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Abstract—When multiple synthetic aperture radar images are
stitched together, the intensity disconnects between them can have
a significant impact on the mosaic’s quality. Many approaches
focus on decreasing the intensity differences between images while
ignoring the issue of image quality improvement. This study pro-
vides an algorithm for color correction and naturalness restoration
for multiple images with uneven luminance in order to generate
high-quality mosaics. To increase the illuminance component’s
naturalness, the image is first divided into illuminance and re-
flectance components, and the illuminance component is subjected
to adaptive luminance improvement and contrast enhancement.
Using a color consistency optimization approach, the intensity
disparities between illuminance components are subsequently min-
imized. The reflectance and enhanced illuminance components are
then combined to produce an improved image. After that, the
enhanced image is mosaicked using multiband blending. Finally,
the intensity differences between the enhanced images are further
decreased using the block-based Wallis transform based on the
mosaic. We assessed the proposed method on 402 Sentinel-1 images
covering the majority of China’s land area to verify its robustness.
When compared to similar algorithms, our strategy reduces the
color distance by about 36.72%, improves the average gradient by
around 89.44%, and increases the patch-based contrast quality in-
dex by roughly 32.85%. The experimental outcomes reveal that our
approach has considerable advantages in terms of color correction
and image quality improvement, both visually and quantitatively.

Index Terms—Color correction, naturalness restoration, remote
sensing images, Retinex theory.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is useful in areas such
as environmental monitoring, resource exploration, and

disaster assessment, as it is weather-independent and enables
all-weather Earth observation [1], [2], [3], [4], [5]. Due to the
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limitations of a single image’s coverage, it is frequently required
to smoothly composite multiple images into a mosaic when
analyzing and studying SAR data on a wide scale. Seasonal
variations, radar wave signal attenuation, noise, and different
gain mistakes, on the other hand, can produce large intensity
variances across images [6]. The radiometric discrepancy lowers
the visual quality of the mosaic images significantly. Thus, in
the fields of large-scale mapping and environmental monitor-
ing, offering an algorithm to minimize intensity discrepancies
between images so that imagery taken at different periods or
locations has consistent intensity after stitching is critical. The
majority of the approaches used for radiative normalization of
SAR images are taken from techniques used for optical image
normalization. As a result, it is necessary to review the strategies
for radiative normalization of optical images.

Radiometric normalization approaches are categorized as
global, local, or combination models [7]. Global models suppose
that the radiometric mapping relationship among image pairs can
be fitted using a linear or nonlinear function. Such methods are
further classified as pixel-to-pixel and area-to-area. To determine
the radiometric mapping relationship between images, the pixel-
to-pixel method is based on the intensity values of homonymous
image points. The relationship between inter-image radiance
mapping is typically considered to be linear when there is no
change in the features in the overlapping portions of the images.
Two popular techniques in this situation are those based on
linear regression [8] and least-mean-square transformation. We
will determine the nonlinear relationship between neighboring
images [9], [10], [11] and then carry out the radiometric normal-
ization when the intensity values of the chosen homonymous
image points do not satisfy the linear relationship. The quality
of the acquired homonymous image points, however, determines
how effective these techniques are.

When images are not exactly aligned or include feature dif-
ferences in the overlapping areas, region-to-region approaches
perform better than pixel-to-pixel techniques. This is because
the statistical data in the overlapping areas is used by these
methods to determine the radiometric mapping relationship be-
tween images. Histogram-based [12], [13], [14], [15] and mean-
and variance-based [16], [17], [18] strategies are examples of
representative techniques. While the former can process images
with similar features well when the radiometric features fluctuate
greatly between images, there is a chance that the image texture
will be destroyed by altering the image’s mean and variance.
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When processing images with similar histogram shapes, the
latter can produce better results; nevertheless, there is a risk of
altering the local radiometric properties of the images when the
histogram shapes differ significantly. To sum up, since the area-
to-area approach builds the radiometric mapping association
using the statistical data of the overlapped areas, it is not affected
by the alignment precision. Overall, a consistent tone can be
satisfactorily obtained with the region-to-region methodology.

When the image has high spatial resolution and complex
content, global models that change the radiometric features
of the entire image using radiometric mapping of overlapping
regions frequently disregard local radiometric variances. As a
result, some local models that take into account local radiometric
changes have been presented [19], [20], [21], [22]. The key idea
behind the local model is to create an appropriate normalization
function based on the radiance difference of local features.
Local models, as a beneficial supplement to global models, can
successfully handle the problem of local inconsistency of inten-
sity. However, if processing patterns and levels do not match
the local features, local models can result in new radiometric
discrepancies. Some scholars have put forward a combination
model that integrates the advantages of the two types of models
mentioned above [23], [24], [25]. The local model is then used
to further minimize the local intensity discrepancies after the
global model has been used to reduce the global color inconsis-
tency. To sum up, the local model uses multiple local functions
to remove the intensity disparities in the overlapping regions,
whereas the global model uses a single function to correct the
radiometric variations between images. Furthermore, both local
and global color discrepancies are reduced in the combined
model.

Two typical approaches for radiometric normalization of SAR
images are invariant pixel-based and statistical feature-based
methods. The core idea of identical pixel-based techniques is to
determine the radiometric relationship among images for radio-
metric normalization via the invariable pixels. Canty et al. [26]
employed orthogonal regression to normalize time-invariant
data and leveraged the linear scale consistency of multivariate
alteration detection to produce immutable pixels. Considering
the effect of scattering noise on the relative radiance normaliza-
tion (RRN) processing, Wang et al. [27] employed a bi-direction
linear regression model to remove bias in RRN parameter esti-
mation and achieved robust radiance normalization using recur-
sive weighted least squares. As previously stated, the efficacy
of such approaches is highly dependent on the accuracy of the
unchanging pixels retrieved. Therefore, some more effective
ways for identifying immutable pixels have been presented.
de Carvalho Jr et al. [28] used an optimal linear regression
model that effectively suppresses outliers to achieve automatic
acquisition of a large and sufficient number of pseudo-invariant
characteristics. Ya’allah and Saradjian [29] utilized image dif-
ference histogram modeling via spectral bands to efficiently opt
for unchangeable pixels.

Statistical feature-based strategies, on the other hand, make
use of statistical data to calculate the radiometric mapping
relationship between images in order to adjust for intensity
consistency. By modifying the image’s local mean and variance,

Hinse et al. [30] were able to create uniform intensity in various
image regions. Shimada and Ohtaki [31] interpolated a gain
correction factor that balances the intensities between adjacent
bands using a polygonal curve approximation technique, and
Shimada and Isoguchi [32] used histogram matching to modify
the image gain to reduce the intensity differences between
images. These techniques work well for processing images with
similar content, as was previously indicated. The issue of error
accumulation during radial propagation was recently resolved
by Zhang et al. [6] using a random cross-observation technique.
They were also able to achieve intensity correction for a range
of high-resolution images using a regionally independent linear
model, in accordance with a low-resolution reference image that
was created. Furthermore, by employing a global quantization
technique along with a radiometric adjustment model, Liu et al.
[33] successfully removed the radiative disparities in SAR image
stitching.

The majority of existing techniques might overlook the issue
of image enhancement because they concentrate on eliminating
noticeable intensity variations across images. That is, if the
original image’s visual quality is low, these techniques might
not be able to produce visually acceptable outcomes. Some
algorithms advocate for image enhancement as postprocessing
or preparation for global color correction [19], [34]. While
pretreatment cannot ensure image quality following global color
adjustments, postprocessing has the potential to undermine
global color uniformity. As a consequence, it is difficult for
these algorithms to balance minimizing color inconsistencies
with enhancing image quality. Li et al. [35] employed a global
energy optimization framework to simultaneously enhance im-
age contrast and color consistency in order to solve this issue.
Since improving image contrast invariably makes the differences
between images more noticeable. Consequentially, this strategy
makes it difficult to set the proper weights to balance both of
them. The Retinex theory-based approach [36], [37], [38] is
one of the many enhancement algorithms that may effectively
enhance an image’s details. It is commonly used to deal with
low brightness and blurry images. Motivated by this, in order
to optimize image quality and color consistency, this research
proposes a color correction and naturalness restoration method
for multiple images with uneven luminance.

The sum of our contributions is as follows.
1) To create uniform intensity transitions between images

and to remove both global and local intensity disparities,
a combination model is proposed.

2) To eliminate local color differences, we propose a weight-
ing scheme used in multiband blending and apply the
results from multiband blending to enhance the efficacy
of the block-based Wallis strategy. The experimental out-
comes demonstrate that this approach successfully re-
duces noticeable image seams.

3) In order to preserve as much of the image’s detailed
information as possible, we solely optimize color consis-
tency and image quality for the illumination component
of the image according to Retinex theory. To improve the
performance of each algorithm, these two procedures are
also carried out independently.
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Fig. 1. Suggested approach’s diagrams.

The rest of this article is structured as follows. Section II
presents the suggested algorithms; Section III reports and dis-
cusses the experimental outcomes; and Section IV provides
conclusions.

II. PROPOSED METHOD

As shown in Fig. 1, the approach we propose is separated
into two steps. The illumination components of the image are
optimized in the first step, which includes enhancing the lumi-
nance distribution and contrast of the luminance components as
well as decreasing the global intensity discrepancies between the
luminance components. The enhanced image is then subjected
to local color correction in the second step to smooth out any
obvious seams between the images. The previously mentioned
two steps are addressed in full below.

A. Image Enhancement and Global Color Correction

Image quality is related to the human visual system. Find-
ing a proper balance between naturalness and clarity makes it
challenging to improve an image’s clarity while maintaining
its authenticity at the same time. The Retinex-based image
enhancement methods that are now available can improve an
image’s clarity without sacrificing its natural appearance. As
a result, at this stage, we also improve the image based on

Retinex theory and maximize image color uniformity. To be
more specific, the image is first decomposed into two compo-
nents: reflectance and illuminance. Among these, reflectance de-
notes local details, and illumination denotes overall naturalness.
Next, modules for adaptive brightness improvement, contrast
enhancement, and color consistency optimization improve the
image’s illumination. Finally, image composition is carried out,
which multiplies optimized illuminance by reflectance to create
an enhanced image. The details of the functional modules are
provided below.

1) Image Decomposition: According to the Retinex theory,
an image is made up of illuminance and reflectance. Many
present techniques based on this notion use various filters, such
as Gaussian filters or bilateral filters, to estimate the illuminance
and consequently determine the reflectance. However, utilizing
Gaussian filters directly to calculate illuminance causes issues
with the results, such as halo artifacts around edges. To solve this,
we blend the illumination component retrieved by the Gaussian
filter with the original image via the image gradient. Since the
gradient precisely describes the difference between the image’s
intensity and illumination component, it is possible to effectively
control the halo effect by adjusting the extracted illumination
component.

The following are the precise steps: Initially, we acquire the
low-frequency data LI of image I , or the estimated illuminance
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component, using Gaussian filtering. Subsequently, to decrease
the effect of noise on the high-frequency data of image I ,
we employ the high-frequency data that has been processed
by Gaussian filtering as the weighted map W , which can be
determined using the subsequent formula

W (x, y) = (|I (x, y)− LI (x, y)|) ∗G (x, y) (1)

where G denotes the convolution kernel that was applied during
the Gaussian filtering process, and I(x, y) and LI(x, y) indicate
the pixel values found at point (x, y) on image I and image LI ,
respectively. We normalize the weighted map W after getting
it to produce the weighted map WN . The adjusted illumination
component L̃I is then determined using the following equation:

L̃I (x, y) = WN (x, y) · I (x, y)+(1−WN (x, y))·LI (x, y) .
(2)

It is noteworthy that, in comparison to the single-scale Retinex
method, the illuminance component L̃I is more successful at
safeguarding the edges and obfuscating the flat areas. Finally,
by substituting L̃I into the following equation, the reflectance R
of the image can be obtained

R (x, y) = I (x, y) /L̃I (x, y) . (3)

Furthermore, the majority of the image’s detailed information
is contained in the reflectance R.

2) Adaptive Luminance Improvement: To improve the image
luminance, we employ a nonlinear function with a self-tuning
parameter stated in the article by Sidike et al. [39] to avoid
complicated computations. The following is the definition of
this nonlinear function:

IL (x, y) =
arctan (IN (x, y)α − 0.5)

2 arctan (0.5)
+ 0.5 (4)

where IN = I/Imax ; IN is the intensity image after normaliza-
tion; Imax represents the maximal value in image I; IL defines
the grayscale image after luminance enhancement; IL(x, y)
indicates the value of the pixel positioned at (x, y); and α
represents the local adaptive parameter. Furthermore, the pa-
rameter computation utilizing the sigmoid function can provide
reasonable enhancement of the image’s dark and bright parts.
The parameter can be calculated using the following formula:

α (x, y) =
1

1 + e−IN (x,y)
. (5)

According to the analysis of this nonlinear function, the shape
of the function in the interval (01) resembles the shape of a
power function with an exponent greater than 1. As a result, by
maintaining the values of the bright regions while enhancing
those of the dark parts, this module tends to recover richer infor-
mation and improve the dark portions of the image. Finally, the
results generated by this module need to be max-min-stretched
to convert to 8-bit images.

3) Contrast Enhancement: An image’s contrast will always
drop when its brightness is increased. As such, to enhance the
image’s contrast, we use the idea of histogram equalization.
But when the histogram contains obvious peaks and valleys,
histogram equalization often leads to the issue of the image being
over- or under-enhanced. To solve this problem, we employ

the methodology described in the research [35], creating the
histogram with the support of gradient and contextual data. This
method increases the percentage of edge pixels while decreasing
the number of pixels in smooth areas by utilizing the gradient and
neighborhood similarity of the pixels. Consequently, it success-
fully prevents artifacts caused by over- and under-enhancement
from appearing. Please refer to the literature for specifics on the
methodology. Next, using the created histogram as a basis, we
calculate the probability density function po(·) and define the
uniform probability density function as follows:

pu (l) =
1

256
(6)

where l is the gray level and has a value range of [0255]. The
following equation is used for calculating the final probability
density function pr(·):

pr (l) = w · po (l) + (1− w) · pu (l) (7)

where w is the weighting coefficient. This coefficient is deter-
mined as follows and plays a crucial role in blending po(·) and
pu(·) in a sensible manner

w =

255∑
i=0

pu (i)− pclip (i) (8)

where pclip(·) is derived by clipping the probability density
function pf (·) in accordance with pu(·) as follows:

pclip (l) =

{
pu (l), if pf (l) > pu (l)
pf (l), otherwise

(9)

where pf (·) is calculated via moving average filtering of po(·)
in the following manner:

pf (l) =
po (l) + po (l + 1) + · · ·+ po (l + h− 1)

h
(10)

where h indicates the size of the filtering window. Moving
average filtering successfully smoothes out the spikes in the
po(·). After getting the pr(·), the following formula can be used
for calculating the associated cumulative distribution function
cr(·):

cr(l) =

l∑
i=0

pr(i). (11)

Finally, the enhanced image Ien is obtained by the transfor-
mation shown below

Ien (x, y) = �255 · cr (I (x, y)) + 0.5�. (12)

The cumulative distribution function, in other words, is used
as the grayscale remapping function.

4) Color Consistency Optimization: To decrease global
color discrepancies among images, we translate the requirement
to eliminate color discrepancies into parametric representations.
The color remapping function fi for each image is found by
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solving the stated cost function using convex quadratic program-
ming. The following is the designed cost function:

E =
∑

Ii∩If �=∅
Ecolor(Ii, Ij) + λ

N∑
i=1

Eregular(Ii) (13)

where Ii and Ij are the two overlapping input images. The
coefficient of balancing the regularity and color terms is denoted
by λ. For images Ii and Ij , the color term has been described as
follows:

Ecolor(Ii, Ij) =

K∑
k=1

∥∥∥fi(vik)− fj(v
j
k)
∥∥∥
2

(14)

where K represents the amount of color correspondences ex-
tracted, usually K = 16, and ‖ · ‖2 is the L2 norm. (vik, v

j
k)

denotes the kth color correspondence between Ii and Ij . The
color correspondence is defined as the equal probability quan-
tile corresponding to the two cumulative distribution functions
computed in the overlap region of Ii and Ij . This is similar to
obtaining a grayscale mapping between original and reference
images in the histogram matching algorithm. The color term
allows for the closest achievable grayscale distribution between
the corrected images. It helps in the reduction of color discrepan-
cies between images. As confining the remapping function alone
with the color term leads to no solution and an invalid solution,
we add the regular term to further constrain the remapping
function, which is defined as follows:

Eregular(Ii) =
M−1∑
i=1

∥∥fi(v̇ij − v̇it)
∥∥
2

(15)

where v̇it = (cit + cit+1)/2, and (cit, c
i
t) denotes the anchor point

coordinates that generate the segmented quadratic spline curve,
the remapping function. M anchor points are typically used to
generate the remapping function. The regular term’s duty, in
addition to ensuring the validity of the solution, is to allow
the corrected image to have a color tone similar to the original
image. Furthermore, a qualifying color remapping curve must
meet two basic requirements: it must be monotonically growing,
and the mapped values must be in the image’s color domain. As
a result, we apply the same limitations to the remapping curve
as described in the article by Xie et al. [10] as follows:

Crigid (fi) :

{
τl � f ′

i

(
vik
)
� τu, ∀vik ∈ [vs, ve]

vmin � fi
(
ui
0.01

)
, fi

(
ui
0.99

)
� vmax

. (16)

The cost function E is then solved using convex quadratic pro-
gramming to derive the remapping function parameters for each
image. Finally, color discrepancies across images are corrected
using the remapping function.

B. Local Color Correction

A global color consistency optimization method is utilized in
Section II-A to lessen the variations in intensity across the SAR
images within the study area. However, even after global color
correction, there were considerable intensity discrepancies at the
margins of neighboring images. We analyzed the reason for this
occurrence and devised a focused response.

Due to the influence of the imaging technique, the edges of the
SAR image in the range direction tend to display an inconsistent
intensity distribution and thus need to have gain compensated.
Furthermore, as SAR images are frequently affected by noise,
the noise around the edge in the distance direction is enhanced
during the antenna direction map correction procedure, giving
this edge a larger radiation intensity than the central region. SAR
images typically overlap each other within the study area. As a
result, pixels toward the margins of an aberrant intensity image
may appear in the middle of other normal-intensity images. In
order to further smooth out the evident seams between images,
we applied mutual intensity correction to the areas where adja-
cent images overlapped. To be more specific, we use multiband
blending to first stitch together all of the images that need to be
processed into a seamless mosaic. Subsequently, the local color
disparities of the images are eliminated using a block-based
Wallis transform, which makes the corrected images’ intensity
distribution resemble that of the mosaic images and removes
any visible splicing traces between images. The aforementioned
algorithm is explained in depth in the section that follows.

1) Multiband Blending: The fundamental idea of multiband
blending is to create a mosaic image by superimposing the
blended results after blending the overlapping areas of the im-
age using various weights on different frequency bands. When
blending various frequency bands, a different step size is needed
for the weights’ 0–1 transition, and this step size needs to match
the frequency band’s scale. In other words, the step size should
be greater to prevent ghosting when dealing with lower scales of
frequencies and smaller to minimize visual discontinuities when
working with larger scales of frequency bands. The algorithm’s
steps are as follows.

Constructing the input images’ Gaussian pyramid is the first
step. Our approach sets the size of the Gaussian kernel used
in each layer to 5 × 5, and it contains a single image in
each of the five layers of the Gaussian pyramid. The Gaus-
sian pyramids of images A and B, assuming that these are
the input images, are represented as GA

0 , G
A
1 , G

A
2 , G

A
3 , G

A
4 ,

and GB
0 , G

B
1 , G

B
2 , G

B
3 , G

B
4 , respectively. In the second step,

the input image’s Laplace pyramid is computed. Below is the
calculation formula

Li =

{
Gi, if i = 4
Gi − Fu (Gi+1) , otherwise

, for i = 0, 1, 2, 3, 4

(17)

whereFu(·) denotes the up-sampling function,Li andGi denote
the ith layer of the Laplace and Gaussian pyramids, respectively,
and Fu(Gi+1) has the same size as Gi. The Laplace pyramids
of images A and B are labeled as LA

0 , L
A
1 , L

A
2 , L

A
3 , L

A
4 , and

LB
0 , L

B
1 , L

B
2 , L

B
3 , L

B
4 , respectively. In the third stage, the over-

lapping regions of LA
i and LB

i are weighted-blended using a
linear fusion technique. Lc

0, Lc
1, Lc

2, Lc
3, and Lc

4 are the fused
outcomes, accordingly. In the fourth phase, Lc

1, Lc
2, Lc

3, and Lc
4

are sequentially up-sampled to the same size as Lc
0, and then

Lc
0 and all up-sampled results are superimposed to generate the

final mosaic image.
A very critical step in the multiband blending algorithm is

how to determine the weights of the pixels in the overlapping
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Fig. 2. (a) Overlapping region between the images. (b)–(e) Four cases showing the distribution of the pixel’s weights.

region. For overlapping regions with regular shapes, it is easier
to determine the weights. For example, you can simply specify
that the weights of the pixels within the rectangular overlapping
area are to be incremented or decremented in top-to-bottom
or left-to-right order. However, the overlap region between or-
thophotos is usually irregular. Therefore, we propose a strategy
for determining the weights of pixels in irregularly overlapping
regions. The method has a total of three steps. Assume that image
I of size M × N is an overlapping region between images, as
shown in Fig. 2(a).

Step 1: From row 0 to the M-1st row of pixels, each row
of pixels gets processed in left-to-right order. The column
indexes of the pixels having nonzero values are noted first
as one traverses each row of pixels. N mutually disjoint sets
can be formed by these column indexes. For instance, Qi =
{xi | xi ∈ [pi, qi], pi < qi, xi, pi, qi ∈ [0, N − 1] ∩ N}, i ∈
{1, 2, . . . , n}, where pj > qj−1 + 1, j ∈ {2, 3, . . . , n}. In
addition, assuming the current row number is r, condition one
is pi = 0, or I(r, pi − 1) = 0, and condition two is qi = N ,
or I(r, qi + 1) = 0. Then, determine the weight of the pixel
whose column index is a part of set Qi by applying the next
four rules.

1) If both condition one and condition two hold, then the dis-
tribution of pixel weights appears as illustrated in Fig. 2(b).

2) If condition one holds and condition two does not, then
the distribution of pixel weights looks as displayed in
Fig. 2(c).

3) If condition two holds and condition one does not, then
the distribution of pixel weights is presented in Fig. 2(d).

4) If neither condition one nor condition two holds, then the
distribution of pixel weights is shown in Fig. 2(e).

Step 2: Starting from column 0, traverse each column of pixels
in top-to-bottom and left-to-right order until the N-1th column
of pixels has been processed. As one traverses each column of

pixels, the method in step one is used to determine the weights
of each pixel.

Step 3: The average of the pixel weights determined in the
above two steps is taken as the final weights of the pixels.

2) Block-Based Wallis Transform: The principle behind the
Wallis transform is to employ the reference image to modify the
average and standard deviation of the original image, bringing
the original image’s hue consistent with that of the reference
image. The general description of this transformation is as
follows:

Iout (r, c) = [Iin (r, c)−min]
sr
sin

+mr (18)

where Iin(r, c) and Iout(r, c) are pixel values at point (r, c) in the
input and output images, respectively. The means of the input and
reference images are denoted by min and mr, respectively, and
the standard deviations are represented by sin and sr. The preced-
ing equation explains how the Wallis transform achieves global
color correction by utilizing statistical characteristics (e.g., mean
and standard deviation). To achieve local color correction, we
first block the image and then apply the Wallis transform to
each image block. When it comes to image blocking, both the
reference and original images should be blocked using the same
strategy. In order to eliminate the block effect in the output
images, bilinear interpolation is used to compute each pixel’s
standard deviation and average for the original and reference
images.

The following are the precise steps: First, figure out each
image block’s statistics. Subsequently, the statistical information
of the four corner points of the image block gets determined
as the average of the statistics of the image block to which
they belong. It is worth noting that statistics with zero values
should be disregarded when calculating corner-point statistics.
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Fig. 3. Sentinel-1 SAR images covering most of China’s land area.

Finally, bilinear interpolation is utilized to determine the sta-
tistical characteristics of each pixel based on the data from the
image block’s four corner points. Next, in order to achieve a
smooth intensity transition and remove the obvious splicing
seams between the images, the Wallis transform is carried out
on the original image’s pixels in accordance with (18). Notably,
in order to maintain the original image’s textural features, we
process the image’s low-frequency data using the block-based
Wallis method rather than the image itself. Stated differently, we
used a Gaussian filter to first split the image into its low- and
high-frequency data. Next, we use the low-frequency informa-
tion from the reference image to alter that of the original image
using a block-based Wallis transform. The final image is then
created by combining the source image’s high-frequency data
with the processed result.

III. EXPERIMENTS

A. Experimental Datasets

402 Sentinel-1 single-polarized SAR images in interfero-
metric wide swath mode and 9 Gaofen-3 (GF-3) unipolarized
SAR images in fine-strip 2 mode were chosen as datasets for
the study. Fig. 3 illustrates the coverage of Sentinel-1 SAR
images. Table I displays the specifics of these datasets. It takes up
roughly 158 GB of RAM to store these images. The coordinate
system of the images is unified as WGS-84. These datasets
contain images from different seasons and shooting methods.
Due to seasonal differences, the backscatter coefficients between

TABLE I
BASIC INFORMATION ON THE DATASETS

images exhibit significant inconsistencies. In addition, different
shooting methods, such as shooting when the orbit rises or falls,
can also cause significant radiation differences between images.
Therefore, through these challenging datasets, we can effectively
test the performance of different algorithms.

B. Evaluation Metrics

In this study, the effectiveness of color-correcting algorithms
is statistically evaluated using three objective indicators. The
color distance (CD), which is used to assess how well various
methods remove color discrepancies across images, is the first
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evaluation metric. The difference in color between images re-
duces with decreasing CD values. The average gradient (AG)
of the image serves as the second metric. This metric is used
to measure how well an image reflects the sharpness of small
features. Generally speaking, a larger AG denotes a sharper,
higher-contrast image. The third metric is the patch-based con-
trast quality index (PCQI). This indicator compares the contrast
change and structural similarity of two images. That is, the
amount of contrast enhancement and structural distortion in the
resulting image when compared to the original image. A higher
PCQI value indicates a stronger contrast in the resulting image.

1) Color Distance: For two overlapping color-corrected im-
ages, Ip and Iq, this indicator is defined as follows:

CD(Ip, Iq) =

√∑K
k=1 (v

p
k − vqk)

K

2

(19)

where (vpk, v
q
k) represents the kth color correspondence between

Ip and Iq . K denotes the number of color correspondences, which
is usually 16. vpk and vqk denote the quantile with probability
k/(K + 1) of the cumulative distribution function in the over-
lapping regions Ipq and Iqp, respectively. Ipq denotes the area
of Ip overlapped with Iq. Iqp also has a similar meaning.

2) Average Gradient: The following is the calculation for-
mula:

AG(I) =
1

H ×W

H−1∑
h=0

W−1∑
w=0

×
√

(Ih,w − Ih,w+1)
2 + (Ih,w − Ih+1,w)

2

2
(20)

where W and H denote the image’s width and height, respec-
tively. Ih,w represents the pixel’s value at the image’s position
(h, w).

3) Patch-Based Contrast Quality Index: This indicator can
be described as follows:

PCQI (X,Y) =
1

N

N∑
i=1

qc(Xi,Yi) · qs(Xi,Yi) (21)

where both images X and Y are divided into N nonoverlapping
patches. xi and yi are patches located at the same position
in image X and image Y, respectively. qc(x,y) is used for
assessing the degree of contrast enhancement of patch y over
patch x. qs(x,y) is used to compare the structural similarity of
patches. For detailed definitions of qc(x,y) and qs(x,y), please
refer to the article by Wang et al. [40].

C. Experimental Results Analysis

1) Global Comparison: This part presents a comparison be-
tween the outcomes obtained from the proposed strategy and the
other two methods. The first approach is called color correction
with gradient preservation (CCGP) [10], which enhances image
quality using terms for dynamic range and gradient. The dy-
namic range term in this method improves image contrast by ex-
tending the range of color assignments, while the gradient term
keeps the image features. Another method is Contrast-Aware

Color Consistency Correction (CACCC) [35], which effectively
addresses the issues of the image’s over- and under-enhancement
and increases the image contrast with the designed contrast
term. CCGP is less beneficial for single-band images, so we
made changes to the source code from the article by Xia et al.
[10] while retaining the original parameter settings. In addition,
CACCC needs to determine two parameters, λ1 and λ2, and
different parameter values will result in various outcomes. When
λ1 = 0.1 and λ2 = 0.9, the result is most visually appealing and
is chosen as the experimental data. The two strategies mentioned
above are highly valuable in comparison for lowering color
inconsistency between images and enhancing image quality.

As the computational cost of directly processing high-
resolution SAR images is very high, we down-sampled the
original images by a factor of 10 using the average-based down-
sampling technique, which can be adjusted to meet practical
requirements. An image with 29 360 × 16 234 pixels, for exam-
ple, is down-sampled to 2936 × 1624 pixels. The downsampled
images are then processed. In addition, for comparison with
high-resolution images generated by other methods, we have
utilized the approach proposed in our prior work [41] to decrease
the color disparities between the high-resolution raw images,
where the strategy uses a low-resolution reference image created
by the methodology suggested in this article. It is noteworthy
that we did not use the first step of the approach to optimize the
reference image; instead, we processed the source image directly
using the second step. For further details, please see that article.
Next, we analyzed the experimental data both numerically and
visually.

Fig. 4(a) illustrates the research area’s source images. The
intensity of the images positioned at different locations varies
noticeably. The CCGP outcomes are depicted in Fig. 4(b), and
we notice that intensity variations between images are well sup-
pressed; however, there are still visible stitching seams between
images, indicating that CCGP focuses mostly on global intensity
disparities and does not precisely correct local intensity discrep-
ancies for images within the study region. The CACCC results
are shown in Fig. 4(c), with a better visualization of the intensity
distribution throughout the research area. The method effec-
tively improves the image’s sharpness. However, like CCGP, the
approach mainly concentrates on global color differences and
does not properly smooth intensity discrepancies at the image’s
boundaries. The results processed by our approach are shown
in Fig. 4(d), where the whole study region is better visualized,
with natural and seamless intensity transitions between images,
greatly improved image quality, and enhanced overall image
hierarchy.

Table II displays the results of the quantitative assessment
of the various approaches to the experimental data. Accord-
ing to the statistical results, images processed by our method
outperform CCGP and CACCC in all three criteria, which is
consistent with the visual performance. Only in metric CD is the
CACCC inferior to the CCGP. This is because the approach must
make a compromise with regard to image contrast enhancement
and color consistency optimization, i.e., sacrificing metric CD
accuracy to improve image quality. Since CCGP tends to lower
visual contrast to maintain the image’s tonal consistency, the
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Fig. 4. Experiment outcomes based on the China dataset. (a) Initial images. (b) and (c) Outcomes generated via the CCGP and CACCC approaches, respectively.
(d) Outcome corrected through our method. To effectively assess methodologies, outcomes from the dataset in the A, B, and C areas were selected for further
analysis.

TABLE II
QUANTITATIVE RESULTS OF VARIOUS METHODS ON THE CHINA DATASET

approach generates images that are superior to the original image
in terms of metric CD but inferior in terms of metric AG.

To further investigate and assess the various approaches, we
chose images from the China dataset located in areas A, B,
and C of Fig. 4, which present significant radiance variations
caused by orbital differences, antenna azimuth map variations,
and imaging processor gain errors. The three trial sets enable us
to precisely analyze the efficacy of several strategies on images
from different geographies. Table III shows the quantitative
analysis outcomes of the different strategies for the three regions.

Fig. 5 displays the results of the color correction for region A.
The original images located in various tracks exhibit noticeable
intensity discontinuities prior to algorithmic processing, as can
be seen. While the global color discrepancies have been elimi-
nated in Fig. 5(b) and (c), there are still noticeable intensity dif-
ferences between images in the red box and issues with too dark
and low contrast images in the blue box, respectively. Fig. 5(c)

Fig. 5. Analysis of outcomes achieved through images from Region A. (a)
Initial images. (b) and (c) Outcomes corrected through the CCGP and CACCC
approaches, respectively. (d) Outcome produced via our method. The blue box
represents areas with low contrast and severe darkness, whereas the red boxes
indicate notable color differences.



7352 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE III
QUANTITATIVE OUTCOMES OF MULTIPLE METHODS ON RESEARCH DATA IN THE A, B, AND C REGIONS

Fig. 6. Experimentation results acquired with images in Region B. (a) Initial
images. (b) and (c) Outcomes corrected through the CCGP and CACCC methods,
respectively. (d) Outcome corrected via our method. The red boxes present
noticeable color discrepancies.

has a better general distribution of brightness but is slightly less
sharp than Fig. 5(b). As seen within Fig. 5(d), the proposed
approach improves the intensity consistency of this region when
compared to previous algorithms, leaves no evidence of intensity
differences, and produces an image with greater sharpness and
texture details. The quantitative outcomes in Table III indicate
that our strategy outperforms all other methods in all metrics.
This is in accordance with the qualitative assessments shown
above and demonstrates the efficacy of the suggested approach.
The CACCC has a disadvantage in all indicators when compared
to the CCGP. It indicates that when processing images covering a
vast area, the approach is less stable in improving image contrast.
As previously stated, the method’s lowering of image contrast
causes the large gap between the results obtained by CCGP and
the original images in the metric AG.

The initial and processed images for region B are displayed in
Fig. 6. It is straightforward to see that Fig. 6(d) is preferable to

Fig. 6(b) and (c), both in terms of image quality and uniformity
of intensity. The issue with the noticeable color transition in the
region of the red box within Fig. 6(b) remains. Although the
overall brightness distribution and image clarity in Fig. 6(c) are
significantly improved over Fig. 6(b), the intensity inconsistency
across the images is also increased, as seen by the red box. In
terms of quantitative evaluation, Fig. 6(d) demonstrates consid-
erable advantages across all criteria. In comparison to Fig. 6(b),
Fig. 6(c) cannot account for all metrics and only performs better
on the metrics AG and PCQI. This illustrates the algorithm’s
weaknesses.

Fig. 7 exhibits the color-correcting results of various ap-
proaches on images from region C. Overall, all methods min-
imize image intensity discrepancies to varied degrees. Since
the CCGP and CACCC only reduce global intensity differences
across images, Fig. 7(b) and (c) still show significant local color
disparities in some locations, such as those denoted by red boxes.
Furthermore, while Fig. 7(c) has greater general sharpness than
Fig. 7(b), there is an issue with low contrast within the blue box
region. As shown in Fig. 7(d), our strategy produced the most
pleasing visual results. The statistical results in Table III offer
support for this statement.

In conclusion, CCGP fails to produce good-quality images
when the visual quality of the original image is low, despite being
supposed to preserve image details and enhance image contrast
through a gradient term and a dynamic range term, respectively.
Similar to this, CACCC utilizes color and contrast terms to
improve contrast and decrease intensity discrepancies between
images. However, it is challenging for the method to simultane-
ously improve the consistency of intensity between images and
visual contrast. As a result, neither approach can successfully
improve the visual quality of images and poses certain limits.
By enhancing contrast and brightness and conducting global
color correction on only the luminance component of the image,
the proposed approach improves image visual quality while
efficiently maintaining image texture features. Furthermore, our
method enforces local color correction to further smooth out the
intensity discrepancies at the image’s boundaries, resulting in
visually acceptable correction outcomes.

In addition, we evaluate the proposed method on GF-3 images
to demonstrate that the strategy is equally applicable to data ac-
quired by other types of sensors. The qualitative and quantitative
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Fig. 7. Analysis of the outcomes obtained via images from Region C. (a) Initial images. (b) and (c) Outcomes generated with the CCGP and CACCC methods,
respectively. (d) Outcome corrected through our method. The red box denotes regions with considerable differences in colors, and the blue box shows regions with
low contrast.

TABLE IV
QUANTITATIVE OUTCOMES OF VARIOUS METHODS ON THE TAIHU DATASET

results are shown in Fig. 8 and Table IV, respectively. Since the
data processed by the proposed approach is grayscale images, the
algorithm can theoretically process images acquired by different
sensors without discrimination as long as the backscattering
coefficients in the SAR images are linearly stretched to grayscale
values.

As shown in Fig. 8(d), outperforms (b) and (c) in terms
of grayscale consistency, particularly in the region indicated
by the red boxes. Furthermore, the comparison of (c) and (d)
demonstrates that, when compared to the CACCC, our method
moderately enhances the image and effectively avoids amplify-
ing noise in images. The quantitative results in Table IV support
the above argument. Table IV shows that CACCC necessitates
a trade-off between the metrics PCQI and CD when compared
to CCGP, whereas our strategy optimizes both.

In conclusion, the above-mentioned experimental results are
sufficient to show that our method is able to effectively process
GF-3 data. The method provides favorable technical support
for the production of visually pleasing mosaics based on SAR
images from multiple sources.

2) Detailed Analysis: This section compares the suggested
approach to the CACCC method and assesses its impact on the
image’s local features. Several sets of typical scene images, such

as those of plains, cities, mountains, and waters, make up the
experimental data. Fig. 9 and Table V, respectively, exhibit the
qualitative and quantitative results. As shown in Fig. 9, while
processing images containing water, our approach is able to
keep the precise information about the waters more efficiently
than the CACCC method. This is so because our technique
improves the illumination component of the image rather than
the image itself. Furthermore, as noise frequently takes the form
of high-frequency information in images, boosting the image’s
illuminance alone can effectively prevent noise from being am-
plified. As can be seen from the comparison of (b3) and (c3) in
Fig. 9, our methodologies can effectively avoid magnifying the
noise in the image when boosting the plains-containing image,
in contrast to the CACCC approach.

The large CD values between the original image pairs, as
shown in Table V, suggest that there are significant intensity
differences between the source image pairings. Following pro-
cessing by our approach and the CACCC methodologies, the
value of CD decreased, but our technique performed better. This
is because the image-overlapping areas contain different types
of features that may have various radiometric correspondences
with each other. Consequently, a single-spline curve model may
be unable to take into consideration color discrepancies in local
regions of the image. In addition, our method and the CACCC
approach yield similar results for the metric PCQI. In this
study, a global-to-local strategy is used to maximize the image’s
color consistency, and according to the Retinex theory, we only
improve the brightness and contrast of the image’s illuminance
component. Thus, our approach produces better outcomes in
terms of color constancy and image quality.

3) Ablation Study: In this section, we conduct ablation ex-
periments on the images in region C to investigate the impacts
of the proposed approach’s image enhancement (IE), global
color correction (GCC), and local color correction (LCC) on the
experimental results. Methods 1–3 can be obtained by taking out
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Fig. 8. Experiment outcomes based on the TAIHU dataset. (a) Original images. (b) and (c) Outcomes generated via the CCGP and CACCC methods, respectively.
(d) Outcome obtained through our approach. The red boxes indicate clear color discrepancies.

TABLE V
QUANTITATIVE RESULTS OF VARIOUS METHODS ON LOCALIZED INTENSITY BY SCENE AND IMAGE
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Fig. 9. Neighboring image overlapping regions and local magnifications. (a1) and (a2) Image pair 1 and local enlarged views. (b1) and (b2) Image pair 1 and
detail views following CACCC method processing. (c1) and (c2) Image pair 1 and detail views after processing by our approach. (a3) and (a4) Image pair 2
and local enlarged views. (b3) and (b4) Image pair 2 and detail views following CACCC approach processing. (c3) and (c4) Image pair 2 and detail views after
processing by our method.
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Fig. 10. Qualitative outcomes of ablation studies on images in region C. (a)–(c) Outcomes generated with methods 1–3, respectively. (d) Outcome obtained
through our method.

TABLE VI
QUANTITATIVE RESULTS OF ABLATION EXPERIMENTS PERFORMED ON IMAGES

LOCATED IN REGION C

IE, GCC, and LCC from the proposed approach, respectively.
Table VI and Fig. 10 present the quantitative and qualitative
findings, respectively.

Compared to Fig. 10(a), Fig. 10(d) has higher visual quality,
indicating that IE can effectively enhance image quality. Nev-
ertheless, according to the quantitative findings, IE improves
the images while magnifying the color inconsistencies between
them. Through a comparison of (b) and (d) in Fig. 10, we can
observe that the use of GCC eliminates color discrepancies
across images while reducing image contrast. Fig. 10(d) exhibits
better intensity uniformity than Fig. 10(c), demonstrating that
LCC can achieve uniform intensity transitions by removing local
color disparities between images. However, LCC still suffers
from reduced image contrast. Through a quantitative comparison
between methods 1 and 2, as well as approaches 1 and 3, it
is evident that the color correction algorithms (LCC, GCC)

outperform IE in terms of improving the metric CD but fall short
of IE in terms of increasing the metric PCQI. It indicates that the
goal of the color correction and image enhancement methods,
respectively, is to improve color consistency and image quality.
The quantitative outcomes of methods 2 and 3 can likely be
compared, and it can be seen that while both have similar impacts
on the improvement of the metric PCQI, LCC is not as effective
as GCC in increasing the metric CD.

Overall, color inconsistencies across images can be effectively
eliminated by both GCC and LCC, although GCC works better.
Furthermore, the consistency of hue and image quality cannot
be simultaneously optimized by IE or the color-correcting al-
gorithm. We combine the image enhancement method with the
color consistency optimization approach in an inventive way.
Consequently, our approach produces aesthetically pleasing im-
ages with uniform color tones.

IV. CONCLUSION

In response to the problem that various color correction meth-
ods neglect to improve image quality while reducing the color
difference between images, this article provides a solution for the
naturalness restoration and color correction of multiple images
with uneven brightness. The proposed method is organized into
three primary steps. First, we optimize the luminance compo-
nents of a single image using adaptive luminance improvement
and contrast enhancement methods. The color discrepancies
between various luminance components are then eliminated
through a color consistency optimization method. Finally, the
enhanced images are locally color corrected using multiband
blending and block-based Wallis transform to remove any visible
seams remaining between images.
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To evaluate the utility of the suggested approach, we used SAR
images spanning the majority of China’s land area as study data
and juxtaposed our method with two state-of-the-art techniques.
Some of the next conclusions can be obtained.

1) Qualitative and quantitative analysis of experimental data
demonstrates that our method proves to be effective and
reliable.

2) When juxtaposed with CCGP and CACCC, our strategy
lowered indicator CD by about 31.75% and 41.69%, im-
proved metric AG by roughly 109.23% and 69.65%, and
increased index PCQI by around 33.79% and 31.90%.

3) Experiments reveal that our method exceeds other current
methods in terms of reducing color differences across
images and recovering image naturalness.

Our method has drawbacks as well. The algorithm proposed
in this study is intended to generate high-quality mosaics and
fails to consider applying the processing results to quantitative
remote sensing, which will serve as the subject of future studies.
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