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Abstract—Gaps in normalized difference vegetation index
(NDVI) time series resulting from frequent cloud cover pose sig-
nificant challenges in remote sensing for various applications, such
as agricultural monitoring or forest disturbance detection. This
study introduces a novel method to generate dense NDVI time
series without these gaps, enhancing the reliability and application
range of NDVI time series. We combine Sentinel-2 NDVI time
series containing cloud-induced gaps with NDVI time series derived
from the Sentinel-1 synthetic aperture radar sensor using a gated
recurrent unit, a variant of recurrent neural networks. To train
and evaluate the model, we use data from 1206 regions around the
world, comprising approximately 283 000 Sentinel-1 and Sentinel-2
images, collected between September 2019 and April 2021. The
proposed approach demonstrates excellent performance with a
very low mean absolute error of 0.0478, effectively filling even
long-lasting gaps while being applicable globally. Thus, our method
holds significant promise for improving the efficiency of numerous
downstream applications previously limited by cloud-induced gaps.

Index Terms—Cloud removal, data fusion, deep learning, gap
filling, recurrent neural network (RNN), vegetation monitoring.

I. INTRODUCTION

THE normalized difference vegetation index (NDVI) [1]
derived from multispectral optical data is an important

tool for vegetation monitoring. It serves as a valuable indicator
of vegetation health and vitality, enabling insights into various
vegetation-related phenomena. NDVI time series offer an oppor-
tunity to analyze temporal trends in vegetation dynamics and,
therefore, are used for a multitude of applications, such as crop
classification [2], yield estimations [3], or forest disturbance
mapping [4]. However, the effective utilization of NDVI time
series faces challenges, particularly in regions with frequent
cloud cover such as tropical or subtropical areas, which impedes
consistent monitoring efforts.

A variety of strategies have been investigated to mitigate the
impact of cloud cover when analyzing NDVI time series. A
simple strategy is the reconstruction of NDVI time series [5],
for example, by utilizing multiyear long time series and filling
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gaps using long-term trends or by using linear interpolation and a
Savitzky–Golay filter [6]. Both the methods can result in decent
results, if long-term developments are studied or the gaps are
short, but are not optimal when sudden changes are frequent
and irregular, for example, for cropland areas.

Another straightforward method is the use of multiple optical
multispectral sensors with comparable resolutions and char-
acteristics. After matching and harmonizing their reflectance
values to ensure consistent spectral information, the temporal
frequency is increased, decreasing the gap length. An example
of this method is the Harmonized Landsat and Sentinel-2 prod-
uct [7].

Another approach is spatiotemporal fusion, where frequent
coarse-resolution imagery and less frequent but high-resolution
data are combined to enhance temporal resolution while main-
taining spatial resolution. Techniques such as STARFM [8] and
the fusion of Sentinel-2 and Sentinel-3 data [9] are examples
of this approach. Even though all the three aforementioned
approaches can reduce the number of gaps in optical time-series
data, their reliance solely on optical data limits their effective-
ness in regions with persistent cloud cover.

To overcome the limitations posed by cloud cover, synthetic
aperture radar (SAR) sensors can be a solution, offering dis-
tinct advantages. As active sensors, they employ radar waves
capable of penetrating cloud cover and operating independently
of sunlight. In addition, the longer wavelengths compared to
optical light enable them to look into the volume below a
surface, which is especially helpful when studying forests or
crops. There, SAR data allow one to look below the top tree
canopy or get information on the whole crop and not only the top
surface. Therefore, several studies could showcase the potential
of SAR data, for example, for crop monitoring [10], [11], [12]
or forest biomass retrieval [13], [14]. Despite these benefits,
the widespread adoption of SAR data in vegetation monitoring
remains limited and can be attributed to various factors: one
primary challenge is the need to redevelop algorithms and ap-
plications originally designed for NDVI or other optical data to
accommodate SAR data. Furthermore, SAR data processing is
more complex, and its interpretation is less intuitive compared to
traditional optical data. Finally, long-time series data only exist
for optical data, for example, in the Landsat archive, but not
for SAR data, which limits the use of SAR data for long-term
studies.

A way to bridge this gap is to translate images or time series
of SAR data into NDVI data. This enables the use of existing
applications while being unaffected by cloud coverage. One
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Fig. 1. Location of the ROIs used for training (orange) and testing (blue).

study utilized a combination of convolutional neural networks
and long short-term memory networks to transform pixelwise
Sentinel-1 time series into Sentinel-2-derived NDVI time se-
ries [15]. However, this research was limited to a 10 km ×
10 km area, predominantly featuring croplands. Another sig-
nificant limitation of this approach is its lack of demonstrated
transferability to other regions or landscapes, necessitating the
training of a new model for each different area. This requirement
poses substantial challenges for broader applications. Moreover,
the proximity of training and test pixels in such a confined
area may lead to a high correlation, potentially resulting in an
overestimated test performance. The study’s demand for a fixed
time-series length and temporal resampling further complicates
its adaptability and practical application in diverse settings.

Another study adopted a sequence-to-sequence model for
this SAR-to-NDVI time-series translation with aggregated time
series from field polygons, achieving a low mean absolute error
(MAE) of 0.04 [16]. With approximately 20 000 km2, the study
encompasses a larger area than that in [15], yet it remains
confined to two regions in France. Also, it demands a com-
mon temporal grid, the preexistence of polygons to aggregate
time-series data, and the employed random split that was neither
spatial nor temporal giving an insufficient understanding of the
model’s performance.

We propose a worldwide applicable and flexible solution to
generate dense NDVI time series by fusing accurate optical
NDVI values with denser yet less accurate SAR-derived NDVI
values. This involves employing a recurrent neural network
(RNN), a deep learning architecture adapted for handling time
series. The irregularity of accurate optical NDVI data and the
regularity of SAR-derived NDVI values lead to the creation of
dense and accurate NDVI time series. Utilizing RNNs brings the
key advantage of accommodating missing values and sequence
lengths that vary [17], a feature critical for effective fusion of
heterogeneous data.

The novelty of our approach lies first in the fusion of earth
observation time-series data of different modalities to predict
dense NDVI values and second on its global applicability.
Our overall approach is split into two main stages: initially,
we perform a single-image SAR-to-NDVI translation, which
has been extensively discussed and evaluated in our previous
work [18]. This is followed by the fusion of the SAR-derived
NDVI time series with optical data, a process detailed in the
current publication. This strategic separation not only permits a

thorough evaluation of each step but also enhances the method’s
adaptability and versatility, as this method is not limited to the
NDVI but can be extended to other vegetation indices or time
series of different modalities.

The rest of this article is organized as follows. We present a
description of the dataset creation in Section II. Sections III and
IV summarize the RNN model and the experiments conducted,
respectively. Subsequently, we present the quantitative and qual-
itative results in Section V and discuss them in Section VI.
Finally, the conclusion in Section VII completes this article.

II. CREATION OF THE TIME-SERIES DATASET

Our approach integrates optical NDVI and SAR-derived
NDVI data, necessitating the creation of a comprehensive dataset
for training and evaluation. We selected data from the Sentinel-1
SAR and Sentinel-2 optical sensors, motivated by their global
coverage, high revisit frequency (at the equator five days for
Sentinel-2 and six days for Sentinel-1), and free data access.
Our regions of interest (ROIs) are derived from the 1206 globally
distributed ROIs of the SEN12TP dataset [18]. These ROIs are
chosen for their balanced representation in terms of land cover,
climate, and global distribution and are displayed in Fig. 1.

The SEN12TP dataset [19], with its ROIs each measuring
20 km× 20 km, amounts to a size of 222 GB. Extending this to
include images at many different times from each region would
significantly increase the data volume. To limit the required stor-
age, we utilize only the central 2.56 km× 2.56 km area of each
ROI, but download all available imagery between September 1,
2019 and March 30, 2021 to form our image time series. The
size of 2.56 km is chosen, so that the image has a size of 256
px× 256 px at 10-m resolution.

Overall, 157 050 Sentinel-1 and 125 860 Sentinel-2 images
were downloaded, encompassing 252 GB. Subsequent sections
detail the necessary data and preprocessing steps for both the
optical NDVI and SAR-derived NDVI values. Fig. 2 provides
an overview of all these steps. For preprocessing and image
download, Google Earth Engine (GEE) [20] was used.

A. Optical Data and Processing

As the source of optical data and to calculate the NDVI,
data of the Sentinel-2 multispectral sensors are used, which are
masked for cloud and cloud shadows and coreferenced onto each
other. Thereby, atmospherically corrected Level-2A of the GEE
collection COPERNICUS/S2_SR_HARMONIZED is used. To
mask all the clouds, the cloud probabilities contained in the
GEE collection COPERNICUS/S2_CLOUD_PROBABILITY
created using the Sentinel Hub’s cloud detector [21] are used
with a threshold set to 40%. To clean the borders of the de-
tected clouds, the cloud probabilities are first convolved with
a circle-shaped filter with a radius of 40 m, thresholded and
dilated again with 20 m large circular filter kernel. These pa-
rameters are taken from the s2cloudless example script [22].
Cloud shadows were masked using a geometrical method by
projecting the previously calculated cloud masks onto the
ground [23]. The alternative approach, which is not employed
in this study, is the spectral method that utilizes the differ-
ent multispectral bands for shadow detection. Potential cloud
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Fig. 2. Overview of the creation of the time series used for training and testing with the required preprocessing steps. Sentinel-1 and -2 image series are processed
and retrieved from GEE for the regions of the SEN12TP dataset. From the image stacks, pixelwise time series are retrieved in a regular 5 px grid to form the dataset.

shadows are all cloud mask pixels projected along the Sun’s
azimuth angle for 2 km. They are intersected with dark areas,
which are all areas with a reflectance sum of the bands B8,
B11, and B12 smaller than 0.3, which are not water accord-
ing to scene classification layer (SCL) band. Again, to clean
up the mask, a morphological opening is applied with an erosion
(40 m circle) followed by a dilation (100 m circle) [23]. The
bands B2, B3, B4, B8, B11, and B12 together with the cloud and
cloud shadow masks are downloaded for all the optical images,
which are at least 10% cloud and cloud shadow-free.

Upon download of the images, the need for coregistering each
optical image stack became apparent, as the geolocalization of

the Sentinel-2 imagery is not pixel perfect which is also noted
in [24]. We use a method similar to the one in eolearn Python
package [25]: the template image upon which each image is
registered on the gradient of the temporal mean of all the images
after cloud masking and conversion to gray scale. To find the
best matching position, a translation-only motion model with
the enhanced correlation coefficient is used [26].

Finally, the NDVI is calculated using the red and infrared
Sentinel-2 bands B8 and B4, respectively [1]

NDVI =
infrared − red
infrared + red

=
B8 − B4
B8 + B4

. (1)
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B. SAR Data

The SAR data as the second data modality of our approach
are acquired by the Sentinel-1 sensors and sourced from the
GEE collection COPERNICUS/S1_GRD. From this collection,
data acquired in the interferometric wide swath mode with two
polarizations i.e., VV and VH, are used. For these ground range
detected (GRD) data, geometric terrain correction is applied,
and the data are transformed to a logarithmic scale. This pro-
cess yields sigma naught (σ◦) backscatter values, expressed in
decibels, to be used in our approach.

C. Retrieval of SAR-Estimated NDVI Values

SAR data are a valuable tool for remote sensing due to their
ability to acquire images of the earth’s surface, even through
cloud cover or at night. This capability is enabled by the sending
and receiving of microwave radiation. However, the side-looking
geometry required for SAR and the different wavelengths it uses
change the data processing and analysis compared to optical
sensors. Therefore, creating optical-like data from SAR or, in our
case, estimating NDVI values from SAR data is highly desirable.

Estimating NDVI values from SAR data is possible, despite
the fact that they sense the earth in different parts of the elec-
tromagnetic spectrum. This is possible due to their relationship
to each other through different surface parameters, such as land
cover [27], [28] and plant or vegetation parameters [10], which
are measurable through both NDVI and SAR data. The rela-
tionship between SAR and NDVI data has been demonstrated
in [29], [30], and [31], with various studies showing effective
pixelwise retrieval of NDVI values from SAR data in small
regions [32], [33], [34]. In addition, our prior work has shown
that translating single Sentinel-1 SAR scenes to NDVI images
is feasible on a global level [18]. We employ this method to
estimate NDVI values and utilize these estimations to improve
the reconstruction of NDVI time series.

To estimate NDVI values from SAR data, we use the deep
learning model, as described in [18]. There, a U-Net [35] is used
to transform an SAR backscatter image into an NDVI image. As
this requires a large dataset with SAR and optical images of the
same locations and time, the SEN12TP dataset was created and
presented in that study. It consists of approximately 220 GB of
timely paired Sentinel-1 and Sentinel-2 imagery with a maximal
time discrepancy of less than 12 h. Using this dataset, a good
performance and low MAE of 0.122 could be achieved using
only σ◦ backscatter data.

In this study, we used an ensemble of five trained models
as described above. Taking the mean from the outputs of five
models ensures superior model performance and reliability. In
the end, an estimated NDVI image is created for each location
and SAR acquisition.

D. Time-Series Extraction and the Final Dataset

Time series are extracted from the optical, SAR, and SAR-
derived NDVI images. Only every fifth column and every fifth
row are used to form a regular 5 px grid. This reduces the data
volume to a manageable level and additionally reduces unneeded

redundancy due to the high similarity among the time series of
neighboring pixels. Next to the image data, the acquisition dates
are extracted for each time step. Overall 330 GB of image data
are used (consisting of 72 GB optical, 181 GB SAR, and 78 GB
SAR-estimated NDVI imagery) resulting in 124 GB of extracted
time-series data.

Two splits of the dataset are created to assess spatial and
temporal generalization performance. The spatial split dataset
contains the same train, validation, and test scenes as those found
in the SEN12TP dataset, while the temporal split dataset uses the
first 12 months of all the scenes for training and the remaining
six months of all the scenes for testing. This allows performance
evaluation on unseen data from different scenes and future
dates.

III. RNN-BASED TIME-SERIES FUSION

To fuse the optical and SAR-derived NDVI time series, we
employ a gated recurrent unit (GRU) [36], a common RNN
variant. We selected RNNs because of their suitability for han-
dling variable sequence lengths and accommodating missing
data [17]. Utilizing a many-to-many architecture, our chosen
GRU model generates an output prediction for each step of the
input sequence.

The model input is first transformed using a single fully con-
nected layer with 128 neurons and rectified linear unit (ReLU)
activation with shared weights for each time step. Then, the GRU
consisting of three bidirectional layers, each with a hidden size
of 256, and a dropout layer with a dropout rate of 0.3 fuses
the time series while learning temporal patterns. Finally, the
GRU outputs are fed to two consecutive linear layers, again
with shared weights for each time step. The first linear layer has
128 neurons and a ReLU activation function, while the second
layer, which serves as the final output, uses a sigmoid activation
function. The model is depicted in Fig. 3. The hidden state of
the GRU is initialized for each batch with random weights taken
from a standard normal distribution. The model is trained using
the Adam optimizer [37] with a learning rate of 5 × 10−4, a
batch size of 128, and the mean squared error loss.

The extracted time series (cf. Section II) undergo further
processing before being passed to the RNN model. The optical
NDVI time series serve as both the label and the model input.
For each time series, a subset of values is randomly selected
as the label, while the remaining values are used as input.
We use 66% = 2/3 of the values as labels and the remaining
ones as model inputs to facilitate model learning. This simu-
lates frequent cloud cover and showed a good performance in
preliminary tests compared to using only 33% or 50% of the
values as labels. For each training epoch, the selection as label
or model input is different to make the model more robust and
avoid overfitting.

From the 18-month long time series, we extract sequences
with a length between one and six months to train a versatile
model, which can be used for a variety of use cases. The
extracted sequence length is a balance between data demands
and practicality: extremely short sequences are avoided as they
lack sufficient usable data, while excessively long sequences
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Fig. 3. Overview of the RNN model architecture. To the right is the unrolled
version. Xt denotes the input time series, and Ŷt denotes the predicted or
rather the fused time series. The numbers denote the feature dimensions with
the variable sequence length t.

demand impractical data resources impeding easy applicability
when deploying the model.

From these sequences, all the steps that contain no values
for all the input features or the label are removed. This leads
to shorter sequence lengths, which improved performance in
preliminary experiments.

All the model inputs are normalized as well as the optical
NDVI labels. Model inputs undergo Z-standardization using
the mean and standard deviation from the training set. Initially,
the labels are clipped to the range [−1, 1]. Subsequently, they
undergo min–max normalization to ensure that their values fall
within the interval [0.2, 0.8], which corresponds to the linear
region of the sigmoid activation function. The day of the year
(DOY) is not put directly into the model, but sin(DOY) and
cos(DOY) are used to avoid sudden jumps at the end of the year
and to capture cyclic patterns of the time series more efficiently.

IV. EXPERIMENTS

To evaluate our approach, we run multiple experiments: we
compare the model performance on the spatially split test set
for different input modalities, compare it to baseline models,
and evaluate the transferability to different times by using the
temporal split of the dataset.

We train three GRU models with our time-series dataset to
compare different input data.

1) NDVI-Fusion: This is our proposed method and model
relying on the optical NDVI and SAR-derived NDVI as
well as the DOY.

2) Optical-Only: This is a model relying only on the optical
NDVI and DOY to compare the effect of adding the SAR-
estimated NDVI to the optical one. This model can only

learn temporal characteristics of the time series and is,
therefore, expected to be worse, especially for long gaps
in the NDVI time series.

3) NDVI-Backscatter: This is a model that uses the σ◦ SAR
backscatter instead of the SAR-derived NDVI to evalu-
ate whether the single scene SAR-to-NDVI translation is
beneficial or can be omitted.

To assess the efficacy of our proposed model, we benchmark
it against two baselines: first, a simple linear interpolation, and
second, a histogram-based gradient boosting regression tree
(hGBRT) model.

The linear interpolation approach uses the daily values of the
time-series dataset (cf. Section II). As such, clouds are simulated
by masking two-thirds of the available optical NDVI values, and
only one-third of the values are used for the actual interpola-
tion. The unmasked values are interpolated and compared with
masked values to calculate the performance metrics.

The hGBRT model is a more complex machine learning
approach similar to the lightGBM model [38]. We have opted
for hGBRT because of its inherent capability to handle miss-
ing values, its enhanced computational efficiency compared to
standard gradient boosting regression trees for large datasets,
and its performance comparable to more complex deep learning
models [39]. The model is tasked to predict the current NDVI
value utilizing the previous optical and SAR-derived NDVI
values, along with the DOY.

One drawback of the hGBRT model is its requirement for
constant sequence lengths and a uniform temporal grid. Con-
sequently, we select weekly values to mitigate the issue of
excessive missing data that daily values would present. These
values are extracted from intervals spanning six months, selected
through a sliding window approach applied to the entire 1.5-
year-long sequences. We chose six-month intervals under the
assumption that a model with access to more extensive data is
likely to achieve better performance compared with a model
trained only with one or three months of data.

For each week, the available data from each source are aver-
aged, or the values are left empty in the absence of data. This
approach, however, leads to imperfect modeling due to reduced
temporal accuracy and the inability to accurately reflect sharp
data changes. Furthermore, a breakdown of the performance
for differently long gaps in the data during evaluation is not
accurately possible because of the lower temporal resolution
of the aggregated weekly values. For instance, a gap of one to
six days may exist between two aggregated weekly values or a
missing weekly value could indicate a gap ranging from 8 to 20
days in the daily time series.

For performance evaluation, we use two dataset splits. First,
a spatial split for general performance evaluation and assessing
how well the model is able to generalize to different areas. To
this end, we use the same test regions as the SEN12TP dataset
but the full 1.5-year-long time series. Second, we implement a
temporal split for our data: the first 12 months (October 2019
to September 2020) are used to train the model, encompassing
the temporal characteristics of an entire year. The subsequent
six months (October 2020 to March 2021) serve as the testing
period. This approach mirrors a real-world scenario, where a
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TABLE I
COMPARISON OF THE PERFORMANCE OF DIFFERENT MODELS USING THE

SPATIALLY SPLIT TEST SET DATA

model is trained on currently available data and then applied to
future data posttraining. Identical to training, 66% of the optical
NDVI values of each time series are used as labels to evaluate
the performance and the remaining 33% as model inputs.

For all the experiments, we report the MAE, the root-mean-
square error (RMSE), and the coefficient of determination R2.

V. RESULTS

To evaluate our fusion approach, we first evaluate it numeri-
cally on the globally distributed test scenes (see Section V-A).
Then, we show the resulting fused time series for two example
areas in detail (see Section V-B).

A. Quantitative Results

To show the good performance of our approach, we apply
the trained fusion model on the test set data and calculate the
error between optical NDVI and the fused NDVI. The test data
are comprised of time series of 124 globally distributed regions,
the same as the test regions of the SEN12TP dataset [19]. As a
baseline to our model, we use linear interpolation of the optical
data as well as an hGBRT, a machine learning model able to
handle missing data (cf. Section IV).

Our fusion approach NDVI-Fusion achieves a very low error,
with an MAE of 0.0478. Using our fusion model only with the
optical NDVI time series or the optical NDVI together with the
σ◦ SAR backscatter results in a slightly higher MAE of 0.0513
and 0.0517, respectively. For the two baselines, we have a higher
MAE of 0.0675 of the hGBRT model, and a slightly higher MAE
of 0.0482 using linear interpolation. The relative order of the
MAE of the compared models is the same for the RMSE and R2

score, as shown in Table I.
To demonstrate that our fusion approach can generalize from

one year to another and, therefore, be used in a real-world
scenario, we train a model using the temporally split dataset.
For this, we train the model using data from all the areas of
the first year and then test it using data from the remaining six
months. This ensures that all the testing data follow the training
data temporally, thereby simulating a real-world scenario where
the model, trained on current data, is subsequently applied to
future data. Compared to the model trained with spatially split
data, we see a slight performance decrease; the MAE increases
from 0.0478 to 0.0498, as illustrated in Table II.

The distribution of gap lengths is unbalanced: most gaps
are rather short with 70% of the gaps being shorter than six
days, as shown in Fig. 4. The peaks for gap lengths with a

TABLE II
PERFORMANCE OF NDVI-FUSION MODEL ON TEMPORALLY SPLIT DATA

Fig. 4. Distribution of the gap lengths of the optical NDVI time series in
the test set used for performance calculation. Gaps with a length of 5, 10, 15,
and 20 days are more common because of the five-day revisit of the Sentinel-2
constellation.

duration as multiple of five days are due to the five-day revisit
of the Sentinel-2 constellation [40]. Because of this imbalanced
distribution and the importance of filling especially longer gaps,
we determine the predicted error in conjunction with the length
of the optical gap or rather how near the next optical NDVI
value is. For this, we calculate for each optical NDVI used as
label the gap length as the minimum distance to the next or
previous optical NDVI used as model input. We do not include
the hGBRT model performance here, because the aggregation
step from daily to weekly NDVI values only allows rather broad
gap length classes: the weekly values can have a distance of one
to six days gaps between them and having no value for a week
could signify an NDVI data gap between 7 and 20 days.

The evaluation shows that the error of all the models increases
with an increasing gap length. The increase, however, is different
for the different models: linear interpolation is becoming signif-
icantly worse for long gaps (≥ 20 days long), whereas the fusion
approach only shows a mild increase, as listed in Table III.

B. Qualitative Results

To demonstrate our fusion approach visually and present
qualitative results, we pick two example areas of 124 areas
of the test set. They are chosen to demonstrate the lower and
upper performance bounds: one area located in the south of
Vietnam has one of the worst test performances and highest
errors, whereas the other area has a very low error and is located
in India. In the subsequent text, these are referred to as the
Vietnam and India example areas, respectively. The location of
both the areas, along with an RGB image, is presented in Fig. 5.
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TABLE III
COMPARISON OF THE MODEL’S PERFORMANCES FOR DIFFERENTLY LONG

GAPS IN THE OPTICAL DATA FOR THE SPATIALLY SPLIT TEST SET DATA

Fig. 5. Location of two example areas used for demonstrating our time-series
fusion approach marked red on a world map (top) and Sentinel-2 true-color
images of these two locations (bottom). The vertical line and the box in
cyan denote which data are used to display exemplary time-series progression.
(a) Location of the two example areas. (b) India, 2019-10-12. (c) Vietnam,
2020-02-25.

All the plots are created by masking all the optical NDVI
values in a sliding window approach: going over each NDVI
value of the time series, the NDVI is masked, the fusion model
is run, and the prediction of this date is saved. This ensures that
for each predicted value, the optical NDVI of that date was not
seen by the model.

Analyzing the time series of a single pixel, whose location
is shown as cyan square in Fig. 5, shows that the SAR-derived
NDVI values have a similar behavior, but applying the fusion
approach and augmenting the SAR derived with the optical
NDVI values result in a high agreement between optical NDVI
values of a date and the prediction at that day. The complex
and quickly changing NDVI course of the Vietnam example
is modeled very well with low errors, even though the optical
NDVI values are often not dense and have long gaps. The India
example area has very dense optical values most of the years;
only around August to October, does the NDVI increase and
become rather sparse. This is very well reflected in the fused
NDVI. Both examples are shown in Fig. 6.

To visualize the performance, we plot the NDVI of not only
a single selected pixel but also a whole image row, denoted as
a cyan vertical line in Fig. 5. The optical data have many gaps
due to clouds and cloud shadows in the data, which also results
in gaps in the calculated error. In contrast, the fused NDVI is
dense without long gaps and results in a low error for almost all
the dates. For the India example area, the NDVI is sufficiently
dense for most of the year but between June and October, almost
no cloud-free pixels could be acquired. Our fusion approach can
estimate reasonable NDVI values and achieves a low error for the
few cloud-free optical dates. Only for the Vietnam example area,
a few dates in December have a higher error, which coincides
with a drastic increase of the NDVI at these dates. Visualizations
for both the areas are depicted in Fig. 7.

Finally, we compare our fusion approach for a series of
images. For 15 partly cloud-free images of the Vietnam example
area between December 2019 and February 2020, we calculate
the fused NDVI and compare it to the optical one. We achieve
for almost all the scenes a low error but can fill all the gaps due
to clouds, as shown in Fig. 8.

All these figures show the high performance of our approach
and the high accordance with the optical NDVI.

VI. DISCUSSION

We presented a fusion approach to fuse time series of dif-
ferent sources to construct dense and accurate time series. This
approach integrates sparse but accurate optical NDVI time series
with denser, albeit less precise, SAR-estimated NDVI time
series, effectively addressing gaps caused by clouds and cloud
shadows. Both quantitatively and qualitatively, we show the high
performance and low error of the fused NDVI time series. Gaps
can be filled, and the resulting time series have a high similarity
with the optical values.

Our findings reveal that prefusion NDVI estimates from in-
dividual SAR scenes are preferable to the direct use of σ◦ SAR
backscatter (cf. Table I). This efficacy stems primarily from
two factors: first, the SAR-to-NDVI translation leverages spatial
neighborhood information of the SAR data, enhancing NDVI
estimation accuracy by considering each pixel’s spatial context;
second, SAR-derived NDVI values are less impacted by speckle
noise, a prevalent issue in SAR backscatter time series, resulting
in a cleaner dataset for fusion.
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Fig. 6. Comparison of the NDVI time series and associated errors for optical, SAR-derived, and fused NDVI data for a cropland pixel within the Vietnam (top)
and India (bottom) example areas. The location of the used pixels is given in Fig. 5. The fused NDVI time series (green) is dense and is closely aligned with the
optical NDVI measurements, illustrating the effectiveness of the fusion approach. In contrast, the optical NDVI time series (blue) suffers from irregular acquisition
intervals due to cloud cover. Meanwhile, the SAR-estimated NDVI (gray) is consistent in temporal coverage but displays a higher level of uncertainty and noise.

As shown numerically in Table III, a low error is achieved for
short as well as for long gaps in the optical data. Nonetheless,
there are instances showing limitations of our approach. First,
our model struggles to accurately predict abrupt changes in the
time series due to agricultural practices or vegetation burns.
This can be evidenced in the India example area, where higher
errors were observed during rapid NDVI fluctuations in July and
October 2020, as depicted in Fig. 6. Similarly, for the Vietnam
example area, on multiple occasions, a sudden change results in
an increased error, for example, in April or July 2020.

These inaccuracies can be attributed to two main reasons:
first, the necessity for high temporal precision, where even
slight timing discrepancies can lead to significant errors, and

second, a lack of data with rapid vegetation transitions. As
most of the vegetation is rather stable, only very little opti-
cal data are available with sudden changes in the NDVI. To
mitigate this, we could expand our dataset to include more
instances with high and quick vegetation and NDVI changes.
However, it might be computationally expensive to acquire
a sufficient amount of suitable time series, as there has to
be a rapid vegetation change and coinciding available optical
data.

Another case in which the method has a lower accuracy
is in flooded areas or for water bodies due to the interaction
of microwave signals with water surfaces. The reflection of
microwaves off water results in minimal backscatter signals and,
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Fig. 7. Comparison of the NDVI of one image row over time for the example areas. The RGB (top row) and the NDVI derived from optical data (second row)
have many gaps due to cloud coverage. In contrast, the fused NDVI (third row) is almost gap-free and is closely aligned with optical NDVI as evidenced by the low
error between fused and optical NDVI (bottom row). The location of the row is shown in Fig. 5. Missing data are displayed in gray due to missing image retrievals
or masked clouds and cloud shadows. (a) Vietnam example area. (b) India example area.

Fig. 8. Overview over the RGB and NDVI images between December 2019 and February 2020 for the Vietnam example area. The top row shows the optical
images, and the second row shows the NDVI images masked for clouds and cloud shadows. The fused images (third row) are only shown for all the dates, where
S-2 data were captured. The bottom row shows the error between optical and fused NDVI images. Gray areas are masked because of detected clouds or cloud
shadows.

consequently, a lack of usable information for NDVI translation
in the received signal. Without information about the earth’s
surface in the SAR data, the translation to NDVI values is
not accurately possible, which results in an increased error
of the SAR-derived NDVI time series and, therefore, also an
increased error in the fused NDVI series in such environments.
This phenomenon likely explains the elevated errors observed
on January 25 in Fig. 8, as the rice fields in the studied area
undergo regular flooding [41].

We also acknowledge that the optical NDVI, our standard
of truth, has some inherent uncertainty and inaccuracy, arising

from factors such as atmospheric correction methodologies,
topographic, solar, and viewing angles, and adjacency effects.
We did not apply corrections for these effects to remain as close
as possible to the original data. Moreover, our cloud and shadow
masking, while effective, is not infallible, with occurrences of
both false positives and false negatives. A manual annotation of
clouds is infeasible, due to the sheer volume of images. However,
employing a more sophisticated temporal cloud detection algo-
rithm, such as in [42], could improve cloud detection accuracy,
albeit at the cost of increased computational demand and more
complex data processing.
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VII. CONCLUSION

To acquire dense NDVI time series despite frequent cloud
cover, we propose a novel method, which combines sparse opti-
cal NDVI time series and denser but less accurate SAR-derived
NDVI time series using a deep learning GRU. A large and
globally distributed dataset is used, comprised of 283 000 images
from 1206 locations taken between September 2019 and April
2021.

The proposed method yields a low MAE of 0.0478 outper-
forming approaches using only optical data or additionally SAR
backscatter σ◦ time series. It demonstrates consistent accuracy,
even with extended gaps in the data, and generalizes well across
different regions and times. Visual assessments confirm a high
similarity to optical values across various spatial scales, support-
ing the reliability of denser NDVI time series for downstream
applications despite cloud cover challenges.
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