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Adaptive Spatial Regularization Correlation
Filters for UAV Tracking

Yulin Cao , Shihao Dong , Jiawei Zhang , Han Xu , Yan Zhang , and Yuhui Zheng

Abstract—As a tool for near-earth remote sensing, unmanned
aerial vehicle (UAV) can be used to acquire images and data of the
earth’s surface. This provides a powerful support for Earth obser-
vation and resource management. Object tracking in UAV videos
has been a topic of much interest in recent years. A large number
of algorithms have been proposed. Among these algorithms, deep
learning has achieved a high accuracy rate. However, it is difficult
to carry hardware devices for UAV, which makes it difficult to be
practically applied. The correlation filter does not require a graphic
processing unit to accelerate the computation, but it uses only
manual features, which makes it difficult to achieve satisfactory
performance. In order to solve the above problems, we proposed
adaptive spatial regularization correlation filters, called DTSRT.
Specifically, we first introduce deep features in the correlation filter
instead of the original manual features, which can greatly improve
the discriminative ability of the model. At the same time, in order
to prevent affecting the real-time performance of the algorithm,
we use histogram of oriented gradients features to determine the
target scale and deep features to determine the target location.
In addition, considering the large inter-frame distance between
targets in UAV videos, we use a saliency detection method to dy-
namically generate spatially constrained templates. The proposed
DTSRT outperforms other state-of-the-art algorithms with area
under curve of 0.481, 0.431, and 0.474 on UAV123@10FPS, UAVDT,
and DTB70 datasets, respectively.

Index Terms—Adaptive spatial regularization, correlation filter,
deep features, UAV tracking.

I. INTRODUCTION

N EAR-EARTH remote sensing refers to the acquisition of
data and information from the near-Earth surface through

the use of sensors. Unmanned aerial vehicle (UAV) can fly at
low altitudes and carry various sensors, such as optical cameras,
infrared cameras, light detection and ranging, and so on, which
are used to acquire high-resolution images and data from the
surface. Compared with satellite remote sensing, UAVs can
control the flight altitude and trajectory more precisely when
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acquiring data and therefore can obtain higher resolution images.
This gives UAVs an advantage in applications that require high
precision and detailed information, such as agricultural monitor-
ing, environmental monitoring, urban planning, and other fields.
Therefore, UAVs are widely used in near-earth remote sensing
applications [1], [2], [3], [4], [5]. One of the popular research
directions is UAV tracking.

As the name suggests, UAV tracking is the continuous local-
ization of prelabeled targets in UAV videos. Different from OTB
dataset [6], UAV videos are all taken by UAVs. As the UAV
shoots video, it is itself in constant motion, which makes the
trajectory of the target irregular. In addition, the excessively large
interframe distance makes some regularization methods play a
detrimental role in the performance of the model. In addition to
the above, low resolution and occlusion are also issues that have
to be considered.

A robust model should be able to effectively deal with the
above challenges and not lose track of the target throughout,
which are undoubtedly difficult. Nevertheless, a large number of
algorithms have been proposed for achieving accurate tracking.
These algorithms can be broadly categorized into deep learning
[7], [8], [9], [10], [11], [12] and correlation filters [13], [14], [15],
[16], [17], [18], [19]. Deep learning extracts high-dimensional
semantic information about the target mainly with the help
of a convolutional neural network (CNN). Unlike handcrafted
features such as HOG and color names (CN), the deep features
extracted by CNN are more resistant to interference, and they
are less susceptible to environmental influences. SwinTrans-
former neck and new data association method (STN-Track) [7]
uses the swinTransformer as a backbone network for feature
extraction, which significantly enhances the global interaction
capability of the model. Similar to STN-Track, a hierarchical
feature pooling transformer [8] also uses a Transformer in the
tracking framework to enhance the representational information
of small targets. An efficient aerial tracker (SmallTrack) [9] em-
beds graph neural network into the predictor header to improve
the model’s ability to recognize small targets. Aiming at the
problem of difficult prediction of target motion trajectories in
UAVs, meta twin delayed deep deterministic policy gradient
(Meta-TD3) [10] proposes a reinforcement learning strategy
based on meta-learning. Due to the frequent occlusion of targets
in UAVs and the scarcity of such data, an attention-based mask
generation network [11] designs a mask generation network to
simulate the situation when occlusion and deformation occur.
Global context embedding for vehicle tracking [12] is improved
at the feature level by designing a novel feature fusion network
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to make it more applicable to UAV scenarios. These algorithms
achieve great performance, but they rely on the GPU that is
difficult to deploy on UAVs to accelerate the computation.

In this case, correlation filter seems to be more competitive. It
accelerates the computational efficiency of complex convolution
operations in the frequency domain by fast Fourier transform.
The tracking algorithms based on correlation filters have seen a
large-scale development due to good accuracy as well as speed.
Kernelized correlation filters (KCF) [13] proposed by Henriques
et al. is the landmark in the development of correlation filters.
KCF further adopts the multichannel HOG features. This allows
the correlation filter to outperform the previously optimal algo-
rithm and maintain a high speed. To make the correlation filtering
algorithm more applicable to the field of remote sensing, some
scholars have improved it. Given that most algorithms predict
the likely future location of a target solely from the current
frame, ignoring the role of past frames, Lin et al. [14] fully
investigated the interframe information of target motion and
find the reversibility, which allows the model to learn changes
in the appearance of the target from past frames. In addition,
targets in UAVs undergo drastic changes in appearance during
movement, which can lead to contamination of the tracking
template. The spatial regularization correlation filters with the
Hilbert–Schmidt independence criterion (HSIC_SRCF) [15] uti-
lizes peak-to-sidelobe ratio to adaptively update the templates,
and the introduction of dynamic weights allows the templates
to be updated over time, which is useful for improving the
long-term tracking performance of the algorithm.

While the idea of cyclic translation of samples in the corre-
lation filter greatly solves the problem of scarcity of training
samples, the introduction of the boundary effect makes the
tracking effect affected to some extent. Spatially regularized
discriminative correlation filters (SRDCF) [16] is a classical
method for target tracking, which effectively mitigates the
boundary effect by introducing a spatial regularization term in
the objective function. Considering the temporal order of the
spatial regularization method, spatial-temporal regularized cor-
relation filters (STRCF) [17] propose a regularization method on
the spatio-temporal domain and adopts the alternating direction
method of multipliers (ADMM) for the solution. Another class
of methods to mitigate boundary effects are correlation filters
with limited boundaries (CFLB) [18] and background-aware
correlation filters (BACF) [19]. Such methods utilize the region
of a larger background for target detection and filter learning,
and unlike SRDCF, CFLB and BACF directly perform zero-
completion operations on the filter edges through the clipping
matrix to obtain correlation filters with smaller domains of
action.

Recently, the integration of deep features into correlation-
filtered target tracking algorithms has also become mainstream
due to the wide application and superior results of deep con-
volutional features. Convolutional features for correlation filter
(DeepSRDCF) [20] replaces HOG features with deep features
in a single layer of the visual geometry group (VGG) network.
The tracking performance of efficient convolution operators
(ECO) [21] using a deeper network for feature extraction is not
significantly improved, suggesting that correlation filters do not

benefit from deeper convolutional network features. Unveiling
the power of deep tracking [22] utilizes deep features to maintain
robustness while shallow features are responsible for accuracy,
balancing target localization accuracy and tracking robustness.

Inspired by the above algorithms, we proposed the adaptive
spatial regularization correlation filters, called DTSRT. Given
the low resolution of targets in UAV videos, it is difficult
for manual features to efficiently represent targets. Therefore,
we use deep features to replace the original manual features.
Furthermore, it is known from [21] that deeper network layers
do not lead to performance improvement. So we use VGG19
to complete the extraction of features and use HOG features to
determine the target scale. Finally, the fixed spatial constraints in
existing algorithms are difficult to apply in UAV videos. We use
a detection algorithm to generate spatial constraints. Our main
contributions can be summarized as follows.

1) We combine deep learning and correlation filters to strike
a balance between performance and speed. The use of
deep features can effectively improve the anti-interference
ability of the model.

2) We use deep features to localize the target. Also to ensure
that the speed of the algorithm is not seriously affected, we
use HOG features to determine the target scale. Manual
features are introduced to ensure speed without much loss
of accuracy.

3) We impose a dynamic spatial constraint on the objective
function, which can effectively mitigate the tracking drift
caused by the large interframe distance.

The rest of this article is organized as follows. Section II
describes the related works. Sections III and IV explain the
proposed algorithm and the corresponding experimental results.
We present future work in Section V. Section VI summarizes
the proposed algorithm.

II. RELATED WORKS

A. Boundary Effects

The correlation filter can utilize the fast Fourier transform
to accelerate the computation in the frequency domain, result-
ing in a substantial increase in tracking efficiency. However,
when performing the Fourier transform, the cyclic shifting of
samples will bring about boundary effects, which will lead to
inaccurate representation of image blocks. For the problem of
how to suppress the boundary effect, it is roughly divided into
two categories: adding regularization terms and adding mask
matrices.

The mask matrix acts directly on the circular shift samples,
and it effectively weeds out inaccurate shift samples. CFLB
[18] adds the mask matrix to the objective function for the
first time, which can effectively reduce the number of samples
with boundary effects by multiplying the resulting circularly
shifted samples with the mask matrix. BACF [19] extends
single-channel color features to multichannel HOG features for
feature extraction and then each channel was solved according
to the CFLB method, and finally the overall response map was
obtained by summing.
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SRDCF [16] introduces a spatial regularization matrix in
the objective function to penalize the filter coefficients out-
side the target region of the sample, which can effectively
suppress the influence of the background region. STRCF [17]
employs both temporal regularization and spatial regulariza-
tion to suppress boundary effects and improve the tracking
efficiency. Introducing predefined regularization terms requires
setting many human-defined hyperparameters in advance, which
makes the tracking algorithm not generalizable. Automatic
spatio-temporal regularization correlation filters (AutoTrack)
[23] automatically adjusts both temporal regularization and
spatial regularization, enabling adaptive changes in the relevant
hyperparameters, thus saving the step of manually fine-tuning
these hyperparameters. A novel object saliency-aware dual reg-
ularized correlation filter [24] simultaneously regularize the
filters involving the correlation operation in ridge regression
and the regularization term in the objective function, effectively
suppressing the boundary effect.

Considering the importance of samples for filter training, it is
necessary to alleviate the boundary effects caused by cyclic sam-
pling. From the above, it is clear that regularization is an effective
way to mitigate boundary effects. However, most algorithms
only use the regularization term as a complementary term to the
objective function. In this manuscript, a dynamic regularization
operator is introduced, which can effectively utilize the spatial
information of the object.

B. Correlation Filters Combined With Deep Learning

In recent years, the use of deep learning in the field of object
tracking has led to a substantial increase in tracking accuracy.
However, the computational complexity of deep features is too
high, which makes the tracking real-time reduced. The real-time
effect of target tracking algorithm based on correlation filters is
very good. Thus, the integration of correlation filter and deep
learning becomes an inevitable trend.

Discriminant correlation filters network (DCFNet) [25] re-
places the similarity operation with a correlation filtering oper-
ation, thus enabling end-to-end tracking. Fast and robust online
adaptation (MetaTracker) [26] uses real scenes from subsequent
frames to learn a set of initialization parameters for the CNN
network, allowing the deep network to model a specific target
robustly and quickly. Wang et al. [27] proposed an unsupervised
object tracking algorithm, which can utilize unlabeled datasets
for unsupervised learning. In [28], knowledge distillation [29] is
used to jointly compress and transmit off-the-shelf CNN teacher
network models, resulting in a lightweight student network for
feature extraction.

Combining deep neural network with correlation filters is
undoubtedly a more advanced tracking method compared with
traditional target tracking algorithms based on correlation filters.
Neural networks have outstanding performance in target model-
ing, while correlation filters have unique advantages in tracking
real-time performance, so the fusion of neural networks and
correlation filters can achieve robust performance both in track-
ing accuracy and tracking real-time performance. In addition,
considering the small target in the UAV video, it is difficult
for the deep convolutional network to extract efficient semantic

information, so it is necessary to select a lightweight and simple
network.

C. UAV Tracking

Object tracking can be divided into traditional ground track-
ing, UAV tracking, and satellite video tracking based on appli-
cation scenarios. Due to its compact and flexible characteristics,
UAV tracking has always attracted the attention of scholars.
However, unlike traditional tracking, targets in UAV videos often
have lower resolution. Moreover, the relative motion between the
UAV and the target makes tracking more difficult.

In order to accurately track targets in UAV videos, many
tracking algorithms based on UAV videos have been proposed.
Given that the aspect ratio of targets in UAV videos is more likely
to change, compute a more accurate and robust correlation filter
(ARTracker) [30] constructs a function similar to Gaussian la-
bels for filter training, which effectively enhances the regression
ability of the filter. An autoperceiving correlation filter (APCF)
[31] models the target context using background features and
proposes a new state estimation metric that predicts the target
state by analyzing the spatial distribution of the response graph.
In [32], the contextual information of the target is also used to
enhance the recognition ability of the filter. Specifically, it en-
hances target information by suppressing incorrect information.
Perceiving temporal environment for correlation filters (PTECF)
[33] proposes a regularization term to learn the environmental
differences between adjacent frames, thereby enhancing the
sensitivity of the filter in different scenarios. In order to utilize the
temporal information during the filter training process, a novel
adaptive response reasoning approach (ReCF) [34] constructs
auxiliary labels for the current sample to learn the general
relationship between the current filter and the previous filter.

In addition to the aforementioned algorithms, many scholars
[35], [36], [37] have made improvements to filters in other areas,
such as using multiple features, introducing redetection mech-
anisms, and introducing regularization terms. Inspired by the
above algorithm, we propose a novel UAV tracking algorithm.
The use of deep features and dynamic regularization effectively
enhances the tracking ability of the proposed algorithm on UAV
videos.

III. PROPOSED METHOD

The tracking flow of the proposed DTSRT is shown in Fig. 1.
Specifically, we extract the deep features of the target by VGG19.
Also, in order to prevent the introduction of deep features from
seriously affecting the speed of the algorithm, we use HOG
features to determine the scale of the target. In addition, we dy-
namically generate spatial constraints on the target through the
existing saliency detection method [38]. Next, we will provide
a detailed introduction to the proposed algorithm.

A. Overall Objective

In order to train a robust filter, algorithms based on correlation
filters usually use cyclic sampling to increase the training sam-
ples, which inevitably leads to boundary effects. STRCF [17]
introduces a spatial regularization term in the objective function



7870 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 1. Flowchart of the proposed DTSRT.

to mitigate boundary effects. Considering the large interframe
distance between targets in UAV videos, it is difficult for the
static regularization term to be fully effective. For this reason,
we generate a dynamic constraint ws through existing saliency
detection method [38]. The objective function is shown below
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where y is the expected response consistent with a Gaussian
distribution. t and k denote the tth frame and the kth channel,
respectively. K is the total number of channels. x and h denote
the feature map and filter, respectively.

Considering that (1) is a convex function, an augmented
Lagrangian algorithm can be used to minimize it in order to
obtain a globally optimal solution. In the optimization process,
by introducing an auxiliary variable g, i.e., by making h = g,
(1) can be rewritten as follows:
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where s is a Lagrange multiplier and γ is the control parameter.
Let f = s

γ , the above equation can be rewritten as
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Further, (3) can be solved and decomposed into the following
three subproblems by the ADMM method:

hi+1 = argminh
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f i+1 = f i + hi+1 − gi+1. (6)

1) Subproblem h: According to Parseval’s theorem, this can
be simplified to the following form:
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whereˆdenotes the corresponding Fourier transform. For exam-

ple, x̂k
t is the Fourier transform of xk

t . It is too difficult to solve
(7) directly, so the above equation can be solved after further
simplification
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where Γj(x̂t) denotes the vector representation of the jth pixel
over all channels. The following solution can be obtained by the
Sherman–Morrison formula:

Γj
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)
=

1

γ + μ

(
I − Γj (x̂t) Γj(x̂t)

T
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)
q (9)

where q = Γj (ĥt)ŷj + γΓj(ĝt)− γΓj(f̂t) + μΓj(̂ht−1).
2) Subproblem g: Equation (5) can be solved directly in the

time domain. It is solved as follows:

g =
(
DTD + γI

)−1
(γft + γht) (10)

where D is a diagonal matrix consisting of ws and γ is the step
size

γi+1 = min
(
rmax, ρri

)
(11)

where γ and ρ are the maximum step size and scale factor,
respectively.

After the filter ht is solved by the above method, the response
map is obtained by correlating it with the search image. The
location where the maximum response is located is the location
of the target

rt = ℱ
−1

K∑
k=1

(
x̂t

k � ĥt
k
)

(12)

where rt is the response map and ℱ−1 is inverse Fourier trans-
form.

B. Adaptive Spatial Regularization

Due to the rapid movement of the target or the relative motion
of the UAV, the interframe distance of the target may be much
larger than expected. This situation makes it difficult for static
spatial regularization template w to be fully effective. In this
manuscript, a dynamic spatial regularization term is proposed.

Although deep learning-based detection algorithms now have
high accuracy, their large number of parameters can seriously
affect the real-time performance of the algorithms. In addition,
in the field of object tracking, the algorithms usually crop out
only an image patch of 2.5 times the size of the target and predict
the target position in the image patch instead of the whole image.
Therefore, traditional algorithms can still achieve more robust
performance.

Specifically, we use the saliency detection method [38] to
predict the approximate location of the target to generate the
original saliency map. After multiplying by a cos window,
the original map is then resized to the corresponding size in
the appearance model used in filter training, and its coefficients
are remapped to the regulation weights by a threshold. In this
article, the threshold is set to 0.1. Then, the static template is
weighted by the final saliency map s. As shown in Fig. 2, the
green region is where the target is located, and we crop out a
region twice the size of the target for saliency detection, i.e., the
red region. With the above operation, the target information can
be fully utilized while the background information is penalized.
Finally, the adaptive spatial constraint ws is obtained by s, i.e.,
ws = w � s.

Fig. 2. Process of saliency detection.

C. Deep Features

Most of the correlation filters use manual features such as
HOG features, CN features, and so on. But these features are
only used to describe a single attribute. When the tracking
scene changes dramatically, these features are often difficult
to describe the target efficiently. This challenge is even more
pronounced in UAV videos. On the one hand, it is the small
size of the targets in UAV videos, whose features are difficult to
extract adequately. On the other hand, the scenes in UAV videos
change more frequently.

For this reason, the use of deep features has become an
inevitable trend. It is clear that shallow features have a distinct
appearance or outline and contain a great deal of detail about the
target. Then, the deep features contain rich semantic information
and are extremely resistant to interference. Therefore, deep
features are more advantageous than manual features in target
characterization.

IV. EXPERIMENTS

A. Experimental Setup

In the experiments, the experimental equipment is a server
equipped with NVIDIA GTX 2080ti GPUs and an Intel I9-
9900X CPU. Scale factor p, the maximum value of the step
parameter rmax, and the initial step parameter r0 were set to 1.2,
100, and 10, respectively. The threshold for saliency detection
and the coefficient of the temporal regularity term μ were set
to 0.1 and 7, respectively. To comparatively analyze the perfor-
mance of the trackers, the threshold of the localization error in
the experiment was set to 20 for the precision rate.

B. Datasets and Compared Algorithms

In order to fully validate the performance of the proposed
DTSRT, we have selected more classical UAV datasets such as
UAV123@10FPS [39], UAV20L [39], UAVDT [40], and DTB70
[41]. The UAV123@10FPS dataset consists of 123 image se-
quences captured by UAVs, which contain some virtual image
sequences in addition to real images. The targets to be tracked in
it contain various categories such as pedestrians, vehicles, build-
ings, etc. The long image sequences in the UAV123@10FPS
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Fig. 3. Precision plots and success plots. The precision rates of precision plots and AUC of success plots are given in brackets, respectively.

dataset are selected to form the UAV20L dataset. It consists
of 20 long sequences and each of these image sequences has
a total frame count of 1000 or more. This dataset is generally
used to test whether a model can track a target over time. The
UAVDT dataset is a versatile dataset, which can be used for
object tracking or detection. Most of the targets in it are vehicles.
The DTB70 dataset gives 70 short image sequences, which can
all be used to test the performance for UAV tracking algorithms.

We compare the proposed model with some classical algo-
rithms on the above datasets. The algorithms compared are Auto-
Track [23], aberrance repressed correlation filters (ARCF) [42],
ECO_HC [21], STRCF [17], SRDCF [16], BACF [19], KCF
[13], DCF [13], mutation sensitive correlation filter (MSCF)
[43], multicue correlation filters (MCCT_H) [44], and discrim-
inative correlation filter with channel and spatial reliability
(CSRDCF) [45].

C. Comparison With Other Algorithms

1) Results on UAV123@10FPS: The results on the
UAV123@10FPS dataset are shown in Fig. 3. We utilize the
precision plots and success plots to compare the performance
of each algorithm. It can be seen that the precision rate and
AUC of the proposed model are 0.654 and 0.481, respectively.
Our algorithm is ranked third on precision plots and first on
success plots. The proposed DTSRT, AutoTrack, and STRCF
all add regularization terms to mitigate boundary effects.
Considering that precision rate is limited by preset threshold,
so AUC is generally used to assess the overall performance
of the algorithm. By comparison, our model achieves the best
performance. It can be seen that the use of deep features has
a great effect on the improvement of accuracy. AutoTrack
automatically adjusts both temporal regularization and spatial
regularization, enabling adaptive changes in the relevant
hyperparameters, thus saving the step of manually fine-tuning
these hyperparameters, and it has the second highest AUC at
0.477. KCF uses only manual features and does not have any
effective treatment for boundary effects, making it difficult to
achieve satisfactory performance in UAV videos. In conclusion,
the proposed DTSRT achieves satisfactory performance on this
dataset.

2) Results on UAV20L: The last two plots in Fig. 3 show
the experimental results on UAV20L dataset. Since this dataset
has only 20 image sequences and the challenge is homogenous,

i.e., long-term motion. So this dataset is generally used to test
whether the model is able to track the target consistently. In the
precision plots, the proposed DTSRT has an accuracy of 0.610,
which is 0.026 higher than the second place. In the success plots,
the proposed DTSRT has a success rate of 0.428, which is 0.013
higher than the second place. The proposed models all achieve
the optimal performance. This implies that our model has robust
long-term tracking capability. BACF uses real samples to train
the filter and thus also achieves better performance, with an
AUC of 0.415, ranking second. ECO_HC though improves the
discriminative ability of the classifier by fusing HOG features
and CN features. But its AUC only reaches 0.387, which shows
that the use of multiple features is not very useful in UAV videos.

3) Results on UAVDT: The targets to be tracked in the UA-
VDT dataset are mostly vehicles. In addition, some of the image
sequences in this dataset were taken at night or in fog, resulting
in blurred targets. As a result, the results on this dataset are not as
good as the results on the other datasets. As can be seen in Table I,
our model still performs well with an AUC of 0.431, second only
to BACF. But in terms of precision rate, our model is 0.022 higher
than BACF. It can be seen that our model can accurately localize
the position of the target, but cannot efficiently fit the scale of
the target. This is mainly because the proposed DTSRT still
uses HOG features to predict the scale of the target. In order to
prevent the model speed from being seriously affected, we only
use deep features when predicting the target location. Overall,
the proposed model significantly outperforms other algorithms
on the UAVDT dataset.

4) Results on DTB70: To further compare the advantages and
disadvantages between the algorithms, we conducted additional
experiments on the DTB70 dataset. The results of each algorithm
can be seen in Table II. Considering that the DTB70 dataset
consists of 70 short image sequences, the overall performances
are all satisfactory. AUC is generally used to rank individual
algorithms. It can be seen that the proposed DTSRT has an AUC
of 0.474 and is ranked first. The AUCs of MSCF and ECO_HC
are 0.458 and 0.453, ranking second and third, respectively.
Compared to our model, their AUCs are reduced by 0.016 and
0.021, respectively. In addition, our algorithm still outperforms
other algorithms in terms of precision rate, with an accuracy
of 0.676. Overall, the proposed DTSRT achieves outstanding
performance on the DTB70 dataset.

5) Visualization Results: In order to visualize the tracking
performance of the proposed DTSRT, we show the visualization
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TABLE I
RESULTS ON UAVDT DATASET

TABLE II
RESULTS ON DTB70 DATASET

Fig. 4. Visualization results. (a) truck2. (b) UAV1. (c) walkboard2.

results of some algorithms on truck2, uav1, and walkboard2
image sequences. As illustrated in Fig. 4, we have selected a few
challenging image sequences to better visualize and compare
the differences between the algorithms. In truck2, the tracked
target is small, occupying just a few tens or hundreds of pixels.
In this case, it is difficult for the algorithm to extract efficient
features. As a result, all algorithms except ours fail to track.
Given that our algorithm uses deep features to model the target,
it is highly discriminative. Despite the low resolution of the
target, the proposed DTSRT accurately localizes the target. In
uav1, the target being tracked is a drone. The target has been
moving rapidly, which poses a huge challenge to the algorithm.
In addition, clutter occurs frequently in this image sequence.
It can be seen that only our algorithm can accurately localize
the target, and all other algorithms fail to track. On the one
hand, deep features enhance the representational information
of the target. On the other hand, the dynamic regularization
term mitigates the interference of clutter. Although STRCF
also introduces a regularization term, it is clear that the static
regularization term is difficult to deal with clutter interference
effectively. In walkboard2, the target has been moving erratically

and with occasional nonrigid deformations. When deformation
occurs, interference from background noise is inevitably intro-
duced into the original bounding box. Our model introduces
a regularization term to penalize the background region, so
it can keep tracking the target successfully. BACF, however,
suffers from background interference and eventually loses the
target.

6) Results in Different Attributes: In order to verify the
generalization ability of the proposed algorithm, we test its
performance in different challenge attributes, and the results are
shown in Fig. 5. Since scale variation and aspect ratio variation
occur frequently in UAV videos, we first conduct experiments in
these two scenarios. It can be seen that our algorithm achieves the
best performance with AUCs of 0.447 and 0.421, respectively.
Due to the use of deep features, the discriminative ability of the
algorithm is greatly improved, so when the target is more similar
to the background, our algorithm can still accurately localize the
target. In addition, our algorithms are still applicable to other
scenarios, such as camera motion, fast motion, etc. However,
when occlusion occurs, our algorithm is unable to continue the
tracking because no redetection mechanism is introduced, which
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Fig. 5. Results in different attributes. The values in legends are the AUC.

TABLE III
RESULTS OF ABLATION EXPERIMENTS ON UAV123@10FPS DATASET

ultimately leads to tracking failure. It can be seen that the AUC
is only 0.248 in the occlusion scenario.

D. Ablation Studies

In order to verify the effectiveness of the proposed adaptive
spatial regularization ws and deep features, we conducted a
series of ablation experiments. Specifically, we introduce ws

on top of baseline to verify the performance gain that adaptive
spatial regularization brings to the model. As can be seen in
Table III, the precision rate of the algorithm has improved by
0.022 and the AUC has improved by 0.01. It can be seen that
the introduction of adaptive spatio-temporal regularization can
effectively mitigate the interference of the background, and
its plays an active role in UAV videos. We then replaced the
handmade features in that experiment with deep features, the
proposed DTSRT. It should be noted in particular that at this
point we only use deep features when predicting the target
location, and we still use HOG features when predicting the
scale. It can be seen that the AUC improved by 0.014 and the
accuracy improved by 0.005. We can conclude that deep features
have a stronger characterization ability compared to handcrafted
features. However, it is easy to see that while deep features bring

performance gains they also lead to a decrease in the speed of
the algorithm. FPS dropped from 28.6 to 9.7. Finally, in order
to further exploit the performance of deep features, we also use
deep features when predicting the scale, i.e., baseline + ws +
CNN. Not surprisingly, the precision rate and AUC are 0.661 and
0.487, respectively, achieving the optimal performance among
all the experiments. However, its drawback is also obvious, with
a speed of only 5.2. To summarize, we ended up using deep
features only for predicting position, and still used HOG features
for predicting size.

V. CONCLUSION

In this article, we propose adaptive spatial regularization
correlation filters, called DTSRT, for UAV tracking. Given the
large interframe distances between targets in UAV videos, it is
difficult for the original static spatial regularization to be fully
effective. So we generate a dynamic spatial regularization con-
straint with the help of the existing saliency detection method.
Dynamic constraints can update the regularization template
in real time according to the target position and it is more
suitable for UAV scenarios. In addition, we use deep features
rather than handcrafted features to model the target due to the
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strong representational and anti-interference capabilities of deep
features. As can be seen from Table III, the deep features improve
the performance while reducing the real-time performance of the
model. Therefore, we still use HOG features in predicting the
target scale. Experiments on some classical UAV datasets show
that the proposed DTSRT has robust tracking performance.

The proposed DTSRT has high accuracy but it lacks occlusion
detection mechanism. This also means that it is difficult for our
model to continue tracking when occlusion occurs. In future
work, we plan to focus on exploring redetection algorithms
applicable to UAV videos. In this case, the long-term tracking
capability of the algorithm can be greatly improved.

VI. DISCUSSION

Remote sensing touches all aspects of our lives [46], and
UAVs can be used to collect near-earth remote sensing data.
Based on this, object tracking in UAV videos has been attract-
ing the attention of many scholars. However, unlike traditional
object tracking, targets in UAV videos tend to have low res-
olution, which makes it difficult for algorithms to efficiently
model targets. To enhance the representational information of
the target, many algorithms [47] fuse multiple features to im-
prove their accuracy in multiple scenarios. Although the use of
multiple features improves the algorithm’s discriminative ability
to some extent, manual features are only applicable to a single
scenario. In complex scenarios, these algorithms often perform
poorly.

Due to the powerful modeling capabilities of deep learning,
we use deep features to describe the target, which greatly im-
proves the robustness of the algorithm. As can be seen in Fig. 5,
the tracked targets are not only of low resolution, but are also
accompanied by challenges such as fast motion and deformation.
Among all the algorithms, ours is the only one that can track
the target accurately. In contrast, ECO_HC uses a variety of
features, but it still ends up failing to track. Therefore, deep
features have better modeling ability for small targets in UAV
videos. However, the use of deep features often comes with a
huge time overhead, so in this article, deep features are only used
to predict the location of the target. For the scale of the target,
we still use HOG features. From Table III, we can see that the
use of HOG features enhances the speed of the algorithm.

In addition to this, boundary effects have to be taken into
account, especially in UAV videos, which are very likely to lead
directly to tracking failures. BACF [19] mitigates the boundary
effect by using real samples to train the filter and extend the
search region. STRCF [17] suppresses boundary effects by
introducing a regularization term. However, in UAV videos, the
target moves faster and the relative motion of the target and
the camera can result in larger distances between neighboring
frames. Therefore, static regularization methods are difficult to
be fully effective. To solve the above problem, we introduce a
dynamic regularization term that generates constraints in real
time based on the location of the target. SRDCF [16], STRCF
[17], CSRDCF [45] all use static regularization terms, while we
use dynamic regularization terms. As can be seen from Fig. 5, our
algorithm significantly outperforms other algorithms in a variety

of challenging scenarios, such as similar object, fast motion, and
so on.

Although the proposed algorithm, DTSRT, achieves excellent
performance on several UAV datasets, it is difficult to apply it
to occlusion scenarios. As shown in Fig. 5, the AUC of our
algorithm is only 0.248 in occlusion scenario. Since occlusion
occurs frequently in UAV videos, it is necessary to introduce a
redetection mechanism to mitigate the adverse effects caused by
occlusion. In future work, we intend to apply the object detection
technique in the proposed algorithm. Specifically, when occlu-
sion occurs, we use the detection algorithm to redetect the target
location as a way to improve the long-term tracking capability
of the algorithm.
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