
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024 7695

Progressive Difference Amplification Network With
Edge Sensitivity for Remote Sensing Image

Change Detection
Yi Liang , Xinghan Xu , Chengkun Zhang , Jianwei Liu , Deyi Wang , and Min Han , Senior Member, IEEE

Abstract—Capturing finer and discriminative difference fea-
tures (DFs) is key to obtaining a high-quality change detection (CD)
map. However, there is still significant scope for further study on
fine-grained detection, especially concerning terms of improving
structural integrity and reducing internal holes or sticking in DF. To
this end, we propose a progressive difference amplification network
(PDANet) with edge sensitivity to detect changed areas in optical
remote sensing images (RSIs), where the key point is to amplify
DF and reinforce edge detail to improve CD accuracy. The edge
sensitivity (ES) encoder is designed to capture the long-distance
dependency, which compensates for the limited receptive fields of
the convolutional neural network with fixed kernels. Meanwhile,
we introduce the prior edge in the network training stage, which
collaborates with the ESE to improve the structural integrity of
the changed areas. On the other hand, the difference amplifi-
cation decoder is proposed to enhance the representation of the
changed areas, and it is achieved by integrating multiscale DF
and reconstructing the original single RSI using DF as full-stage
guidance. Finally, the CD map and edge map are predicted based
on the reconstructed feature and the maximum scale DF. Extensive
experiments on one instance dataset and three CD benchmark
datasets demonstrate that PDANet outperforms the state-of-the-art
CD competitors both qualitatively and quantitatively.

Index Terms—Change detection (CD), difference features (DFs),
edge sensitivity (ES), gate weight modulation, prior, remote sensing
images (RSIs).

I. INTRODUCTION

O PTICAL remote sensing images (RSIs) are widely used in
real-world applications due to they provide a large range
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Fig. 1. Visualization of some examples: (a) Time t1 RSIs. (b) Time t2 RSIs.
(c) P2V. (d) ICIFNet. (e) Proposed PDANet.

of real-time ground conditions, and change detection (CD) is one
of the most interesting research topics in the field of recognition
of optical RSI. CD relies on the paired RSIs acquired in the
same spatial domain and different temporal domains to provide
ground object changes oriented to actual project requirements,
such as urban planning [1], fill soil building land [2], land use
detection [3], and waterbody monitoring [4].

As optical sensors become progressively more precise, CD
tasks in high-resolution optical RSI present both opportunities
and challenges. One of the toughest challenges is the complex-
ity of objects in the scene, such as clear geometric structure,
multiple scales, random distributions, and nonuniform spectral
features. These factors place higher demands on accurate CD and
may result in the CD maps as internal holes, multiple objects
sticking, small object loss, etc. As shown in the 1st row of
Fig. 1(b), the changed area with the semantic concept of land
reclamation (red dotted box) shows significant spectral differ-
ences due to the different construction materials and illumination
variations. In the 2nd row of Fig. 1, building CD results in the
red box are affected by the off-center position of the buildings
and similar spectral characteristics to the background roads. In
addition, accurate detection is difficult in scenes with mixed a
small number of special geometrical configurations, such as the
domed building in 3rd row of Fig. 1(b). From these, it can be seen
that extracting global structural features and enriching difference
features (DFs) to better understand the entire content of the scene
is the important requirements for current CD methods.

Nowadays, many studies have been devoted to studying
automatic interpretation techniques of computer vision to enrich
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scene information in CD tasks, i.e., building CD methods based
on convolution neural network (CNN) [5] and [6]. Since the
nature of CNN is to learn local information hierarchically with a
fixed-size window, this causes the network ignore structural con-
text information. To this end, many articles carried out expanding
the receptive field to alleviate the above-mentioned problem,
such as multiscale feature fusion [7], multiscale convolution [8],
atrous spatial pyramid pooling [9], dilated convolution [10],
sparse Markov random field [11], and attention mechanism [12].
The recently thriving transformer with long-range dependent
properties due to the attention-dependent mechanism is often
combined with CNN in the CD task [13], [14], [15], [16],
and [17]. The above-mentioned methods show excellent per-
formance in global–local context learning. But it is also critical
to obtain long-range context information to further ensure struc-
tural details of multiscale objects in high-resolution RSI. Some
recent works [18] and [19] adopt the self-attention to model
long-range context. However, they do not take into account the
effective supervisory role of edge cues, which still has prediction
bias.

Existing methods obtain CD maps through distance metrics
between DFs [20], [21], [22], and [23] or direct classifica-
tion [24], [25], and [26]. From this, it is particularly important to
separate irrelevant change from DF in RSI with low spectral res-
olution. Several works proposed effective modules to implement
difference recalibration and enhancement. For example, Qu
et al. [27] proposed the difference amplification module based
on similarity measurement to mask the background superpixels
of the RSIs. Lei et al. [28] designed a difference enhancement
module based on channel attention to mask irrelevant changes
of encoded features at each feature extraction stage. Zhang
et al. [29] proposed the feature difference module based on dif-
ferent receptive fields to rich change information. Song et al. [30]
inserted a spatial attention-based content difference enhance-
ment module into middleware between the encoder and decoder
to refine the encoded features. All of the above-mentioned work
achieves difference enhancement based on encoded features. To
the best of our knowledge, the encoder focuses more on general
feature extraction of the input optical RSI, while the decoder
focuses more on feature learning for the target task [31]. The
above-mentioned methods do not take into account the fact that
there is more redundant information in the encoded features,
resulting in the performance of the model facing a bottleneck.

To address the above-mentioned problems, we propose a
progressive difference amplification network (PDANet) with
edge sensitivity. A pseudosiamese edge sensitivity encoder is
proposed to extract global–local context information, where
edge sensitivity modules (ESMs) are embedded in the shallow
convolutional layers to model long-range context information
based on multiscale receptive fields and gate weight modulation.
A triple-branches difference amplification decoder is proposed
to accurately identify DFs, where the difference mainstream
branch (DMB) performs multiscale DF generation based on
encoded features, and bilateral auxiliary branches (BABs) per-
form reconstruction of a single RSI full-stage guided by the
DF. In this way, the decoder is forced to reduce irrelevant
change information. Finally, CNN-based predictive classifiers

(including a CD head and an edge head) generate the CD map and
edge map, and a edge prior is introduced to constraint network
focus more on the edge of the changed areas in a supervised way.
In summary, the main contributions are summarized as follows.

1) We propose a PDANet with edge sensitivity to detect the
changes in paired optical RSIs, which consists of an edge
sensitivity encoder and a difference amplification decoder.

2) We propose an edge sensitivity scheme in low-level layers
of the encoder to improve the structural integrity in a mul-
tiscale and gate modulation manner. The mechanism can
capture the long-range context through multiscale design,
and effectively communicate the multiscale information
with the help of information flow selected by the gate
modulation.

3) We design a difference amplification mechanism to im-
prove the accurate spatial localization of changed areas
with full-stage difference semantic guidance and RSI
content reconstruction. We also introduce the different-
grained prior edge scheme to constrain the PDANet in a
supervised manner to help understand the full content of
a scene.

II. RELATED WORKS

A. Encoder–Decoder (ED) Backbone in CD Models

ED is one of the widely used structures for CNN-based CD
methods. Existing ED structures can be finely categorized into
single-stream ED (SED), dual-single stream ED (DSED), and
dual-dual stream ED (DDED), as shown in Fig. 2(a)–(c) [32]
and [33]. The SED uses an early fusion strategy to learn the
DF from the absolute difference between two RSIs, such as
FC-EF [24]. The DSED uses a late fusion strategy, where the dual
encoders extract the multiscale features of the input RSIs, and
one decoder emphasizes the learning of DF, such as SNUNet [25]
and P2V [34]. The DDED also employs a late fusion strategy,
and unlike DSED, its dual decoder computes the largest scale
DF, such as MSCANet [15]. However, SED ignores the private
feature learning of the original RSI, leading to the destruction of
structural information of ground objects [12] and [35] and lack of
resistance to pseudochange interference. DSED is highly depen-
dent on encoded features [36], resulting in poor interpretability.
DDED does not fully utilize the semantic information of RSI,
resulting in a bottleneck in model performance. In this article, we
construct a dual–triple stream encoder–decoder (DTED) struc-
ture as shown in Fig. 2(d), which considers the complementary
roles of DSED and DDED. In DTED, the multiscale DFs and
the private features of the input RSIs are effectively preserved.
In this way, more richer representation of the changed object
is achieved at the object level, which is conducive to resisting
pseudochanges.

B. Edge Detail Learning

A high-quality CD map requires the smooth edge and a com-
plete spatial structure. Edge cues can provide strong structural
information of ground objects and are widely used in vision
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Fig. 2. Summary of the ED structures for CD methods. (a) SED. (b) DSED. (c) DDED. (d) DTED in this article.

tasks, such as salient object detection [37], semantic segmen-
tation [38], image compression [39], and small target augmen-
tation [40]. A sharp-edge detail highly advances global spatial
structure, which is helpful in understanding the entire scene.
Only a few CD works have focused on edge detail modeling
or introducing edge prior for joint learning. In terms of edge
detail modeling, Chen et al. [41] proposed an edge-aware module
(EAM) based on dilated convolution and gated attention, and
embedded EAM in each encoder block to refine the edge details.
Yang et al. [42] designed the contour channel attention module
(CCAM) to refine the high-resolution decoded features and high-
light the edges of changed areas, where CCAM uses superpixel
object segmentation as a reference to enhance the internal con-
sistency of the changed area. Xia et al. [14] constructed an edge
detection branch to obtain multiscale edge features for masking
decoded DFs. In terms of edge prior joint learning, the canny
operator acts on CD ground truth to construct edge ground truth.
Existing methods usually integrate various convolutional layers
at the end of the decoder to generate an edge mask, and optimize
the network with an edge loss function. To further improve the
model accuracy, some works incorporate the deep supervision
strategy to additionally assist the learning of hierarchical edge
masks [41] and [43]. Inspired by the above-mentioned ideas, this
article designs ESM and the edge detection-based optimization
strategy together to learn finer edge details. In addition, the
above-mentioned methods use the single-grained edge prior to
outline changed areas, ignoring the role of other pixels adjacent
to the single-grained edge pixel. Therefore, we actively explore
the effect of different grained edge prior on the CD method.

C. Weighting Adjustment Strategy

In order to efficiently utilize CNN features in both spatial
and channel dimensions, many weight adjustment strategies
are introduced, such as the deep supervision strategy, attention
mechanism, and gate mechanism. Deep supervision updates
some of the middle layer weights by adding auxiliary classi-
fiers in the training stage, which greatly improves the learning
efficiency of change categories in the middle layer [22], [32],
and [36]. The attention mechanism computes nonlocal important
weights by inner product self-mapping or pooling operation to
focus preference information. It effectively compensates for the
limitation of the receptive field of the fixed-kernel convolutional

that prevents adequate fitting of contextual information [44],
[45], [46], and [47]. Gate mechanism adaptively controls infor-
mation flow by directly affecting the competing or collaborative
behavior of neurons via the gating function (i.e., the weight
function) [48]. Based on the above-mentioned theory, we embed
a attention-based gate integration (GI) unit in the ESM for
modulating and fusing the multiple receptive field features.

III. PROPOSED MODEL

A. Architecture Overview

Fig. 3 illustrates the PDANet architecture that includes an
edge sensitivity encoder, a difference amplification decoder, and
the prediction heads (a CD head and an edge head). The details
are as follows.

In the edge sensitivity encoder, a pseudosiamese
ResNet18 [49] (all output channels are set to 64) is built
to extract multiscale features, which are denoted as {F∗

e,k}5k=1

(∗ ∈ {t1, t2}), where k represents the index of the encoder
level. Two ESMs are embedded in the first two ResBlocks in a
skip connection manner. Specifically:

1) input RSI (X(t1) or X(t2) ∈ R3×H×W ) is fed to a 7 × 7
convolutional layer to extract half-size shallow features
Fe,1 ∈ R64×H/2×W/2;

2) Fe,1 is, respectively, fed to the 1st ResBlock and 1st
ESM, whose outputs are fused into Fe,2 ∈ R64×H/4×W/4

through concatenation and a 1 × 1 convolution layer;
3) Fe,3 ∈ R64×H/8×W/8 is also obtained in the same con-

struction as 2);
4) Fe,4 ∈ R64×H/16×W/16 and Fe,5 ∈ R64×H/32×W/32 are

obtained by another two ResBlocks, respectively.
In the difference amplification decoder, a DMB and two DF-

guided BABs (denoted as BAB-1 and BAB-2) jointly learn the
details of the changed areas. Specifically:

1) DMB consists of five difference decoding modules
(DDMs), and outputs DFs {Fd,k}5k=1 corresponding to
{Fe,k}5k=1 on the scale;

2) BAB consists of four auxiliary decoding modules (ADMs)
and reconstructs private features ({F∗

Ad,k}4k=1 (∗ ∈
{t1, t2}) of single input RSI with a greater focus on
changed areas;

3) the amplified DF (FAd) is obtained by absolute difference
operation based on the largest scale reconstructed features
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Fig. 3. Architecture of the proposed PDANet.

Fig. 4. Architecture of ESM. (a) Edge sensitivity module. (b) Detail-aware unit. (c) Gate integration unit.

F
(t1)
Ad,1 and F

(t2)
Ad,1, and a 3 × 3 convolutional layer with

batch normalization (BN) and ReLU activation;
4) Fd,1 and FAd are concatenated and then sent to the CD

head and edge head to output the CD probability map and
edge probability map, respectively.

B. Edge Sensitivity Encoder

The low-level features have higher spatial resolution and more
complete structure information of the ground objects. However,
global structural is diluted during the encoding process from
shallow to deep, and the upsampling decoding process does
not accurately recover it. To this end, the ESM that acts on
the shallow encoded feature is proposed and used to reinforce
structural information with richer receptive fields. In addition, a
GI unit is introduced in ESM to incorporate multiple receptive
field features. Fig. 4 shows the structure of ESM, including the
detail-aware (DA) unit and GI unit, and they are described as
follows.

1) DA Unit: DA can achieve compact spatial information
based on multiple receptive fields, and its architecture is shown
in Fig. 4(b). DA includes three parallel convolutional blocks with
BN and ReLU, which have 3× 3, 5× 5, and 7× 7 convolutional
kernels, respectively. Next, the outputs of three convolutional
blocks are concatenated and fed into a 1 × 1 convolutional layer
to obtain fined featuresFed,k, which can be expressed as follows:

Fed,k = Conv1×1[BRConvs×s(Fe,k)] (1)

where, Fe,k (k ∈ {1, 2}) and Fed,k are the input and output
features of DA, respectively. BRConvs×s (s ∈ {3, 5, 7}) repre-
sents the convolutional block with s× s kernel, BN, and ReLU.
Conv1×1 represents the 1 × 1 convolutional layer. [·, ·] denotes
the concatenation in channel dimension.

2) GI Unit: DA obtains more structural information by ex-
panding the receptive fields, but the nature of its convolution
still loses some information. Therefore, it is necessary to retain
the current encoded feature Fe,k before acquiring the next stage
encoded features. However, a practical problem, how to effec-
tively select the most valuable information from the multiscale
collaborative features (i.e.,Fe,k andFed,k), to be solved because
the direct addition and concatenation of different receptive field
features may be uncontrollable and miscellaneous. To this end,
we proposed a GI unit to learn weight mask Mk for adaptively
controlling the effect of multiscale collaborative features.

The architecture of GI is shown in Fig. 4(c), and it hinges on
the learnable weight mask Mk ∈ RC×Hk×Wk (Hk = H/(2k),
Wk = W/(2k), and k ∈ {1, 2}), which controls how much
information in Fed,k is available to flow into the next encoding
stage. Correspondingly, 1−Mk (1 denotes an all-one tensor
of the same size as Mk) measures how much information in
Fe,k flow into the next encoding stage. Specifically, we first
concatenate the encoded features Fe,k and the DA feature Fed,k

in the channel dimension, and sent it to a 3 × 3 convolutional
block with BN and ReLU to obtain the integrated featuresFea,k.
Then, Fea,k is refined by channel attention and an additional
3 × 3 convolutional block with BN and ReLU. Next, sigmoid
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Fig. 5. Structure of DDM and ADM.

activation (σ(·)) is used to output Mk. The above-mentioned
process can be expressed as follows:

Mk = σ(BRConv3×3(CA(BRConv3×3([Fe,k,Fed,k])))) (2)

where CA() is channel attention. BRConv3×3 represents the 3×
3 convolutional block with BN and ReLU. Finally, Mk adjusts
the weights of Fe,k and Fed,k based on spatial pixels

Fesm,k = BRConv3×3(((1−Mk)� Fe,k)⊕ (Mk � Fed,k))
(3)

where Fesm,k is output feature of current GI. � and ⊕ are the
elementwise multiplication and summation, respectively.

C. Difference Amplification Decoder

The decoder aims to generate the change-related features. As
described in Section II, existing studies adopt SED, DSED, or
DDED to deal with encoded features, which results in redundant
feature interference and limited model performance. Consider-
ing the reconstructed features of a single RSI can retain more
ground object information independently, two reconstructed
processes corresponding to the two RSIs are introduced in
our decoder, i.e., the BABs (BAB-1 and BAB-2) in Fig. 3. In
addition, the reconstruction process necessarily amplifies the
details of the unchanged areas. In order to reduce redundant
interference, we use DFs from the DMB to full-stage guide the
reconstruction and to emphasize change-related features. The
details of DMB and BABs are as follows.

1) Difference Mainstream Branch: The workflow of the
DMB is represented as the middle yellow rectangular box in
Fig. 3. Given the multiscale encoded features {F(t1)

e,k }5k=1 and

{F(t2)
e,k }5k=1, DMB progressively generates the DFs {F∗

d,k}1k=5

from deep to shallow through a series of simple structured
difference decode modules. Fig. 5(a) shows the structure of
DDM. First, | F(t1)

e,k − F
(t2)
e,k | is passed to two cascaded 3 ×

3 convolutional blocks with ReLU, and then the semifinished
DFs are summed to obtain Fsfd−2 (5). Second, the upsampled
prescale DFFd,k+1 andFsfd−2 are fused by summation and a 3×
3 convolutional blocks with BN and ReLU to achieve integration
of different scales DFs (4). Specifically, the DDM corresponding
to k = 5 has no prescale DF as input. In summary, the learning
process of DDM can be expressed as follows:

Fd,k = BRConv3×3(Fsfd−2 + Fd,k+1) (4)

Fsfd−2 = RConv3×3(Fsfd−1) + Fsfd−1 + Fabs,k (5)

Fsfd−1 = RConv3×3(Fabs,k) (6)

Fabs,k =| F(t1)
e,k − F

(t2)
e,k | (7)

where Fd,k (k ∈ {5, 4, 3, 2, 1}) is the output DF of current
DDM. Fd,k+1 (k ∈ {4, 3, 2, 1}) is the upsampled DF from the
previous DDM. RConv3×3 different from BRConv3×3 in that
there is no BN layer. Both Fsfd−1 and Fsfd−2 represent the
semifinished DFs of the DDM middle layers.

2) Bilateral Auxiliary Branches: The workflows of the BABs
are represented as the upper and lower yellow rectangular boxes
in Fig. 3. Since BAB-1 and BAB-2 are siamese decoding
branches with unshared weights, we present the details based
on the BAB-1 branch example. Given the multiscale encoded
features {F(t1)

e,k }5k=1, BAB simultaneously fuses F(t1)
e,k and Fd,k

through a series of ADM and reconstructs the private features
F

(t1)
Ad,k−1 for the single RSI. Fig. 5(b) shows the structure of

ADM. In order to the reconstructed features {F(t1)
Ad,k−1}5k=2

focus more on the details of the changed area, we use a 3 ×
3 convolutional block with BN and ReLU to fuse the private
feature FAP and Fd,k, where FAP refers to F

(t1)
e,5 for the first

ADM and F
(t1)
Ad,k−1 for other ADMs (10). Then, the prescale

encoded feature Fe,k−1 is fused to current semifinished feature
Fsfr−2 by concatenation and two 3 × 3 convolutional blocks with
BN and ReLU (8). In summary, the learning process of ADM
can be expressed as follows:

FAd,k−1 = BRConv3×3 ([Fsfr−1,Fsfr−2]) (8)

Fsfr−1 = BRConv3×3 (Fe,k−1) (9)

Fsfr−2 = BRConv3×3 ([FAP ,Fd,k]) (10)

where FAd,k−1 is the reconstructed feature of current ADM.
Both Fsfr−1 and Fsfr−2 represent the semifinished reconstructed
features of the ADM middle layers.

D. Prediction Heads and Loss Function

1) Prediction Heads: We use CNN-based classifiers to con-
struct the prediction heads for generating the CD map (Ŷ ∈
R2×H×W ) and edge map (Ẑ ∈ R2×H×W ). Specifically, both the
largest scale DFs Fd from DMB and amplification DFs FAd =

BRConv3×3(| F(t1)
Ad,1 − F

(t2)
Ad,1 |) from BABs are concatenated

and sent to the CD head and the edge head to generate Ŷ and
Ẑ. Both CD head and the edge head contain two convolutional
blocks, where the first convolutional block has input and output
channels of 128, 64, and the second convolutional block has
input and output channels of 64, 2. They are expressed as
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follows:

Ŷ = σ(Conv1×1(BRConv3×3[Fd,FAd])) (11)

Ẑ = σ(BRConv1×1(BRConv1×1[Fd,FAd])) (12)

where σ() is softmax function.
2) Loss Function: We design a loss function to constrain the

whole network to focus not only on the center of changed areas
but also on the edge details. The total function L consists of the
binary CD loss Lcd and edge loss Ledge. Lcd represents the loss
between the CD map Ŷ and the reference ground truth Y . Ledge

represents the loss between the edge map Ẑ and the reference
edge ground truth Z. L can be expressed as follows:

L = Lcd + α× Ledge = f
(
Ŷ , Y

)
+ α× f

(
Ẑ, Z

)
(13)

where α is the hyperparameter used to balance Lcd and Ledge,
and we discuss it in Section V. The function f(·, ·) is constructed
from the binary cross-entropy loss and dice loss, described as
follows:

f(x̂, x) = fbce(x̂, x) + fdice(x̂, x) (14)

fbce(x̂, x) =

H×W∑
i=1,j=1

xij logx̂ij + (1− xij)log(1− x̂ij)

H ×W

(15)

fdice(x̂, x) = 1−
H×W∑

i=1,j=1

2x̂ijxij + ε

x̂ij + xij + ε
(16)

where x̂ and x are the predicted map and ground truth, respec-
tively. H and W are the height and width of the input RSI. i
and j denote the position indexes of the pixel. ε is a smoothing
constant that prevents the denominator from being 0, and is set
to 0.0001. xij = 1 (xij = 0) indicates a changed (unchanged)
pixel in CD ground truth, or an edge (nonedge) pixel in edge
ground truth.

In particular, considering that the single-pixel prior edge does
not easily constrain the PDANet to anchor the edge of the
changed area in high-resolution RSI, we follow the work of
Gu et al. [50] and attempt to use coarse-grained prior edge to
guide the network training. Unlike existing methods that use
single-pixel edge ground truth to guide model [14], [41], [42],
and [43], our approach additionally considers the role of other
pixels near the single edge pixel. Specifically, we use the canny
operator to generate single-pixel edge ground truth Zsp (value is
0 or 1) based on CD ground truth. Then, the coarse-grained edge
ground truth is determined by setting the Euclidean distance
s ∈ N+ between single edge pixel and its surrounding pixels
(i.e., assigning 1 value to the pixels whose Euclidean distance
from the single edge pixel is at [0, s]), and calculated as follows:

Zcg(i, j) =

{
1,

√
(ie − i)2 + (je − j)2 ≤ s

0, else

s.t. i �= ie ∈ {1, . . . , H}, j �= je ∈ {1, . . . ,W} (17)

where Zcg(i, j) represents the coarse-grained prior edge value
at location i and j. (ie, je) denotes a position of Zsp =

Fig. 6. Display of cropped examples. (a) Time t1 RSIs. (b) Time t2 RSIs. (c)
CD ground truth. (d), (e), and (f) are the edge ground truths with s = 1, 2, 3.

Fig. 7. JinzhouBay dataset. (a) Time t1 RSI of JinzhouBay collected in 2015.
(b) Time t2 RSI of JinzhouBay collected in 2017. (c) Ground truth.

1, (i, j) denote other positions different from (ie, je).√
(ie − i)2 + (je − j)2 calculates the Euclidean distance be-

tween (ie, je) and (i, j). We discuss the effect of different edge
scale s in Section V.

IV. EXPERIMENTS

A. Datasets and Implementation Details

We conduct comprehensive experiments on an instance
dataset and three public datasets, including:

1) JinzhouBay-CD;
2) LEVIR-CD [23];
3) WHU-CD [51];
4) SYSU-CD [22].
Fig. 6 shows cropped examples of the four datasets, and shows

the edge ground truths with different scales (i.e., s = 1, 2, 3),
which are described in detail as follows.

JinzhouBay-CD: This small dataset contains a pair of non-
homologous RSIs recording the reclamation in Jinzhou-Bay,
China. RSIs were collected from the Gaofen-1 satellite in Febru-
ary 2015 and the Gaofen-2 satellite in January 2017, which have
a resolution of 2 and 1 m/pixel, respectively. We downsample
the high-resolution posttemporal RSI to 2 m/pixel to match the
pretemporal RSI, as shown in Fig. 7. The matched RSIs with
the size of 5667 × 5423 are cropped to 256 × 256 patches with
an overlap on the right and bottom and randomly divided these
patches to 311 pairs for training, 44 pairs for validation, and 90
pairs for testing.
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Fig. 8. Visual Comparison of PDANet and SOTA models on JinzhouBay test set. (a) Time t1 RSIs. (b) Time t2 RSIs. (c) FC-EF. (d) FC-SiamConc. (e) DSAMNet.
(f) STANet. (g) SNUNet. (h) BiT. (i) P2V. (j) MSCANet. (k) ICIFNet. (l) EGCTNet. (m) PDANet (ours). (n) Ground truth. Where white represents true positive,
black represents true negative, red represents false positive, and blue represents false negative.

LEVIR-CD: This medium-size dataset contains 637 pairs of
RSIs covering various buildings in the city, with a size of 1024
× 1024 and a resolution of 0.5 m/pixel. We use the training set,
validation set, and test set provided by the original authors in a
7 : 1 : 2 ratio and crop the RSIs with the size of 256 × 256.

WHU-CD: This medium-size dataset contains one pair of
RSIs recording urban building changes before and after the
earthquake disaster, with a size of 32 508 × 15 354 and a
resolution of 0.3 m/pixel. we crop the original paired image
into 256 × 256 patches with an overlap on the right and bottom
and randomly divide these patches into 5460 pairs for training,
779 pairs for validation, and 1561 pairs for testing.

SYSU-CD: This large dataset contains 20 000 pairs of RSIs
capturing the various land and marine use type changes in
Hong Kong, China, with a size of 256 × 256 and a resolution
of 0.5 m/pixel. These change types include newly built urban
buildings, suburban dilation, groundwork before construction,
change of vegetation, road expansion, and sea construction. We
use the dataset divided by the original authors, where 8000 pairs
for training, 4000 pairs for validation, and 4000 pairs for testing.

We perform all comprehensive experiments by using PyTorch
on a PC with an Intel Core i9-13900KF 3.00-GHz CPU, 24-GB
RAM, and an NVIDIA RTX 3090Ti GPU. During the training
process, parameters of PDANet are randomly initialized by
Kaiming initialization [52]. Adam algorithm is used to optimize
our network with a batch size of 16, and the initial learning rate
is 0.001 in the first 50 epochs and decays linearly to e−7 in the
following 50 epochs. The hyperparameters α is set to 10 and we
discuss it in Section V. The edge scale s is set to 1 on JinzhouBay
and is set to 2 on other datasets.

In addition, we use the following metrics, including over-
all accuracy (OA), precision (Pre), recall (Rec), F1-measure
(F1), Kappa coefficient (KC), and mean intersection-over-union
(mIoU) to quantitatively evaluate the performance of the model.

Validation is transacted after training in each epoch, and then
the best model on the validation set evaluates the performance
of the model on the test set.

B. Comparison With State-of-the-art (SOTA) Methods

We compare the proposed PDANet with ten SOTA CD meth-
ods, including FC-EF [24], FC-SiamConc [24], DSAMNet [22],
STANet [23], SNUNet [25], BIT [13], P2V [34], MSCANet [15],
ICIFNet [26], and EGCTNet [14]. To be fair, we reproduce these
comparison methods using their default hyperparameters and
the same experimental setup as our study. The qualitative and
quantitative comparative results are analyzed as follows.

Qualitative comparison: Figs. 8–11 show the visualization
comparison results of PDANet with SOTA CD models on
JinzhouBay, LEVIR, WHU, and SYSU test sets, respectively.
Where white, black, red, and blue represent true positive, true
negative, false positive, and false negative, respectively. From
these figures, it can be seen that PDANet more accurately
highlights changed areas with clear seams and fewer holes.
The detailed analysis of the qualitative comparison results is
as follows.

1) Visualization Comparison on JinzhouBay dataset:
JinzhouBay dataset has an underexposed t1 RSI and an overex-
posed t2 RSI, which results in blurred details. This makes it more
difficult to identify changed areas with long-range dependencies.
For example, samples from 1st, 2nd, and 3rd rows in Fig. 8
show illegible object boundaries. Comparison models suffer
from more false positives and false negatives. In addition, it
is a common phenomenon that the same changed area shows
inhomogeneous pixels due to differences in building materials
of land reclamation. For example, RSIs from 3rd and 5th
rows show nonuniform spectrum and luminance distribution. In
contrast, PDANet generates better changed areas without defects
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Fig. 9. Visual Comparison of PDANet and SOTA models on LEVIR test set. (a) Time t1 RSIs. (b) Time t2 RSIs. (c) FC-EF. (d) FC-SiamConc. (e) DSAMNet.
(f) STANet. (g) SNUNet. (h) BiT. (i) P2V. (j) MSCANet. (k) ICIFNet. (l) EGCTNet. (m) PDANet (ours). (n) Ground truth.

Fig. 10. Visual Comparison of PDANet and SOTA models on WHU test set. (a) Time t1 RSIs. (b) Time t2 RSIs. (c) FC-EF. (d) FC-SiamConc. (e) DSAMNet.
(f) STANet. (g) SNUNet. (h) BiT. (i) P2V. (j) MSCANet. (k) ICIFNet. (l) EGCTNet. (m) PDANet (ours). (n) Ground truth.

or holes. Similarly, the actual reclamation change between two
RSIs in 6th row is not visually noticeable. Only P2V and the
PDANet recognized more changed pixels.

2) Visualization Comparison on LEVIR Dataset: LEVIR
dataset is oriented toward changed buildings with dense and
multiscales. From 1st, 5th, and 6th rows in Fig. 9, PDANet
accurately locates small-scale buildings without adhesions. On
the other hand, nonplanar building roof panels are subject to
chromatic aberration due to illumination, resulting in low-level
feature differences between pixels in the same building. In
this scenes, PDANet can overcome this significant underlying

difference of the same semantic concept, and generate CD maps
that are more closely with ground truth, such as 2nd, 3rd, and
4th rows. This advantage may be attributed to PDANet’s deep se-
mantic feature-guided DF progressive decoding and DF-guided
independent feature reconstruction.

3) Visualization Comparison on WHU Dataset: WHU
dataset focuses on building change but has more pseudochanges,
such as the car change in 1st and 2nd rows of Fig. 10 and land
change in 5th rows. FC models, DSAMNet, and STANet have
weak power to recognize pseudochanges, and other models also
failed to obtain accurate edge details due to shadow interference.
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Fig. 11. Visual Comparison of PDANet and SOTA models on SYSU test set. (a) Time t1 RSIs. (b) Time t2 RSIs. (c) FC-EF. (d) FC-SiamConc. (e) DSAMNet.
(f) STANet. (g) SNUNet. (h) BiT. (i) P2V. (j) MSCANet. (k) ICIFNet. (l) EGCTNet. (m) PDANet (ours). (n) Ground truth.

In particular, it is difficult to accurately identify the changed
objects with special geometric configurations, such as the domed
building in 3rd row and the narrow passage between two build-
ings in 6th row. Comparison models can barely outline the
edges of the changed areas accurately in the above-mentioned
scenes, while PDANet benefits from effectively leveraging and
transmitting structural information to obtain near-labeled CD
maps.

4) Visualization Comparison on SYSU Dataset: SYSU
dataset provides multiple types of changed ground objects,
which requires the CD model to learn the features with rich
semantic attributes. In addition, the dataset has relatively rough
labels of the changed areas due to the large sample size. There-
fore, all detection results (see Fig. 11) appear general compared
to the other three datasets. Fortunately, the proposed PDANet ob-
tains relatively accurate changed areas in most scenes, although
the edges are not flat. This is because the skip connections of
the encoding–decoding process retain more global information.
Similarly, SNUNet with dense connections also performs better.
It is worth noting that PDANet is not as good at detecting
the scene shown in the 6th row of Fig. 11 as the other meth-
ods. Specifically, 1) PDANet misclassifies the repaired roads
as changes (red pixels), whereas SYSU is concerned with the
road expansion change; 2) PDANet without finding real road
expansion changes due to vegetation cover (blue pixels). This
indicates that PDANet does not have a good understanding
of the semantics of road expansion and road repairs, and has
limited performance in scenes where multiple change types are
intertwined. Therefore, establishing deep semantic relations and
improving the generalization performance of the model is also
a key focus of future research.

Quantitative comparison: Table I reports the quantitative
comparison results of all models on the four test sets. PDANet
has the best performance in comprehensive metrics of OA, F1,

KC, and mIoU, and also has competitive performance on Pre
and Rec. Specifically:

1) the gaps between PDANet and the SOTA models are more
obvious on the small-size JinzhouBay dataset, where the
F1/KC/mIOU is 2.66%, 2.74%, and 2.15% higher than
that of the second-ranked P2V;

2) PDANet has a more moderate advantage compared to the
other methods on the medium-size LEVIR and WHU
datasets, where the F1/KC/mIOU is 0.35% (1.04%),
0.36%(1.08%), and 0.30%(0.94%) higher than that of the
second-ranked ICIFNet (P2V) on LEVIR (WHU) dataset;

3) PDANet also presents a significant advantage on the large-
size SYSU dataset, where the F1/KC/mIOU is 0.97%,
0.99%, and 0.69% higher than the second-ranked BIT.

On the other hand, we summarize the ED type of each model
in Table I. Compared with the SED and DSED (FC-SiamConc
and SNUNet), our DTED structure has slightly less one-sided
performance in Pre or Rec. However, DTED can better balance
between Pre and Rec, indicating that our model is more ca-
pable of discriminating pixel change types where the ratio is
severely imbalanced. Since DTED concept is based on DSED
and DDED, it shows superior performance in comparison. In
addition, PDANet uses ESM and a coarse-grained prior edge
to jointly learning structural information of the changed areas,
which achieves excellent performance over EGCTNet which
uses an edge map to mask the CD map.

C. Ablation Study

In this part, we validate the role and computational costs of
different components in PDANet. All ablation experiments were
performed using the same training configuration as PDANet.
The details of the simplified models based on PDANet are
described as follows.
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TABLE I
QUANTITATIVE COMPARISON STUDIES WITH DIFFERENT CD MODELS

Fig. 12. Visual comparison of the components of PDANet. (a) Time t1 RSIs. (b) Time t2 RSIs. (c) W/o 1st ESM. (d) W/o 2nd ESM. (e) W/o ESMs. (f) W/o
GIs. (g) W/o DMB. (h) W/o BABs. (i) Full model. (j) Ground truth.

1) Removing the ESM acting on the encoded features F∗
e,1

(∗ ∈ {t1, t2}), denoted as w/o 1st ESM.
2) Removing the ESM acting on the encoded features F∗

e,2

(∗ ∈ {t1, t2}), denoted as w/o 2nd ESM.
3) Removing two ESMs from the encoder at the same time,

denoted as w/o ESMs.
4) Removing the GI unit from two ESMs, denoted as w/o

GIs.
5) Deleting the DMB and do not use the first concatenate

operation for ADM in the BABs, denoted as w/oDMB.
6) Deleting two BABs, which denoted as w/o BABs.
Ablation validation of different components:
In Fig. 12, the simplified models roughly locate the changed

areas but lack complete structure and clear edge, and much
background interference is not suppressed. Compared with the
simplified models without ESM [see Fig. 12(c)–(e)], PDANet
reduces many false positives (red pixels) and obtains more

consistent structural. Compared with the simplified models
without DMB or BABs [see Fig. 12(g) and (h)], PDANet
reduces many false negatives (blue pixels) and obtains more
finer-grained difference information.

Table II shows the qualitative results. Compared with the
simplified models without ESM (IDs 1∼4), the introduction
of the ESM brings the relative gains of F1, KC, and mIOU
are about 0.21∼6.96%, 0.15∼7.26%, and 0.15∼5.52% on four
datasets. The 1st ESM contributes more to the model than the 2nd
ESM, which is understandable due to the 1st ESM learns richer
contextual information. In addition, the introduction of GI also
improved the model’s F1, KC, and mIOU about 0.36∼4.89%,
0.37∼5.08%, and 0.33∼3.92%, respectively. It also shows that
GI adaptively controlling the effect of multiscale collaborative
features helps to improve model performance. On the other
hand, the simplified model without DMB (ID∼5) has a dramatic
performance sink compared with the PDANet. DMB brings the
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TABLE II
ABLATION STUDIES ABOUT THE COMPONENTS OF PDANET

relative gains of F1, KC, and mIOU are about 0.90∼5.69%,
0.94∼7.32%, and 0.78∼5.09% on four datasets. It indicates
that the model with a DDED structure is insufficient to fully
learn the DFs due to ground truth only positively supervising
the convolutional layer that generates the DF. The introduction
of BABs (ID∼6) brings the relative gains of F1, KC, and mIOU
are about 0.41∼1.97%, 0.43∼2.07%, and 0.31∼1.64% on four
datasets. It proves that BABs suppress change-irrelevant by
reinforcing a more useful DF has a positive effect on the model.
In conclusion, the ablation studies demonstrate the effectiveness
of the different components.

Calculation cost analysis
We use the model parameters (Params), floating point op-

erations per second (FLOPs), and inference time (Time) to
measure the calculation costs of the simplified models. Params
and FLOPs are calculated based on input RSI with the size of 3×
256× 256. Time calculates the time consumed by forward prop-
agation of the paired images with batchsize=1. From Table II,
the differences in Params and Time of the simplified models are
not significant. This suggests that the DTED structure of our
model and the designed ESM did not impose a heavier burden.
FLOPs have significant variations but are generally acceptable.
The variation is mainly reflected in the fact that multiscale
convolutional kernels are used in the DA unit.

V. DISCUSSION

A. Sensitivity Analysis of Hyperparameter

The hyperparameter α is used to adjust the contribution of
edge loss to the total loss. Considering that α influences the
PDANet’s learning on the edge pixels of changed areas, we
conduct a series of experiments for different α to analyze how it
affects the model. After many attempts, the range of α is set to
{0, 0.01, 0.1, 1, 10, 100, 1000}. Table III shows the performance
of PDANet trained under differentα. From it, the PDANet’s em-
phasis on edge pixels of the changed areas does not increase with
α. It is very easy to understand that a higher α causes the model

TABLE III
COMPARISON STUDIES OF PDANET TRAINING USING DIFFERENT

HYPERPARAMETRES

to overemphasize the edge pixels and penalize the other pixels.
PDANet performs optimally on the other three datasets except
for SYSU when α = 10. For SYSU, the model’s F1/KC/mIOU
at α = 10 is only 0.07%/0.31%/0.23% lower than that at α = 1,
which is acceptable. Therefore, all PDANet-related experiments
were set with an α of 10. In particular, α = 0 represents only the
binary CD loss function Lcd is used to train PDANet, resulting
in F1/KC/mIOU that is 0.21%∼3.43%, 0.21%∼3.55%, and
0.18%∼2.77% lower than that at α = 10. Fig. 13 also shows
that a reasonable introduction of edge loss Ledge can enhance
the internal structural consistency detection.

B. Effect of Different-Grained Prior Edges

As described in Section III, s represents the grained scale of
edge ground truth. It is worth noting that a more coarse-grained
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Fig. 13. Visual comparison of PDANet trained with different loss functions
on the test sets.

Fig. 14. Visual comparison of PDANet trained with different-grained prior
edges s = {1, 2, 3} on the test sets.

TABLE IV
COMPARISON STUDIES OF PDANET TRAINING USING DIFFERENT-GRAINED

PRIOR EDGES

prior edge significantly deviates from the target changed areas,
which leads to misclassification of the CD result. Therefore, we
only explore the effects on PDANet when s = {1, 2, 3}. Fig. 14
shows the qualitative results of PDANet that is trained using
different-grained prior edges. CD maps at s = 2 are closest to
CD ground truths in the other three datasets except JinzhouBay,
and the corresponding edge maps have a relatively compact
closed topology. This is supported by the quantitative results
shown in Table IV. For JinzhouBay, the CD map obtains the best
performance when s = 1, but the edge map shows an incomplete

Fig. 15. Visualization feature maps of the ESM.

contour of the changed area. The phenomenon may have arisen
because: 1) insufficient edge pixel fitting due to a smaller sample
of the JinzhouBay; 2) rough edge details in RSIs due to illumi-
nation differences and relatively large resolution (2 m/pixel).
Since the performance of PDANet on the JinzhouBay shows
large differences at different s, this article uses single-pixel prior
edge (i.e., s = 1) for experiments on the JinzhouBay, and uses
coarse-grained prior edge with s = 2 on other three datasets.

C. ESM Feature Visualization

In order to better observe the effect of the ESM on the
structural consistency of ground objects, we use the Grad-Cam
method to visualize the input feature of ESM (Fe,1), DA feature
(Fed,1), learnable weight mask (M1), and integration feature
(Fesm,1). Since the lowest level encoded features are more
intuitive to show the structure of the ground object, only the
feature maps associated with 1st ESM are shown in Fig. 15,
and all feature maps are reshaped to 256 × 256. In Fig. 15,
red indicates high spatial attention values, blue indicates low
spatial attention values and darker color represents the stronger
the feature. Moreover, based on the gate mechanism (3), high
attention values in M1 indicate that Fed,1 has greater weight in
feature integration, and high attention values indicate that Fe,1

has greater weight. From Fig. 15, ESM is able to highlight salient
objects and separate cluttered background. For example:

1) changed area of F
(t2)
e,1 in JinzhouBay gradually gains

higher attention with the DA and the GI, and weakens
the influence of the background in Fe,1 by M1;

2) F
(t2)
e,1 in LEVIR presences both “building” and “road”

as significant objects, while the LEVIR aims to focus
on changes in “buildings.” It can be seen that “road” is
absorbed into the background in the Fesm,1 due to the
background positions in M1 have similar values;

3) the changed area in the bottom left corner ofF(t2)
e,1 in WHU

is redder, indicating increasing attention;
4) the blurred vegetation range in the upper right corner of

F
(t1)
e,1 in SYSU is also becoming clearer. In summary,

the ESM contributes to PDANet to improve the structural
consistency of changed objects, in which GI can highlight
changed objects more.
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TABLE V
COMPARISON OF COMPUTATIONAL COST OF DIFFERENT MODELS

D. Model Efficiency Analysis

Table V provides a comparison of computational efficiency
between PDANet and SOTA CD models in terms of Params,
FLOPs, and Time, whose computational laws are the same as
the ablation study in Section IV. It can be seen that PDANet has
relatively smaller Params but higher FLOPs and Time. Since
the multithreaded parallelized implementation, PDANet enjoys
refined CD results with the sacrifice the computational costs.
Therefore, PDANet has slightly higher parameters than FC-EF,
FC-SiamConc, BIT, and P2V. Since ESMs act on low-level
encoded features, PDANet requires more computational space
for addition and multiplication operations. Therefore, PDANet
has higher FLOPs than comparison models except for DSAM-
Net, SNUNet, and EGCTNet, and it also has higher inference
time except for the SNUNet and ICIFNet. Although PDANet
outperforms the recent comparison models, there is still a re-
quirement in the future to explore the possibility of reducing
the computational complexity, such as reasonably introducing
group convolution or depthwise convolution in spite of a small
amount of information is lost.

VI. CONCLUSION

In this article, we propose a PDANet with edge sensitivity for
performing CD task in optical RSIs. Considering internal holes
in CD results caused by ignoring global context information, we
propose an edge sensitivity encoder to capture the long-range
dependency and improve the structural integrity of the changed
area. On the other hand, considering the importance of separating
irrelevant change from DFs in RSIs with low spectral resolution,
we propose a difference amplification decoder to enhance the
representation of the changed object by reconstructing indi-
vidual RSI with full-stage DF guidance. In addition, we also
introduce a different-grained prior edge scheme in the training
stage to guide PDANet to learn more accurate edge details. In this
way, PDANet captures high-quality CD maps in four types of
datasets that can accurately highlight changed areas. The results
of extensive comparative and ablation experiments fully confirm
the effectiveness and superiority of PDANet. Since the multi-
threaded parallelized implementation and fine-gained learning
of underlying encoded features, PDANet encounters difficulties
in reducing the computational complexity and will work on these

limitations. In addition, establishing deep semantic relations to
further improve the generalization of the model is also listed as
a key research priority for the future.
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