCO dataset. This issue will
be discussed in detail in Section IV. The accuracy metrics of
YOLOv5s are higher than those of the other four YOLOv5
models [see Table V and Fig. 10(b)], further suggesting that
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Fig. 11. Comparison of the training and validation results of the five standard YOLOv5 models. (a) PR curve for training results. (b) Evacuation metrics for
model validation.

TABLE V
RESULTS OF THE ACCURACY METRICS OF THE FIVE STANDARD YOLOV5

MODELS FOR VALIDATION ON IPTIS

TABLE VI
TRAINING TIME AND INFERENCE SPEED OF VARIOUS SCALES OF THE FIVE

YOLOV5 MODELS

YOLOv5s is the most accurate model and is suitable for further
optimization to fulfill IPT detection.

2) Training Time and Inference Speeds: As shown in
Table VI, as the scale of YOLOv5 increases, the training
time increases, and the inference speed decreases, except for
YOLOv5m, which is faster than YOLOv5s. All the models
are capable of real-time inference (i.e., FPS is greater than
30). Although YOLOv5n consumes fewer computational re-
sources than the other YOLOv5 models, its accuracy metrics
are the worst. Considering both performance and consumption,
YOLOv5s is the best choice for performing real-time smart

orchard management inference tasks. YOLOv5s has the highest
evaluation metrics, notably both AP@0.5 (0.9412, 94.12%) and
F1 score (0.9016, 90.16%), among all the scales of YOLOv5.
Therefore, this model was selected as the model for optimization
to detect IPTs.

B. Comparison of the Optimized YOLOv5 Models

As mentioned above, seven attention-based YOLOv5 models
were trained and validated on the IPTIS dataset. For compar-
ison, faster R-CNN, SDD, YOLOv3, YOLOv4s, YOLOv5s,
YOLOv7-tiny, YOLOv7, and YOLOv8s were additionally
trained and validated on the IPTIS dataset together with the
optimized models mentioned above. The results are shown as
follows.

1) Accuracy Metrics of Training and Validation: As shown
in Fig. 12, the precision [see Fig. 12(a)], recall [see Fig. 12(b)],
and AP [see Fig. 12(c) and (d)] metrics of the trained models
remain almost steady after the 100th epoch, and the metric values
of YOLOv5s and its optimized models are greater than those of
the other models. In the end, the F1 score and AP metrics (see
Fig. 13) of YOLOv5s and its optimized models for validation
are all greater than those of the other state-of-the-art models,
such as faster R-CNN, SSD, YOLOv7, and YOLOv8s, which
illustrates that the comprehensive performance of YOLOv5s and
its optimized models surpasses that of all the other models used.

However, from Figs. 12 and 13, it is difficult to determine the
best model according to these five metrics because no optimized
YOLOv5s model has an advantage over the others in terms of
all the commonly used accuracy metrics in the present study. To
compare the overall accuracy of these models, a comprehensive
metric that averages the F1 score, AP@0.5, and AP@0.5:0.95
(OA for short) was proposed to help determine the best model.
The OA for validation was calculated for each model used. The
results showed that the optimized YOLOv5s-CA had the highest
OA (0.801), resulting from the highest F1 score (0.906, 90.6%)
and AP@0.5:0.95 (0.554, 55.4%) and the third highest AP@0.5
(0.943, 94.3%) among all seven optimized YOLOv5s models.
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Fig. 12. Comparison of the training evaluation metrics between the optimized YOLOv5 model and the other selected object detection models. (a) Training
precision. (b) Training recall. (c) Training AP@0.5. (d) Training AP@0.5:0.95.

Fig. 13. Comparison of the accuracy evaluation metrics among the optimized YOLOv5s and the state-of-the-art object detection models selected for validation.
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TABLE VII
TRAINING TIME, INFERENCE SPEED, AND COMPLEXITY OF THE OPTIMIZED

YOLOV5S AND OTHER OBJECT DETECTION MODELS USED

YOLOv5s-CA is, thus, the best model for IPT detection in terms
of overall accuracy.

2) Training Time and Inference Speeds: As shown in
Table VII, the training times of all the selected models do
not differ greatly except for those of faster R-CNN, YOLOv3,
and YOLOv7, whose inference speeds are slower than those of
any optimized YOLOv5s model. All the models except faster
R-CNN are capable of real-time inference. YOLOv8s has the
fastest inference speed, although it has more parameters and
FLOPs than YOLOv5s and its optimized versions. According
to the inference speeds, the seven attention-optimized models
are all faster than the standard YOLOv5s. YOLOv5s-CA is one
of the optimized models with the fastest inference speed. Based
on its performance and speed, YOLOv5s-CA is the best option
for performing real-time IPT inference tasks for smart orchards.

C. Mapping the IPTs

Based on its overall accuracy and inference speed, YOLOv5s-
CA, henceforth referred to as FruitNet, was selected as the model
for predicting IPTs at the two study sites.

Two thematic maps (see Figs. 14 and 15) were made to show
the spatial distribution, number, and planting area of the detected
IPTs via ArcGIS based on the predictions of FruitNet. As shown
in the regions of the two square boxes inserted [see Fig. 14(b) and
(c)] in Fig. 14, IPTs of different sizes at site A were almost always
detected accurately. This finding suggested that FruitNet has a
sufficiently high accuracy to complete the IPT detection task in a
large orchard area. The background of site B was more complex
than that of site A, with more false influences from other trees
than from site A. Most of the IPTs at site B were accurately

predicted, but some other trees were falsely detected as IPTs
(see Fig. 15). These results verified our hypothesis. With the aid
of deep learning, the location of every IPT can be accurately
inferred. Based on the mosaic DOM tessellated with the UAV
images, the distribution map of all the IPTs in a large orchard can
be generated by using ArcGIS. To our knowledge, the integration
of deep learning with UAV remote sensing is a groundbreaking
way to detect and make thematic maps of the spatial distributions
of IPTs.

The planting area and the number of detected IPTs in the
experimental study area were counted with ArcGIS software
and are shown in the thematic map within an inserted table.
Notably, the total planting area was obtained by summing the
area of each IPT and omitting land with no detected pomelo
trees. The total number of IPTs and planting area of site A were
7183 and 10.70 ha, respectively (see Fig. 14), and those of site
B are 2817 and 5.52 ha, respectively (see Fig. 15). Although the
land area of site B is greater than that of site A, the planting area
and number of IPTs are smaller than those of site A because most
of the land lies in the hilly regions densely covered by other trees
in site B. The number of manually labeled IPTs is 6830 for site
A, whereas that predicted by FruitNet is 7182. The percentage
error of the number of IPTs is 5.15% for the prediction of the
whole DOM at site A. The error for site B cannot be obtained
due to the lack of manual labels for the entire area. The clipped
images from site B were partly labeled to supplement the IPTIS
dataset and used for testing the robustness of FruitNet.

These maps are two experimental cases demonstrating the
application of FruitNet to large planting areas of pomelo trees in
Meizhou city. Our aim was to promote the use of the FruitNet in
the whole city of Meizhou by making an entire distribution map
of IPTs in the city for smart orchard planning and management.

IV. DISCUSSION

A. Robustness of the Optimized Models

The seven optimized models were tested on the testing subset
of IPTIS to validate their robustness and generalizability com-
pared with the other models selected. As shown in Fig. 16, the
five accuracy metrics of the seven optimized models for testing
all reach relatively high values, which are all greater than those
of faster R-CNN, YOLOv3, YOLOv4s, and YOLOv7, except
for the recall metric of YOLOv4s. The precision metrics are all
greater than 0.870, the recall metrics are greater than 0.844, the
F1 score metrics are greater than 0.863, the AP@0.5 metrics
are greater than 0.844, and the AP@0.5:0.95 metrics are greater
than 0.550. All these methods have relatively high robustness
in inferring IPTs. However, comparing Fig. 16 with Fig. 13, we
can see that these metrics are all less than those of the validation
set. Hence, the robustness and generalizability of the optimized
models still need to be improved to increase the precision of the
IPT inference in other orchards.

Interestingly, the F1 score, AP@0.5, and AP@0.5:0.95
metrics for the YOLOv5s-transformer model are the highest
among all the optimized models, implying that the YOLOv5s-
transformer model has great potential for performing the IPT
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Fig. 14. Thematic map showing the spatial distribution, planting area, and number of IPTs detected using FruitNet and the (a) mosaic image of site A acquired
on 12 March 2021, with two enlarged rectangular regions inserted as (b) and (c).
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Fig. 15. Thematic map showing the spatial distribution, planting area, and number of IPTs detected using FruitNet and a (a) mosaic image of site B acquired on
16 January 2022, with two enlarged rectangular regions inserted as (b) and (c).

inference task. However, these values are slightly greater (0.1%–
0.6%) than those of the other six attention-optimized YOLOv5
models, especially for YOLOv5s-CA (0.1%–0.2%).

The robustness and feasibility of FruitNet were further tested
on the DJ dataset of site B in Sanxiang. For brevity, only the eval-
uation metrics of the standard and optimized YOLOv5 models
for testing on the DJ dataset were compared. Table VIII presents

that all five metrics except the recall of YOLOv5s-CA are greater
than those of YOLOv5s. The optimized YOLOv5s-CA model
is more robust than the original YOLOv5s model and is more
feasible for inferring IPTs in other orchards.

To observe the IPT inference results visually, two clipped
images [see Fig. 17(a) and (b)] from the DJ dataset of the
pomelo orchards at site B in Sanxiang together with one clipped
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Fig. 16. Comparison of the accuracy evaluation metrics among the optimized YOLOv5s and the state-of-the-art object detection models selected for testing.
AP@0.5 denotes the average precision when the IoU > 0.5, and AP@0.5:0.95 denotes the average precision when the IoU lies between 0.5 and 0.95.

TABLE VIII
COMPARISON OF THE ACCURACY METRICS BETWEEN THE STANDARD AND

OPTIMIZED YOLOV5S-CA MODELS ON THE DJ DATASET

image [see Fig. 17(c)] from the other orchard near site A in
Shishan were collected to validate the robustness and gener-
alizability of FruitNet. As shown in Fig. 17, the IPTs in the
three images captured under different lighting conditions are
almost all correctly predicted by both FruitNet and YOLOv5s,
although a few IFTs are repeatedly overlaid [see Fig. 17(a1),
(a2), (a3), (b2), and (b3)], falsely predicted [see Fig. 17(b1)],
or fully omitted [see Fig. 17(b2)]. Furthermore, FruitNet and
YOLOv5s can detect sparsely and densely distributed IPTs of
different sizes with relatively high confidence (see Fig. 17).
Background conditions, such as those of other kinds of similar
trees or shrubs, may slightly affect the detection results. It is
challenging for a model to detect IPTs with uneven and dense
distributions from UAV images captured in complex environ-
ments. Most of the confidence scores of FruitNet are greater
than those of YOLOv5s. Therefore, it is necessary to append
more high-quality images of different complex environments
across various pomelo orchards to the IPTIS dataset to establish
a more reliable basis and make more in-depth improvements to
the deep learning model optimization to increase its performance
and robustness for the detection of IPTs in larger regions and
even the entire Meixian city.

B. Evaluation of the Datasets of Different Dates Acquired

In addition to the IPTIS dataset, based on the composite of
the UAV-based images taken during the four months at the two
study sites (A and B) mentioned above (see Table III), four
separate datasets were created using the UAV-based images of
each month. The sizes of these four datasets are all very small,
each containing no more than 165 clip images. The standard
YOLOv5s and optimized YOLOv5s-CA models were trained
and validated on the three datasets at site A. The results (see
Fig. 18) show that the accuracy metrics almost all display
increasing trends for the two models. The two exceptions are the
precision metric of YOLOv5s, which decreases on the validation
dataset from February 2021 (DF) to March 2021 (DM) and
then increases on the validation dataset of April 2021 (DA),
and the recall metric of YOLOv5s, which decreases slightly on
the validation datasets from DM to DA. This could be caused
by the image quality and number of datasets. The images in
the DF dataset were captured in cold winter weather. Many
plants, including pomelo trees, were damaged by cold weather
in Meizhou in January 2021. Many pomelo trees dried up and
did not recover, causing the image’s color to appear yellow [see
Fig. 4(a)]. This approach reduced the richness of image feature
extraction and representation in the model. From February to
April 2021, the pomelo trees at site A grew better, and their
features were, thus, easier to recognize. Therefore, although the
size of the DM is smaller than that of the DF, the F1 score and
AP metrics of both YOLOv5s and YOLOv5s-CA validated on
the DM are all greater than those validated on the DF. Moreover,
these metrics of the two models validated on the DA are greater
than those validated on both DM and DF.

Surprisingly, there was no improvement in performance when
YOLOv5s-CA was compared with YOLOv5s when validated
on any of the datasets, and the metrics showed a slight decrease
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Fig. 17. Clip images overlaid with the ground truth boxes (a0, b0, and c0) and the detected IPT boxes and confidence scores predicted by YOLOv5s (a1, b1, and
c1) and YOLOv5s-CA (a2, b2, and c2), respectively. (a) IPTs in sparse alignments. (b) IPTs in dense alignments interspersed with other trees. (c) IPTs in a dense
and random distribution. Images (a) and (b) were selected from site B in the town of Sanxiang, and image (c) was deliberately selected from the other orchard near
site A in the town of Shishan, Meizhou. These three images were not fed into the models for training. Note: White rectangles denote the manually labeled ground
truth boxes, red rectangles denote the predicted bounding box with the class P and confidence score shown above it, brown rectangles denote the undetected IPTs,
yellow ellipses denote the repeatedly overlaid IPTs, and cyan triangles denote the falsely predicted IPTs.

on all the datasets except for a small increase in the precision
validated on the DF (see Fig. 18). This finding suggested that
the optimization of YOLOv5s could not improve the accuracy
of the validated IPT detection on a small dataset. Two methods
could be used to improve the performance of the model. One is to
enlarge the size (number) of the dataset, which can enhance the
feature representation of IPTs. The other is to try other network

models or optimize the model, which can strengthen the feature
extraction and generalization ability of the model used.

C. Comparison With Other Related Work

As mentioned in Section I, in our previous study, we proposed
a YOLOx-nano pomelo tree detection method based on an
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Fig. 18. Comparison of the accuracy metrics of the standard YOLOv5s and the optimized YOLOv5s-CA models for validation on the datasets of different dates.

attention mechanism and cross-layer feature fusion and showed
that this method was more suitable for pomelo tree detection than
other state-of-the-art object detection algorithms. The present
study showed that YOLOv5s and its attention-optimized models
can detect IPTs with high accuracy, in line with the results of
Yuan et al. [49]. Although the structure of the network proposed
by Yuan et al. [49] was lightweight, the AP value reached
93.74%. Our optimized YOLOv5s models fully outperformed
this network in terms of AP, which were all higher than 94.00%,
with the highest AP value of 94.50%. These two studies applied
attention mechanisms to optimize the models used, increasing
the ability of these models to identify small targets [49]. This
finding implies that improving the deep learning model could
increase the detection accuracy of IPTs.

Several other works detected citrus trees, which have
crowns similar to those of pomelo trees, using the connected-
components labeling algorithm [66], mask R-CNN [48], and
YOLOv5s [67] based on the high-resolution UAV images. These
methods (see Table IX) all demonstrated high accuracy, indicat-
ing the feasibility of using different algorithms for IFT detection
tasks. The authors in [66] and [67] used citrus tree images
without interference from other trees for training and validation,
which are relatively simple object detection tasks. Our proposed
model, FruitNet, was trained and validated on the IPTIS dataset,
which consists of many images in which pomelo trees coexist
with other trees, crops, roads, ponds, villages (houses), and
overhead power lines. This complex natural background may
have increased the difficulty of IPT detection.

Nevertheless, our model also has high-accuracy metrics, even
greater than those of [49] and [67]. Therefore, our optimized
YOLOv5s model has strong performance and is suitable for IPT
detection. Furthermore, more deep learning algorithms could
be used and optimized to detect IPTs or other IFTs for better

TABLE IX
COMPARISON OF THE ACCURACY EVALUATION METRICS OF FRUITNET WITH

OTHER RELATED WORKS

performance and robustness. Integrating UAV remote sensing
and deep learning could help accurately and efficiently detect
and map IFTs in every orchard on the Earth for precision and
smart orchard management.

D. Limitations and Future Work

Despite much effort, there are still several limitations in
dataset creation, model selection, and hyperparameter optimiza-
tion, as stated above. First, although we acquired both RGB and
multispectral images simultaneously via UAV remote sensing,
only UAV-based RGB images were used to construct the IPTIS
dataset in the present study. UAV-based multispectral images
will be used in a future study with the hope of improving
the accuracy of the models. Other UAV-based high-resolution
images, such as hyperspectral or LiDAR imagery, could be better
options for detecting IPTs because their spectral information
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or highly effective point cloud data [5], [43] could reveal more
detailed features and improve the performance of CNNs that help
distinguish IPTs from the images accurately. Second, although
a comparative study of YOLOv5 and its optimized counter-
parts was carried out for object detection, many other machine
learning and deep learning models for semantic or instance
segmentation should be analyzed to overcome the shortcomings
of object detection. More state-of-the-art CNN models, such
as U-Net, mask R-CNN, and YOLOv8 [21], [44], [45], [46],
could be optimized and trained to obtain better performance.
More modifications and optimizations of the architectures of
the selected models could be made to further improve accuracy
and robustness [49], [68] for more precise applications of smart
orchard management. Third, hyperparameter optimization and
data augmentation need to be further carried out to enhance the
robustness and performance of the proposed method. All of these
questions deserve further in-depth research.

In the future, spatial and attribute data on IFTs (i.e., location,
planting area, and number) in a large orchard (for example,
a pomelo orchard) could be obtained through our proposed
approach. These data could be easily integrated into a smart
orchard management system that could provide rapid growth
monitoring of IFTs, accurate fruit yield estimation, real-time
disease prevention and control, and precise cultivation and man-
agement. In addition, town-, county-, and city-level thematic
maps of IPTs could be generated through the proposed approach
in a forthcoming study. A precise pomelo yield estimation study
based on a thematic map of IPTs will be a key topic of future
research.

V. CONCLUSION

The present study proposed an optimized deep learning ap-
proach for detecting and mapping IFTs with UAV remote sensing
imagery, taking pomelo trees in Meizhou city as experimental
examples. UAV remote sensing technology was applied to ac-
quire high-spatial-resolution images of the study areas. These
images were preprocessed to produce DOMs and DSMs using
DJI Terra. The novel IPTIS dataset was, subsequently, cre-
ated through visual interpretation and fieldwork investigation.
Five different scales of YOLOv5 (i.e., YOLOv5n, YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x) object detection mod-
els were used to train and validate on the IPTIS dataset. The
evaluation results show that YOLOv5s performs the best with
the highest accuracy among the five models. Consequently,
YOLOv5s was selected as the baseline model to be optimized
using seven widely used attention mechanisms in computer
vision. The accuracy evaluation results show that the CA-based
YOLOv5s model, namely, YOLOv5s-CA, outperforms the other
six attention-optimized YOLOv5s models. YOLOv5s-CA was,
thus, selected and named FruitNet to detect the IPTs in the
whole mosaic orthographic images of the study areas. Finally,
after postprocessing, two spatial distribution thematic maps
of the IPTs at sites A and B were successfully made based
on the detection results of FruitNet. Our results demonstrate
that the attention-optimized YOLOv5s-CA model slightly in-
creases the accuracy of IPT detection compared with its base
model (YOLOv5s) and that FruitNet is suitable for accurately

and efficiently detecting IPTs integrated with UAV remotely
sensed imagery for precision agriculture and smart orchards.
Our hypothesis was confidently verified in the present study,
which could provide reference information for smart orchard
management and related research.
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