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Toward Robust Hyperspectral Unmixing: Mixed
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Abstract—Hyperspectral (HS) unmixing is the process of de-
composing an HS image into material-specific spectra (endmem-
bers) and their spatial distributions (abundance maps). Existing
unmixing methods have two limitations with respect to noise ro-
bustness. First, if the input HS image is highly noisy, even if the
balance between sparse and piecewise-smooth regularizations for
abundance maps is carefully adjusted, noise may remain in the
estimated abundance maps or undesirable artifacts may appear.
Second, existing methods do not explicitly account for the effects
of stripe noise, which is common in HS measurements, in their
formulations, resulting in significant degradation of unmixing per-
formance when such noise is present in the input HS image. To
overcome these limitations, we propose a new robust HS unmixing
method based on constrained convex optimization. Our method
employs, in addition to the two regularizations for the abundance
maps, regularizations for the HS image reconstructed by mixing the
estimated abundance maps and endmembers. This strategy makes
the unmixing process much more robust in highly noisy scenarios,
under the assumption that the abundance maps used to reconstruct
the HS image with desirable spatio-spectral structure are also
expected to have desirable properties. Furthermore, our method is
designed to accommodate a wider variety of noise including stripe
noise. To solve the formulated optimization problem, we develop an
efficient algorithm based on a preconditioned primal-dual splitting
method, which can automatically determine appropriate stepsizes
based on the problem structure. Experiments on synthetic and real
HS images demonstrate the advantages of our method over existing
methods.

Index Terms—Constrained optimization, hyperspectral (HS)
unmixing, mixed noise, primal-dual splitting, stripe noise.

I. INTRODUCTION

HYPERSPECTRAL (HS) images are 3-D cube data con-
sisting of 2-D spatial and 1-D spectral information. Com-

pared to grayscale or RGB images, HS images provide more than
several hundred bands, each of which contains specific unique
wavelength characteristics of materials, such as minerals, soils,
and liquids. Therefore, HS images have various applications,
such as ecology, mineralogy, biotechnology, and agriculture [1],
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[2], [3], [4]. Due to the tradeoff between spatial resolution and
spectral resolution, HS sensors do not have a sufficient spatial
resolution, resulting in containing multiple components (called
endmembers) in a pixel [5], which is referred to as a mixel.
The process of decomposing the mixel into endmembers and
their abundance maps is called unmixing. Unmixing has been
actively studied in the remote sensing field because it is essential
for HS image analysis [6], [7] and other applications, such as
denoising [8], [9] and data fusion [10], [11].

Unmixing methods fall into two categories according to their
assumptions: 1) nonblind [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30],
[31] and 2) blind unmixing [32], [33], [34], [35], [36]. Nonblind
unmixing methods estimate abundance maps from a given end-
member library. Endmembers in the library are potentially much
larger in number than endmembers included in real HS images,
i.e., its corresponding abundance maps become sparse. On the
other hand, blind unmixing methods simultaneously estimate
an endmember library and abundance maps, allowing us to
obtain the abundances of endmembers whose spectral libraries
are unknown.

For blind unmixing, nonnegative matrix factorization-
based approaches [32], [33], [34] and learning-based ap-
proaches [35], [36], [37] have attracted attention. Nonnegative
matrix factorization-based methods design and solve an opti-
mization problem that incorporates the functions of the product
of an endmember matrix and an abundance map matrix. When
solving the optimization problem, they take an approach that
iterates alternate updates of the two matrices: updating the end-
member library matrix by solving the subproblem with the abun-
dance map matrix fixed, updating the abundance maps by solving
the subproblem with the endmember library matrix fixed using
some nonblind unmixing method. Learning-based methods of-
ten involve the following steps: Extraction of initial endmembers
from an input HS image, estimation of corresponding initial
abundance maps by some nonblind unmixing methods, and then
learning of sophisticated unmixing and reconstruction networks
based on this information. Therefore, nonblind unmixing is a
fundamental task that must precede blind unmixing. Henceforth,
nonblind unmixing will simply be referred to as unmixing.

Although very accurate unmixing can be achieved using
state-of-the-art methods if a noise-free HS image is available,
real-world HS images are often contaminated by various types of
noise, such as Gaussian noise, outliers, missing values, and stripe
noise due to environmental factors and sensor failures. Such
noise obviously has a negative impact on unmixing performance
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and needs to be dealt with appropriately. The simplest way
is a two-step approach, where noise is first removed from a
given HS image beforehand, followed by unmixing. However,
such methods are also likely to remove even important spectral
information. It is therefore essential to develop a method that
can simultaneously separate noise (without affecting spectral
information) during the unmixing process, which we refer to as
noise-robust unmixing.

Many noise-robust unmixing techniques explicitly model
noises and then take the approach of solving optimization prob-
lems that incorporate functions characterizing abundance maps.
Based on the fact that HS images consist of a small fraction of
the endmembers in a library, the methods in [12], [13], [14],
[15], [16], and [17] employ a sparse regularization. Abundance
maps are also piecewise smooth because neighboring pixels
often have the same endmembers. To capture the nature, the
methods in [18], [19], [20], [21], and [22] adopt a combination
of sparse and piecewise-smooth regularizations. As a more
advanced approach to promote the sparsity of abundance maps,
some methods adopt a coarse abundance map-based weighted
sparse unmixing approach [23], [24], [25], which includes the
following three steps. First, this approach segments a target
HS image into superpixel blocks and averages the pixels of
the superpixel blocks to obtain a coarsely denoised HS im-
age. Then, by applying a sparse unmixing method (e.g., the
method in [12]) to the coarse HS image, coarse abundance maps
are generated. Finally, based on the coarse abundance maps,
superpixelwise and endmemberwise weights are computed to
promote the weighted sparsity of abundance maps. In addition,
the methods in [26], [27], and [28] estimate abundance maps
using a regularization based on deep neural networks, and the
methods in [29], [30], and [31] adopt a combination of sparse
and low-rank regularizations.

As we have discussed, various studies have been carried out to
mitigate the effects of noise in unmixing, but there are still two
limitations in terms of robustness to noise. The first is that the
performance of unmixing is severely degraded when the input
HS image is contaminated with high levels of noise. The second
is that existing unmixing methods cannot adequately deal with
stripe noise.

As reviewed in the previous subsection, many existing unmix-
ing methods use a combination of sparse and piecewise-smooth
regularization to characterize the abundance maps. However,
as shown in Fig. 1, balancing these regularizations becomes
very difficult when unmixing HS images contaminated with high
levels of noise. In fact, if the weight of the sparse regularization is
increased, a large amount of noise remains in the estimated abun-
dance maps. Conversely, if the weight of the piecewise-smooth
regularization is increased, the estimated abundance maps will
contain many inappropriate components that are not present in
the original HS image. In existing methods, adjusting the weights
to avoid both problems is a very sensitive and tedious task.

To resolve this difficulty, we focus on the regularizations for
the HS image reconstructed by mixing the estimated abundance
maps and the endmembers, which we call image-domain regu-
larizations, in addition to the regularizations for the abundance
maps. Our assumption is the following: if the reconstructed HS
image has desirable properties in its spatio-spectral structure,

Fig. 1. Difficulty in dealing with high-level noise in unmixing.

then the estimated abundance maps used for reconstruction
should also have desirable properties. Therefore, we believe
that incorporating spatio-spectral regularization for HS images
into the unmixing formulation can improve the unmixing per-
formance in high-noise situations where abundance maps are
difficult to estimate using existing methods. Fortunately, in the
context of HS image restoration, many effective HS image reg-
ularizations have been studied [38], [39], [40], [41], [42], [43],
[44]. By adopting them as image-domain regularizations, we can
robustify the unmixing process under highly noisy scenarios.

Regarding the second limitation in dealing with stripe noise,
existing unmixing methods mainly deal with Gaussian noise
and sparse noise. However, in addition to these noises, actual
HS images are often contaminated with stripe noise, mainly due
to external disturbances and calibration errors [45], [46], [47].
Since stripe noise is not Gaussian and is often not sparse [46], it
cannot be handled by existing methods, leading to performance
degradation in unmixing.

Based on the above discussion, this article proposes robust
HS unmixing using image-domain regularization (RHUIDR).
We formulate the unmixing problem as a constrained convex
optimization problem. In order to solve the optimization prob-
lem, we develop an efficient algorithm based on the precon-
ditioned primal-dual splitting method (P-PDS) [48] with an
operator-norm-based stepsize selection method [49]. In terms
of the features of RHUIDR, the contributions of this article can
be summarized as follows.

1) Robust to High Levels of Noise: RHUIDR employs not
only the abundance map regularizations but also image-
domain regularizations, which robustify the unmixing pro-
cess under highly noisy scenarios.

2) Robust to Mixed Noise Including Stripe Noise): By ex-
plicitly modeling three types of noise (Gaussian noise,
sparse noise, and stripe noise), as in (14), RHUIDR can
adequately handle mixed noise, including stripe noise,
which is difficult to handle in existing methods.

3) Easy to Adjust Hyperparameters: In the formulated opti-
mization problem, we model data-fidelity and noise terms
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as hard constraints instead of adding them to the objective
function. This type of constrained formulation decouples
interdependent hyperparameters into independent ones,
thus facilitating parameter settings, which will be detailed
in Section III-A.

4) Avoiding Adjusting Stepsizes: Unlike the optimization
algorithms used in existing unmixing methods, our P-
PDS-based algorithm can automatically determine the
appropriate stepsizes based on the problem structure.

Experiments on synthetic and real HS images demonstrate the
advantages of RHUIDR over existing methods.

The rest of this article is organized as follows. In Section II,
we introduce mathematical tools. In Section III, we explain the
proposed method, RHUIDR, with its formulation and algorithm.
In Section IV, we conduct experiments to show the superiority
of RHUIDR over the existing methods. Finally, Section V con-
cludes this article.

II. PRELIMINARIES

A. Notations

In this article, we denote the sets of real numbers and
nonnegative real numbers as R and R+, respectively. Ma-
trices are denoted by capitalized boldface letters (e.g., X),
and the element at the ith row and hte jth column of ma-
trix X is denoted by Xi,j or [X]i,j . An HS image with
the number of bands l and spatial size n1 × n2 is treated
as a matrix H ∈ Rl×n1n2 of size l × n1n2 and [H]i,j,k in-
dicates the (i, j, k)th value of the cube data H ∈ Rn1×n2×l

corresponding to H. The �1-norm ‖ · ‖1, the Frobenius norm
‖ · ‖F , the mixed �1,2-norm grouped by row ‖ · ‖1,2,r, and
the mixed �1,2-norm grouped by column ‖ · ‖1,2,c are defined

by ‖X‖1 =
∑

i,j |Xi,j |, ‖X‖F =
√∑

i,j X
2
i,j , ‖X‖1,2,r =∑

i

√∑
j X

2
i,j , and ‖X‖1,2,c =

∑
j

√∑
i X

2
i,j , respectively.

Let G : RM1×N1 → RM2×N2 be a linear operator. A linear op-
erator G∗ : RM2×N2 → RM1×N1 is called the adjoint operator
of G if it is satisfied with 〈G(X),Y〉 = 〈X,G∗(Y)〉 for any
X ∈ RM1×N1 and Y ∈ RM2×N2 .

B. Preconditioned Primal-Dual Splitting Method (P-PDS)

Let f1, . . . , fN , g1, . . . , gM be proximable1 proper lower
semicontinuous convex functions. Consider a convex optimiza-
tion problem of the following form:

min
Y1,...,YN ,
Z1,...,ZM

N∑
i=1

fi(Yi) +

M∑
j=1

gj(Zj)

s.t.

⎧⎪⎪⎨⎪⎪⎩
Zi =

∑N
i=1 G1,i(Yi)

...,

ZM =
∑N

i=1 GM,i(Yi)

(1)

1If an efficient computation of the proximity operator of f is available, we
call f proximable.

where Gj,i (i = 1, . . . , N, j = 1, . . . ,M) are linear operators.
We define the proximity operator of fi (and gj as well) with a
parameter γ > 0 by

proxγfi
(X) := argmin

Y∈RM×N
fi(Y) +

1

2γ
‖X−Y‖2F . (2)

Then, the P-PDS solves Problem (1) by the following iterative
procedures:⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ỹ1 ← Y
(t)
1 − γ1,1

∑M
j=1 G

∗
j,1(Z

(t)
j )

Y
(t+1)
1 ← proxγ1,1f1

(Ỹ1)
...

ỸN ← Y
(t)
N − γ1,N

∑M
j=1 G

∗
j,N (Z

(t)
j )

Y
(t+1)
N ← proxγ1,NfN

(ỸN )

Z̃1 ← Z
(t)
1 + γ2,1

∑N
i=1 G1,i(2Y

(t+1)
i −Y

(t)
i )

Z
(t+1)
1 ← Z̃1 − γ2,1prox 1

γ2,1
g1
( 1
γ2,1

Z̃1)

...

Z̃M ← Z
(t)
M + γ2,M

∑N
i=1 GM,i(2Y

(t+1)
i −Y

(t)
i )

Z
(t+1)
M ← Z

(t)
M − γ2,Mprox 1

γ2,M
gM

( 1
γ2,M

Z̃M )

(3)
where γ1,i (i = 1, . . . , N) and γ2,j (j = 1, . . . ,M) are the
stepsize parameters. The stepsize parameters can be determined
automatically as follows [49]:

γ1,i =
1∑M

j=1 ‖Gj,i‖2op

, γ2,j =
1

N
(4)

where ‖Gj,i‖2op is the operator norm2 of Gj,i. However, the
operator norms of some linear operators cannot be easily cal-
culated (e.g., difference operators and composite operators of
linear operators). Therefore, we can use their upper bounds
μj,i ∈ [‖Gj,i‖op,∞) to determine the stepsize parameters as

γ1,i =
1∑M

j=1 μ
2
j,i

, γ2,j =
1

N
. (5)

From [48, Th. 1] and [49, Th. III.2], the sequences generated by
P-PDS (3) with the stepsizes in (5) are guaranteed to converge
to a solution of Problem (1).

C. Regularizations for an HS Image

This section introduces the regularizations for an HS image
H ∈ Rl×n1n2 . LetDv : Rl×n1n2 → Rl×n1n2 ,Dh : Rl×n1n2 →
Rl×n1n2 , and Db : Rl×n1n2 → Rl×n1n2 be, respectively, ver-
tical, horizontal, and spectral difference operators, which are
given by

[Dv]i,j,k :=

{
[H]i+1,j,k − [H]i,j,k, if i < n1

0, otherwise
(6)

[Dh]i,j,k :=

{
[H]i,j+1,k − [H]i,j,k, if j < n2

0, otherwise
(7)

2Let G : Rn1,m1 → Rn2,m2 be a linear operator. Then, the operator norm
of G is defined by ‖G‖op := supX 
=O ‖G(X)‖F /‖X‖F .
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Fig. 2. Illustration of the proposed method, i.e., RHUIDR.

[Db]i,j,k :=

{
[H]i,j,k+1 − [H]i,j,k, if k < l

0, otherwise
(8)

where H ∈ Rn1×n2×l, Dv ∈ Rn1×n2×l, Dh ∈ Rn1×n2×l, and
Db ∈ Rn1×n2×l are the 3-D data corresponding to H, Dv(H),
Dh(H), and Db(H), respectively. Then, HTV [38], SSTV [41],
and HSSTV [42] are defined by

HTV(H) := ‖D(H)‖1,2,c (9)

SSTV(H) := ‖D(Db(H))‖1 (10)

HSSTV(H) := ‖Cω(H)‖1 (11)

where D is the spatial difference operator

D(H) :=

[
Dv(H)

Dh(H)

]
(12)

andCω is a combination of spatial and spatio-spectral difference
operators with a balancing parameter ω > 0

Cω(H) :=

[
D(Db(H))

ωD(H)

]
. (13)

HTV captures spectral correlations by promoting the sparsity
of spatial differences grouped by the spectral direction. SSTV
captures piecewise smoothness in the spatial and spectral direc-
tions by using the composite operator of the spatial and spec-
tral differences (spatio-spectral difference). However, it does
not sufficiently evaluate direct spatial piecewise smoothness,
resulting in residual noise and artifacts. HSSTV promotes both

TABLE I
SPECIFIC FUNCTIONR AND LINEAR OPERATOR K IN EACH

RCONSTRUCTED-IMAGE REGULARIZATION

TABLE II
STEPSIZES γ1, γ2, γ3, AND γ4 FOR EACH ALGORITHM THAT SOLVES AN

OPTIMIZATION PROBLEM INCORPRATING EACH RECONSTRUCTED-IMAGE

REGULARIZATION

spatio-spectral and direct spatial smoothness, and thus, is a more
powerful regularization in general.

III. PROPOSED METHOD

A general diagram of the proposed method, RHUIDR, is
shown in Fig. 2. In the following, we first introduce an obser-
vation model with three types of noise. Based on the model, we
then formulate the unmixing problem as a constrained convex
optimization problem. Finally, we describe a P-PDS-based al-
gorithm to efficiently solve the optimization problem with its
computational complexity.
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Algorithm 1: A P-PDS-Based Algorithm for Solving
Prob. (15).

Input: V, E, λ1, λ2, λ3, ε, and η
Output: A(t), S(t), L(t)

1: Initialize A(0), S(0), L(0), Z(0)
1 , Z(0)

2 , Z(0)
3 , Z(0)

4 , and

Z
(0)
5 ;

2: Set γ1, γ2, γ3, and γ4 as in Table II;
3: while until a stopping criterion is satisfied do
4: Ã← Z

(t)
1 +D∗(Z(t)

2 ) +E∗(K∗(Z(t)
3 )) +E∗Z(t)

4 ;
5: Ã← A(t) − γ1Ã;
6: A(t+1) ← proxγ1ιRm×n

+

(Ã) by (20);

7: S̃← S(t) − γ2Z
(t)
4 ;

8: S(t+1) ← proxγ2ιB1,η
(S̃);

9: L̃← L(t) − γ3(Z
(t)
4 +D∗v(Z

(t)
5 ));

10: L(t+1) ← proxγ3λ3‖·‖1(L̃) by (21);

11: Z̃1 ← Z
(t)
1 + γ4(2A

(t+1) −A(t));

12: Z
(t+1)
1 ← Z̃1 − γ4prox 1

γ4
‖·‖1,2,r (

Z̃1

γ4
) by (22);

13: Z̃2 ← Z
(t)
2 + γ4D(2A(t+1) −A(t));

14: Z
(t+1)
2 ← Z̃2 − γ4prox λ1

γ4
‖·‖1

( Z̃2

γ4
) by (21);

15: Z̃3 ← Z
(t)
3 + γ4K(E(2A(t+1) −A(t)));

16: Z
(t+1)
3 ← Z̃3 − γ4prox λ2

γ4
R(

Z̃3

γ4
) by (21) or (23);

17: Z̃′4 ← 2(EA(t+1) + S(t+1) + L(t+1));
18: Z̃4 ← EA(t) + S(t) + L(t);
19: Z̃4 ← Z

(t)
4 + γ4(Z̃

′
4 − Z̃4);

20: Z
(t+1)
4 ← Z̃4 − γ4prox 1

γ4
ιBV

F,ε

( Z̃4

γ4
) by (24);

21: Z̃5 ← Z
(t)
5 + γ4Dv(2L

(t+1) − L(t));

22: Z
(t+1)
5 ← Z̃5 − γ4prox 1

γ4
ι{O}

( Z̃5

γ4
) by (25);

23: t← t+ 1;
24: end while

A. Problem Formulation

Let E ∈ Rl×m, Ā ∈ Rm×n, N̄ ∈ Rl×n, S̄ ∈ Rl×n, and L̄ ∈
Rl×n be a given endmember library, a true abundance matrix,
Gaussian noise, sparse noise, and stripe noise (need not be
sparse), respectively. Consider the following observation model:

V = EĀ+ N̄+ S̄+ L̄. (14)

Note that this model explicitly deals with stripe noise as an
additive component L̄. Based on (14), we formulate an unmix-
ing problem as the following constrained convex optimization
problem:

min
A,S,L

‖A‖1,2,r + λ1‖D(A)‖1 + λ2R(K(EA)) + λ3‖L‖1

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A ∈ Rm×n

+

EA+ S+ L ∈ BV
F,ε

S ∈ B1,η
Dv(L) ∈ {O}

(15)

TABLE III
COMPUTATIONAL COMPLEXITIES OF EACH OPERATION

where λ1 > 0, λ2 > 0, and λ3 > 0 are hyperparameters that
balance each term. The first term is the joint-sparse regulariza-
tion that evaluates the row sparsity of abundance maps A. The
second term promotes the piecewise smoothness of A. The first
constraint guarantees the nonnegativity of A. Note that we do
not explicitly adopt the abundance sum-to-one constraint. This
is because, in real-world situations, the abundance sum-to-one
constraint tends to be a strong assumption for the linear mixing
model based unmixing because the spectral signatures are often
affected by a positive scaling factor that varies from pixel to
pixel [12].

The third term is the regularization of the reconstructed HS
image. This image-domain regularization enhances the noise
robustness of unmixing beyond the capability of the abundance
regularizations by capturing the desirable nature of the recon-
structed HS image (e.g., spatio-spectral correlation). In this
article, we focus on three image-domain regularizations: HTV
in (9), SSTV in (10), and HSSTV in (11). In each case,R and K
are defined, as shown in Table I. By further generalizing the third
term, RHUIDR can incorporate other regularizations proposed,
e.g., in [43] and [44].

The second constraint serves as data-fidelity to the observed
HS image V with the Frobenius norm ball BVF,ε with the center
V and radius ε, defined by

BV
F,ε := {X ∈ Rl×n | ‖V −X‖F ≤ ε}. (16)

The third constraint evaluates the sparsity of S with the �1-norm
ball B1,η with center O and radius η, defined by

B1,η := {X ∈ Rl×n | ‖X‖1 ≤ η}. (17)

As described in the third contribution, using such constraints
instead of data-fidelity and sparse terms makes it easy to adjust
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TABLE IV
ASSUMPTIONS AND NOISE CONSIDERED IN EACH METHOD

hyperparameters since the parameters can be determined based
only on noise intensity. Indeed, this kind of constrained for-
mulation has played an important role in facilitating parameter
setup of signal recovery problems [50], [51], [52], [53], [54].
The detailed setting of these parameters ε and η is shown in
Section V-B.

The fourth term controls the intensity of stripe noiseL and the
fourth constraint captures the vertical flatness property by im-
posing zero to the vertical gradient ofL. The term and constraint
accurately characterize stripe noise [47]. Therefore, our method
can estimate abundance maps from HS images contaminated by
mixed noise including dense stripe noise.

B. Optimization Algorithm

To solve Problem (15) by an algorithm based on P-PDS, we
need to transform Problem (15) into Problem (1). First, using
the indicator functions,3 Problem (15) are rewritten as follows:

min
A,S,L

‖A‖1,2,r + λ1‖D(A)‖1 + λ2R(K ◦E(A)) + λ3‖L‖1

+ ιRm×n
+

(A) + ιBVF,ε
(EA+ S+ L)

+ ιB1,η (S) + ι{O}(Dv(L)) (18)

where K ◦E is the composite operator of K and E, i.e., K ◦
E(A) = K(EA). Introducing auxiliary variables Z1, Z2, Z3,
Z4, and Z5, we can transform Problem (18) into the following
equivalent problem:

min
A,S,L,
Z1,...,Z5

ιRm×n
+

(A) + ιB1,η (S) + λ3‖L‖1 + ‖Z1‖1,2,r

+ λ1‖Z2‖1 + λ2R(Z3) + ιBVF,ε
(Z4) + ι{O}(Z5)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z1 = A

Z2 = D(A)

Z3 = K ◦E(A)

Z4 = EA+ S+ L

Z5 = Dv(L).

(19)

3If C ⊂ RM×N satisfies λX+ (1− λ)Y ∈ C for any X,Y ∈ C and
λ ∈ [0, 1], C is a convex set. For a nonempty closed convex set C, the indi-
cator function ιC : RM×N → (−∞,∞] is defined by ιC(X) := 0, if X ∈ C;
ιC(X) :=∞, otherwise.

Fig. 3. Original HS images. (a) Synth 1. (b) Synth 2. (c) Synth 3. (d) Jasper
Ridge. (e) Samson. (f) Urban.

Finally, by defining f1(A) = ιRm×n
+

(A), f2(S) = ιB1,η (S),
f3(L) = λ3‖L‖1, g1(Z1) = ‖Z1‖1,2,r, g2(Z2) = λ1‖Z2‖1,
g3(Z3) = λ2R(Z3), g4(Z4) = ιBVF,ε

(Z4), and g5(Z5) =

ι{O}(Z5), Problem (1) is reduced to Problem (19), i.e.,
Problem (15). The algorithm for solving Problem (15) is
summarized in Algorithm 1. The linear operator K in steps
4 and 15, and the function R in step 16 depend on what
regularization is adopted, as shown in Table I. The proximity
operators are calculated as follows:

[proxγιRm×n
+

(A)]
i,j

= max(0, Ai,j) (20)

[proxγ‖·‖1(A)]
i,j

= sign(Ai,j)max(|Ai,j | − γ, 0) (21)

[proxγ‖·‖1,2,r (A)]
i,j

= max

(
1− γ√∑

j A
2
i,j

, 0

)
Ai,j (22)

[proxγ‖·‖1,2,c(A)]
i,j

= max

(
1− γ√∑

i A
2
i,j

, 0

)
Ai,j (23)

proxγιBV
F,ε

(A) =

{
A, if A ∈ BVF,ε

V + ε(A−V)
‖A−V‖F , otherwise

(24)

proxγι{O}(A) = O. (25)

The proximity operator of ιγB1,η can be efficiently computed by
the �1-ball projection algorithm [55].

Based on (4), the stepsizes of Algorithm 1 are given as

γ1 = 1
‖I‖2op+‖D‖2op+‖K◦E‖2op+‖E‖2op

, γ2 = 1
‖I‖2op

γ3 = 1
‖I‖2op+‖Dv‖2op

, γ4 = 1
3 . (26)

An identity matrix of any size satisfies ‖I‖op = 1. The op-
erator norm ‖E‖op is equal to its maximum singular value
σ1(E). The operator norms of the other linear operators are
not easy to obtain,4 but they are suppressed by ‖Dv‖op ≤ 2,
‖Db‖op ≤ 2, ‖D‖op ≤ 2

√
2, ‖K ◦E‖op ≤ ‖K‖op‖E‖op, ‖D ◦

4Note that the difference operators are not implemented as matrices. There-
fore, we cannot easily obtain the singular values of the matrices representing the
difference operators.
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Fig. 4. Distributions of SADs between the spectra of endmembers present in
HS images and the spectra of the other endmembers. Vertical axes indicate the
SADs. Horizontal axes indicate the indexes of the endmembers present in the
HS images. The SAD values tend to be the same for all datasets. (a) Synth 1.
(b) Synth 2. (c) Synth 3. (d) Jasper Ridge. (e) Samson. (f) Urban.

Db‖op ≤ ‖D‖op‖Db‖op, and ‖Cω‖op ≤
√
32 + 8ω2. By substi-

tuting these upper bounds into (5), the specific stepsizes are
given, as shown in Table II. This stepsizes design method allows
us to avoid the stepsize adjustment for Algorithm 1.

C. Computational Complexity

In general, the computational complexity of our algorithm
varies depending on what function and linear operator are used
as an image-domain regularization. Our method adopts three
image-domain regularizations: 1) HTV, 2) SSTV, and 3) HSSTV.
The computational complexities of linear operators and func-
tions including all the image-domain regularizations are given
in Table III. From these results, we derive the computational
complexities of each step as follows.

1) The complexities of Steps 4, 15, 17, and 18 are O(nml).
2) The complexities of Steps 5, 6, 11, 12, 13, and 14 are

O(nm).
3) The complexities of Steps 7, 9, 10, 16, 19, 20, 21, and 22

are O(nl).
4) The complexity of Step 8 is O(nl log nl).
Therefore, the complexity for each iteration of the algorithm

is O(nlmax{m, log nl}).

IV. EXPERIMENTS

We demonstrate the effectiveness of the proposed nonblind
unmixing method, i.e., RHUIDR through comprehensive exper-
iments using two synthetic and two real HS images. Specifically,
these experiments aim to validate that:

1) RHUIDR achieves good unmixing performance due to
image-domain regularizations;

2) RHUIDR is robust to mixed noise, including stripe noise.
As described in the introduction, existing unmixing methods

are classified into blind and nonblind, depending on whether
the endmember library is given or not. Due to the different
assumptions and the fact that blind unmixing methods require
a nonblind unmixing step to obtain an initial estimate, it is
difficult to fairly compare nonblind unmixing methods with
blind ones. Therefore, we mainly compare RHUIDR with non-
blind unmixing methods. Specifically, we compare RHUIDR
with seven state-of-the-art nonblind unmixing methods and
one state-of-the-art blind unmixing method: the collaborative
sparse unmixing by variable splitting and augmented Lagrangian
(CLSUnSAL) [13], the HS unmixing using joint-sparsity and
total variation (JSTV) [19],5 the row-sparsity spectral unmixing
via total variation (RSSUn-TV) [22], the local-global-based
sparse regression unmixing (LGSU) [16], the HS unmixing
using deep image prior (UnDIP) [28],6 the endmember-guided
unmixing network (EGU-Net) [37],7 the robust dual spatial
weighted sparse unmixing (RDSWSU) [25], and the multidi-
mensional low-rank representation-based sparse HS unmixing
(MdLRR) [31].8 To perform the experiments, we reimplemented
the program codes of CLSUnSAL, RSSUn-TV, and RDSWSU.
The program code of LGSU was downloaded from a web page,
which is no longer accessible as of January 2024. EGU-Net
uses the number of endmembers in a target HS image. In our
experiments, since the number of endmembers in a target HS
image is assumed to be unknown, we set it as the number of
endmembers in the endmember libraries of datasets described
later. Table IV shows the assumption and the types of noise
considered in each method.

A. Datasets Description

We used six datasets for experiments. In all datasets, their
endmember libraries were composed of the spectral signatures
of the endmembers in ground-truth HS images and other spectral
signatures. This is to simulate the real-world situation where we
give an endmember library by including more spectral signatures
than the components of the target HS image, as assumed in many
references of nonblind unmixing.

1) Synthetic HS Image 1 (Synth 1): We generated the first
synthetic HS image with a size of 64× 64× 224 using the

5The code is available at https://jp.mathworks.com/matlabcentral/
fileexchange/56831-hyperspectral-unmixing-and-denoising?s_tid=FX_rc1_
behav

6The code is available at https://github.com/BehnoodRasti/UnDIP
7The code is available at https://github.com/danfenghong/IEEE_TNNLS_

EGU-Net
8The code is available at https://huangjie-uestc.github.io/

https://jp.mathworks.com/matlabcentral/fileexchange/56831-hyperspectral-unmixing-and-denoising{?}s_tid=FX_rc1_behav
https://jp.mathworks.com/matlabcentral/fileexchange/56831-hyperspectral-unmixing-and-denoising{?}s_tid=FX_rc1_behav
https://jp.mathworks.com/matlabcentral/fileexchange/56831-hyperspectral-unmixing-and-denoising{?}s_tid=FX_rc1_behav
https://github.com/BehnoodRasti/UnDIP
https://github.com/danfenghong/IEEE_TNNLS_EGU-Net
https://github.com/danfenghong/IEEE_TNNLS_EGU-Net
https://huangjie-uestc.github.io/
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Fig. 5. Unmixing results of abundance maps for the Synth 1 experiments in Case 2. (a) Original abundance maps. (b) CLSUnSAL [13]. (c) JSTV [19].
(d) RSSUn-TV [22]. (e) LGSU [16]. (f) UnDIP [28]. (g) EGU-Net [37]. (h) RDSWSU [25]. (i) MdLRR [31]. (j) RHUIDR (HTV). (k) RHUIDR (SSTV).
(l) RHUIDR (HSSTV).

Fig. 6. Unmixing results of abundance maps for the Synth 2 experiments in Case 5. (a) Original abundance maps. (b) CLSUnSAL [13]. (c) JSTV [19].
(d) RSSUn-TV [22]. (e) LGSU [16]. (f) UnDIP [28]. (g) EGU-Net [37]. (h) RDSWSU [25]. (i) MdLRR [31]. (j) RHUIDR (HTV). (k) RHUIDR (SSTV).
(l) RHUIDR (HSSTV).

Fig. 7. Unmixing results of abundance maps for the Synth 3 experiments in Case 8. (a) Original abundance maps. (b) CLSUnSAL [13]. (c) JSTV [19].
(d) RSSUn-TV [22]. (e) LGSU [16]. (f) UnDIP [28]. (g) EGU-Net [37]. (h) RDSWSU [25]. (i) MdLRR [31]. (j) RHUIDR (HTV). (k) RHUIDR (SSTV).
(l) RHUIDR (HSSTV).
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Fig. 8. Reconstructed HS image results for the Synth 1 experiments in Case 2. (a) Original HS image. (b) Noisy image. (c) CLSUnSAL [13]. (d) JSTV [19].
(e) RSSUn-TV [22]. (f) LGSU [16]. (g) UnDIP [28]. (h) EGU-Net [37]. (i) RDSWSU [25]. (j) MdLRR [31]. (k) RHUIDR (HTV). (l) RHUIDR (SSTV).
(m) RHUIDR (HSSTV).

Fig. 9. Reconstructed HS image results for the Synth 2 experiments in Case 5. (a) Original HS image. (b) Noisy image. (c) CLSUnSAL [13]. (d) JSTV [19].
(e) RSSUn-TV [22]. (f) LGSU [16]. (g) UnDIP [28]. (h) EGU-Net [37]. (i) RDSWSU [25]. (j) MdLRR [31]. (k) RHUIDR (HTV). (l) RHUIDR (SSTV).
(m) RHUIDR (HSSTV).

Fig. 10. Reconstructed HS image results for the Synth 3 experiments in Case 8. (a) Original HS image. (b) Noisy image. (c) CLSUnSAL [13]. (d) JSTV [19].
(e) RSSUn-TV [22]. (f) LGSU [16]. (g) UnDIP [28]. (h) EGU-Net [37]. (i) RDSWSU [25]. (j) MdLRR [31]. (k) RHUIDR (HTV). (l) RHUIDR (SSTV).
(m) RHUIDR (HSSTV).

Fig. 11. Unmixing results of abundance maps for the Jasper Ridge experiments in Case 2. (a) Original abundance maps. (b) CLSUnSAL [13]. (c) JSTV [19].
(d) RSSUn-TV [22]. (e) LGSU [16]. (f) UnDIP [28]. (g) EGU-Net [37]. (h) RDSWSU [25]. (i) MdLRR [31]. (j) RHUIDR (HTV). (k) RHUIDR (SSTV).
(l) RHUIDR (HSSTV).

HYperspectral Data Retrieval and Analysis (HYDRA) toolbox,9

which is developed by the Computational Intelligence group at
the University of the Basque Country. An endmember library
consists of ten spectral signatures with 224 bands from the

9https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Imagery_
Synthesis_tools_for_MATLAB, accessed on Feb. 5, 2023

U.S. Geological Survey (USGS) Spectral Library.10 From the
endmember library, we randomly selected four endmembers and
generated four original abundance maps with the spatial size of
64× 64 using the Legendre method. Fig. 3(a) shows one band
of the generated image.

10https://www.usgs.gov/programs/usgs-library, accessed on Aug. 7, 2023

https://www.ehu.eus/ccwintco/index.php{?}title=Hyperspectral_Imagery_Synthesis_tools_for_MATLAB
https://www.ehu.eus/ccwintco/index.php{?}title=Hyperspectral_Imagery_Synthesis_tools_for_MATLAB
https://www.usgs.gov/programs/usgs-library
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Fig. 12. Unmixing results of abundance maps for the Samson experiments in Case 6. (a) Original abundance maps. (b) CLSUnSAL [13]. (c) JSTV [19].
(d) RSSUn-TV [22]. (e) LGSU [16]. (f) UnDIP [28]. (g) EGU-Net [37]. (h) RDSWSU [25]. (i) MdLRR [31]. (j) RHUIDR (HTV). (k) RHUIDR (SSTV). (l)
RHUIDR (HSSTV).

Fig. 13. Unmixing results of abundance maps for the Urban experiments in Case 8. (a) Original abundance maps. (b) CLSUnSAL [13]. (c) JSTV [19].
(d) RSSUn-TV [22]. (e) LGSU [16]. (f) UnDIP [28]. (g) EGU-Net [37]. (h) RDSWSU [25]. (i) MdLRR [31]. (j) RHUIDR (HTV). (k) RHUIDR (SSTV).
(l) RHUIDR (HSSTV).

2) Synthetic HS Image 2 (Synth 2): We also generated the
second synthetic HS image with a size of 64× 64× 224 using
the HYDRA toolbox. An endmember library consists of ten
spectral signatures with 224 bands from the USGS Spectral
Library. From the endmember library, we randomly selected four
endmembers and generated four original abundance maps with
a spatial size of 64× 64 using the spherical Gaussian method.
Fig. 3(b) shows one band of the generated image.

3) Synthetic HS Image 3 (Synth 3): We generated the third
synthetic HS image with a size of 64× 64× 224 using the HY-
DRA toolbox. An endmember library consists of 240 spectral
signatures with 224 bands from the USGS Spectral Library.
From the endmember library, we randomly selected four end-
members and generated four original abundance maps with a
spatial size of 200× 200 using the Legendre method. Fig. 3(c)
shows one band of the generated image.

4) Real HS Image 1 (Jasper Ridge): Jasper Ridge image
[see Fig. 3(d)] is captured using an AVIRIS sensor in a rural
area in California, USA. The spatial size of the original data is
512× 614 pixels, and each pixel holds spectral information in
224 bands ranging from 380–2500 nm. After removing several
noisy bands and cropping the image, we obtained the image

with 100× 100 pixels and 198 bands. Jasper Ridge contains
four major endmembers: “road,” “soil,” “water,” and “tree” [56].
Adding the six endmembers from the USGS Spectral Library,
we used ten endmembers for the experiments.

5) Real HS Image 2 (Samson): Samson [see Fig. 3(e)] is
often used for unmixing. The spatial size of the original data
is 952× 952 pixels, and each pixel holds spectral information
in 156 bands covering the wavelengths from 401 to 889 nm.
After cropping the image, we obtained the image with 95× 95
pixels. Samson contains three major endmembers: “soil,” “tree,”
and “water.” Adding the seven endmembers from the USGS
Spectral Library, we used ten endmembers for the experiments.

6) Real HS Image 3 (Urban): Urban [see Fig. 3(f)] was
collected by the Hyperspectral Digital Imagery Collection Ex-
periment (HYDICE) over an urban area at Copperas Cove,
Texas, USA. The dataset has been widely used in the field of HS
unmixing. The latest data version was issued by the Geospatial
Research Laboratory and Engineer Research and Development
Center in 2015. The image consists of 307× 307 pixels with
210 spectral bands in the wavelength from 400 to 2500 nm with
a spectral resolution of 10 nm at a ground sampling distance
of 2 m. Due to water absorption and atmospheric effects, we



NAGANUMA AND ONO: TOWARD ROBUST HS UNMIXING: MIXED NOISE MODELING AND IMAGE-DOMAIN REGULARIZATION 8127

TABLE V
HYPERPARAMETER SETTINGS IN EACH METHOD

reduced 210 bands to 162 bands by removing several noisy
bands. Samson contains four major endmembers: “Asphalt,”
“Grass,” “Tree,” and “Roof.” Adding the 236 endmembers from
the USGS Spectral Library, we used 240 endmembers for the
experiments.

Fig. 4 plots the distributions of the spectral angle distance
(SAD) values between the spectra of endmembers present in
target HS images and the spectra of the other endmembers. The
SAD values tend to be the same for all the datasets. In this regard,
the difficulty of unmixing is not expected to change.

B. Experimental Setup

HS images are often degraded by mixed noise in real-noise
scenarios. Thus, we consider the following eight combinations
of i.i.d and non-i.i.d. Gaussian noise with different standard
deviations σ, salt-and-pepper noise with different rate pS, and
stripe noise in both synthetic and real data experiments.

Case 1 (i.i.d. Gaussian noise): The observed HS image is con-
taminated by white Gaussian noise with the standard deviation
σ = 0.05.

Case 2 (Higher-level i.i.d. Gaussian noise): The observed HS
image is contaminated by white Gaussian noise with the standard
deviation σ = 0.1.

Case 3 (i.i.d. Gaussian noise + salt-and-pepper noise): The
observed HS image is contaminated by white Gaussian noise
with the standard deviation σ = 0.05 and salt-and-pepper noise
with the rate pS = 0.05.

Case 4 (i.i.d. Gaussian noise + higher-rate salt-and-pepper
noise): The observed HS image is contaminated by white Gaus-
sian noise with the standard deviation σ = 0.05 and salt-and-
pepper noise with the rate pS = 0.1.

Case 5 (i.i.d. Gaussian noise + salt-and-pepper noise + stripe
noise): The observed HS image is contaminated by white Gaus-
sian noise with the standard deviation σ = 0.05 and salt-and-
pepper noise with the rate pS = 0.05. In addition, the observed
HS image is corrupted by vertical stripe noise whose intensity
is random in the range [−0.3, 0.3].

Case 6 (i.i.d. higher level Gaussian noise + salt-and-pepper
noise + stripe noise): The observed HS image is contaminated
by white Gaussian noise with the standard deviationσ = 0.1 and
salt-and-pepper noise with the rate pS = 0.05. In addition, the
observed HS image is corrupted by vertical stripe noise whose
intensity is random in the range [−0.3, 0.3].

Case 7 (Non-i.i.d. Gaussian noise): The observed HS image
is contaminated by non-i.i.d. white Gaussian noise. Specifically,
we corrupt each band hi by the standard deviation σi randomly
chosen in the range [0.1, 0.2].

Case 8 (Non-i.i.d. Gaussian noise + salt-and-pepper noise +
stripe noise): The observed HS image is contaminated by non-
i.i.d. white Gaussian noise and salt-and-pepper noise with the
rate pS = 0.05. In addition, the observed HS image is corrupted
by vertical stripe noise whose intensity is random in the range
[−0.3, 0.3]. The non-i.i.d. white Gaussian noise is the same as
in Case 7.

The hyperparameters of CLSUnSAL, JSTV, RSSUn-TV,
LGSU, RDSWSU, and MdLRR were adjusted to obtain the
highest SRE value for each noise case and for each dataset
in the ranges shown in Table V. UnDIP and EGU-Net have
no parameter to adjust, and we followed the experimental pro-
cedures in shown their references. The stopping criteria of the
existing methods were determined according to their references.
RHUIDR has hyperparameters λ1, λ2, λ3, η, and ε. The hyper-
parameters λ1 and λ2 were adjusted to obtain the highest SRE
value in the range shown in Table V. The parameter λ3 was set to
a constant value 1 because it is not very sensitive to performance
thanks to the flatness constraint [the fourth constraint of (15)].
The hyperparameter η was set as η = 0.5αηpSnl withαη = 0.9.
The hyperparameter ε was set as ε = ασσ

√
(1− pS)nl for

i.i.d. Gaussian noise cases and set as ε = ασ

√
(1− pS)nl

∑l
i σi

for non-i.i.d. Gaussian noise cases with ασ adjusted in the
range shown in Table V. As the parameter of HSSTV, we
adopted ω = 0.05, which is recommended in [42]. The maxi-
mum iteration and the stopping criterion were set to 50 000 and
‖A(t+1) −A(t)‖F /‖A(t+1)‖F ≤ 10−5, respectively.

For the quantitative evaluation of abundance maps, we used
the signal reconstruction error (SRE)

SRE[dB] = 10 log10

( ‖Ā‖2F
‖Ā−Â‖2F

)
(27)

the root-mean-square error (RMSE)

RMSE =

√
1

mn‖Ā− Â‖2F (28)

and the probability of success (Ps)

Ps = P
( ‖āi−âi,j‖22

‖āi‖22 ≤ threshold
)

(29)

where Ā and Â denote the true and estimated abundance maps,
respectively. In addition, ai is the ith pixel ofA (i.e., ai is the ith
column vector of A). SRE and RMSE evaluate the difference
between the true and estimated abundance maps, with larger
SRE or smaller RMSE indicating better-estimated performance.
Ps is the probability that the relative error is less than a certain
threshold. This threshold is a criterion for how close the true and
estimated abundance should be to be considered successful. In
setting the threshold, most of the literature, e.g., in [13], [23],
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TABLE VI
SRE, RMSE, PS, MPSNR, AND MSSIM IN THE EXPERIMENTS USING SYNTH 1

[24], and [25], regards unmixing to be successful when ‖ai −
âi,j‖22/‖ai‖22 < 3.16 (i.e., 10 ∗ log10(‖ai − âi,j‖22/‖ai‖22) < 5
[dB]). Therefore, in this research, the threshold was also set as
3.16.

For the quantitative evaluation of the reconstructed HS im-
ages, we used the mean peak signal-to-noise ratio overall bands
(MPSNR)

MPSNR[dB] =
1

l

l∑
i=1

10 log10

(
n

‖H̄i,j−Ĥi,j‖2F

)
(30)

where H̄ and Ĥ are the ground-truth and reconstructed HS
images, respectively. In addition, we adopted the mean structural

similarity overall bands (MSSIM) [57]

MSSIM =
1

l

l∑
i=1

SSIM(H̄i, Ĥi) (31)

where H̄i are Ĥi are the ith bands of H̄ and Ĥ, respectively.
Higher MPSNR and MSSIM values indicate better reconstruc-
tion results.

C. Experimental Results With Synthetic HS Images

Tables VI–VIII show the SRE, RMSE, Ps, MPSNR, and
MSSIM results for Synth 1, Synth 2, and Synth 3, respectively.
The best and second-best results are highlighted in bold and
underlined, respectively. CLSUnSAL, JSTV, RSSUn-TV, and
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TABLE VII
SRE, RMSE, PS, MPSNR, AND MSSIM IN THE EXPERIMENTS USING SYNTH 2

LGSU were not good in all cases. For Synth 3, the unmixing
performance of JSTV was degraded. This may have been an
issue with the algorithm because the value of the optimization
problem was not fully reduced.11 The results of RDSWSU and
MdLRR were better than CLSUnSAL, JSTV, RSSUn-TV, and
LGSU. However, their performance dropped when HS images
were contaminated with sparse noise and stripe noise (Cases 3–6,
and 8). UnDIP and EGU-Net yielded worse results than the other

11We used the program code implemented by the authors. Neither varying the
step size nor increasing the maximum number of iterations improved the results.

existing methods. This is because UnDIP and EGU-Net do not
capture the sparsity of abundance maps. In contrast, RHUIDR
yielded the best SRE, RMSE, Ps, MPSNR, and MSSIM values
in the cases where the HS image is contaminated with noise
that can be handled by the existing methods (Cases 1 and 2 for
CLSUnSAL, RSSUn-TV, and LGSU, and Cases 1–4 for JSTV),
except for Case 1 using Synth 1. This indicates that the image-
domain regularizations can improve the unmixing performance.
In addition, RHUIDR achieved the best performance in the other
cases (Cases 5 and 6). This is due to the fact that RHUIDR
can handle all three types of noise. In the comparison of the
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TABLE VIII
SRE, RMSE, PS, MPSNR, AND MSSIM IN THE EXPERIMENTS USING SYNTH 3

image-domain regularizations, HTV performed better in almost
all cases, and HSSTV performed better in the Synth 1 and Synth 2
experiments when HS images were contaminated with non-i.i.d.
Gaussian noise (Cases 7 and 8).

Figs. 5–7 show the estimated abundance maps for Synth 1
in Case 4, for Synth 2 in Case 5, and for Synth 3 in Case 8.
All the abundance maps of CLSUnSAL, RSSUn-TV, LGSU,
and RDSWSU include residual noise in Cases 2, 5, and 8
[Figs. 5, 6, and 7(b), (d), (e), and (h)]. JSTV remained the
noise [Fig. 5(c)] or obtained the oversmooth abundance maps

[the second abundance map for Synth 2 in Fig. 6(c)], due to the
difficulty of adjusting the parameters balancing the sparsity and
piecewise-smoothness of abundance maps. For Synth 3
[Fig. 7(c)], JSTV obtained the significantly lower abundance
maps. This may be due to an algorithm issue. The abundance
maps of MdLRR are relatively exact in Case 2 [Fig. 5(i)],
but are affected by sparse and stripe noise in Cases 5 and 8
[Figs. 6 and 7(i)]. UnDIP and EGU-Net erroneously estimated
that the abundances were high for the endmembers that are
not present in the HS images due to the insufficient ability



NAGANUMA AND ONO: TOWARD ROBUST HS UNMIXING: MIXED NOISE MODELING AND IMAGE-DOMAIN REGULARIZATION 8131

TABLE IX
SRE, RMSE, PS, MPSNR, AND MSSIM IN THE EXPERIMENTS USING JASPER RIDGE

to capture the sparsity of abundance maps, resulting in the
generation of inappropriate abundance maps [Figs. 5, 6, and 7(f)
and (g)]. In particular, since all the existing methods do not
account for stripe noise, they produced the abundance maps
that are strongly affected by stripe noise [see Figs. 6 and 7(b),
(d)–(g)] or the smoother results than true abundance [Figs. 6
and 7(c)]. In contrast, RHUIDR accurately estimated abundance
maps regardless of what type of noise contaminates HS images
[Figs. 5, 6, and 7(j)–(l)].

Figs. 8–10 display the reconstructed HS images for Synth
1 in Case 2, for Synth 2 in Case 5, and for Synth 3 in Case
8, respectively. All the existing methods resulted in Gaussian

noise remaining in the reconstructed HS images in Case 2
[Fig. 8(c)–(j)]. Moreover, in the reconstructed HS images in
Cases 5 and 8 [Figs. 9 and 10(c)–(j)], we can see that residual
stripe noise remains. On the other hand, RHUIDR produced
clean reconstructed HS images due to the image-domain regu-
larizations.

D. Experiments With Real HS Images

Tables IX–XI show the SRE, RMSE, Ps, MPSNR, and
MSSIM results for Jasper Ridge, Samson, for Urban, respec-
tively. The best and second-best results are highlighted in bold
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TABLE X
SRE, RMSE, PS, MPSNR, AND MSSIM IN THE EXPERIMENTS USING SAMSON

and underlined, respectively. In Case 1 of the Jasper Ridge ex-
periments, the unmixing performances of CLSUnSAL, RSSUn-
TV, LGSU, RDSWSU, MdLRR, and RHUIDR were almost
equal. For Urban, the unmixing performance of JSTV was
degraded similar to the results of Synth 3. This may also have
been an issue with the algorithm. However, CLSUnSAL, JSTV,
RSSUn-TV, LGSU, RDSWSU, and MdLRR performed worse
in the other cases than RHUIDR. Since UnDIP and EGU-Net
cannot capture the sparsity of abundance maps, their unmix-
ing performance was low regardless of whether HS images
are synthetic or real, the size of HS images, and the size of
endmember libraries. CLSUnSAL achieved the best SRE and

RMSE values for Samson in almost all the cases. RDSWSU
achieved the best results for Urban in almost all the cases. This
is because the appropriate weight values for abundance maps
were computed due to the proper segmentation. In contrast,
RHUIDR achieved the best and second best SRE, RMSE, Ps,
MPSNR, and MSSIM values in almost all the cases where the
HS image is contaminated by noise that cannot be handled
by the existing methods (Cases 3–6, and 8 for CLSUnSAL,
RSSUn-TV, LGSU, RDSWSU, and MdLRR, and Cases 5, 6,
and 8 for JSTV). In the comparison of the image-domain reg-
ularizations, HTV performed better in almost all cases, and
HSSTV performed better in the Samson experiments when
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TABLE XI
SRE, RMSE, PS, MPSNR, AND MSSIM IN THE EXPERIMENTS USING URBAN

HS images were contaminated with non-i.i.d. Gaussian noise
(Cases 7 and 8).

Figs. 11–13 show the estimated abundance maps for Jasper
Ridge in Case 2, for Samson in Case 6, and for Urban in Case
8, respectively. Although CLSUnSAL, LGSU, RDSWSU, and
MdLRR achieved good SRE, RMSE, and MPSNR in Case 2
of the real data experiments, they yielded the abundance maps
with residual noise [see Fig. 11(b), (d), (e), (h), and (i)]. JSTV
obtained the oversmooth abundance maps [Figs. 11 and 12(c)].
In Cases 6 and 8, the abundance maps estimated by all the
existing methods except JSTV include noise, especially stripe
noise [see Figs. 12 and 13, (b) (d)–(g)]. This is because they do

not handle the stripe noise. In contrast, RHUIDR exactly esti-
mated the abundance maps even under the conditions assumed
by the existing methods, e.g., when the observed HS images are
only contaminated by Gaussian noise (Fig. 11). Furthermore,
RHUIDR estimated the abundance maps by removing not only
Gaussian and sparse noise but also stripe noise cleanly.

Figs. 14– 16 display the reconstructed HS images for Jasper
Ridge in Case 2, for Samson in Case 6, and for Urban in
Case 8. All the existing methods resulted in noise remaining
in the reconstructed HS images [Figs. 14, 15, and 16(c)–(j)].
In particular, they cannot handle stripe noise, and thus, did not
completely remove it in Case 6 [Figs. 15 and 16(c)–(j)]. On
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Fig. 14. Reconstructed HS image results for the Jasper Ridge experiments in Case 2. (a) Original HS image. (b) Noisy image. (c) CLSUnSAL [13]. (d) JSTV [19].
(e) RSSUn-TV [22]. (f) LGSU [16]. (g) UnDIP [28]. (h) EGU-Net [37]. (i) RDSWSU [25]. (j) MdLRR [31]. (k) RHUIDR (HTV). (l) RHUIDR (SSTV).
(m) RHUIDR (HSSTV).

Fig. 15. Reconstructed HS image results for the Samson experiments in Case 6. (a) Original HS image. (b) Noisy image. (c) CLSUnSAL [13]. (d) JSTV [19].
(e) RSSUn-TV [22]. (f) LGSU [16]. (g) UnDIP [28]. (h) EGU-Net [37]. (i) RDSWSU [25]. (j) MdLRR [31]. (k) RHUIDR (HTV). (l) RHUIDR (SSTV).
(m) RHUIDR (HSSTV).

Fig. 16. Reconstructed HS image results for the Urban experiments in Case 8. (a) Original HS image. (b) Noisy image. (c) CLSUnSAL [13]. (d) JSTV [19].
(e) RSSUn-TV [22]. (f) LGSU [16]. (g) UnDIP [28]. (h) EGU-Net [37]. (i) RDSWSU [25]. (j) MdLRR [31]. (k) RHUIDR (HTV). (l) RHUIDR (SSTV).
(m) RHUIDR (HSSTV).

TABLE XII
AVERAGES OF RUNNING TIMES [S] IN ALL NOISE CASES FOR EACH DATASET

the other hand, RHUIDR reconstructed the HS image cleanly
[Figs. 14 and 15(k)–(m)]. This verifies the effectiveness of the
image-domain regularization.

E. Comparison of Computational Cost

We measured the actual running times on a Windows 11
computer with an Intel Core i9-13 900 1.0 GHz processor, 32 GB
of RAM, and NVIDIA GeForce RTX 4090. In addition, we used
MATLAB (R2023b), Python 3.8, and Python 3.7 for CLSUn-
SAL, JSTV, RSSUn-TV, RDSWSU, MdLRR, and our method,
for UnDIP, and for EGU-Net, respectively. The stopping criteria

of the comparison methods were set to the values recommended
in the papers.

Table XII shows the averages of the running times in all the
noise cases for Jasper Ridge, Samson, and Urban. The running
time of RHUIDR varies depending on which regularization was
employed. When using HTV, SSTV, and HSSTV, RHUIDR took
30 s, 50 s, and 13 min for Jasper Ridge, Samson, and Urban,
respectively. Compared with the existing methods, RHUIDR
is faster than UnDIP, is the same as LGSU and JSTV, and is
slower than CLSUnSAL, RSSUn-TV, EGU-Net, RDSWSU, and
MdLRR.

F. Convergence Analysis

In addition, we experimentally analyzed the convergence of
our method. Fig. 17 plots the relative error of abundance maps:
‖A(t+1) −A(t)‖F/‖A(t)‖F , the objective function values, the
Frobenius distance between V and EA(t) + S(t) + L(t), the �1
norm of S(t), and the mean absolute values (MAV) of Dv(L

(t))
for Jasper Ridge and Samson. The relative error of abundance
maps decreased [Fig. 17(a)]. While getting larger as the number
of iterations increases, the objective function value asymptoti-
cally approaches a certain value [Fig. 17(b)]. This is often found
when solving optimization problems involving hard constraints,
such as a data fidelity constraintEA+ S+ L ∈ BVF,ε, a sparsity
constraint S ∈ B1,η , and a flatness constraint Dv(L) = O. The
�2 distance and the MAV become smaller, where we can see that
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TABLE XIII
SRE, RMSE, PS, MPSNR, AND MSSIM OF THE ABLATION EXPERIMENTS USING SYNTHETIC DATASETS

the variables updated by P-PDS approach the solution of our
constrained convex optimization.

G. Ablation Experiments

To demonstrate the effectiveness of the image-domain reg-
ularization [the third term of (15)], we compared RHUIDR
performance with the performance when the image-domain
regularization was removed [referred to as RHUIDR (–)]. The
hyperparameters λ1, λ3, ε, and η were set to the same as in
RHUIDR.

Tables XIII and XIV show the SRE, RMSE, Ps, MPSNR, and
MSSIM results of the ablation experiments for the synthetic and
real datasets, respectively. The best and second-best results are
highlighted in bold and underlined, respectively. RHUIDR with
the image-domain regularization was superior to RHUIDR with-
out the image-domain regularization. In particular, the image-
domain regularization contributed to an improvement in SRE,
RMSE, and Ps and a significant improvement in MPSNR and
MSSIM. This implies that the reconstructed HS image has the
desirable spatio-spectral property, resulting in the estimation of
more appropriate abundance maps.
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TABLE XIV
SRE, RMSE, PS, MPSNR, AND MSSIM OF THE ABLATION EXPERIMENTS USING REAL DATASETS

H. Summary

We summarize the experimental discussion as follows.
1) From the results of experiments in Cases 1–4, and 7

and the ablation experiments, we see that image-domain
regularizations improve the unmixing performance.

2) The results of experiments in Cases 5, 6, and 8
verify that RHUIDR accurately estimates abundance
maps if HS images are degraded by various types of
noise.

3) RHUIDR achieves good unmixing performance in exper-
iments using both synthetic and real HS images.

V. CONCLUSION

In this article, we have proposed a new method for noise-
robust unmixing. RHUIDR adopts the image-domain regular-
ization and explicitly models three types of noises. We have
formulated the unmixing problem as a constrained convex op-
timization problem that includes the regularization, and have
developed the optimization algorithm based on P-PDS. Exper-
iments on synthetic and real HS images have demonstrated the
superiority of RHUIDR over existing methods. RHUIDR will
have strong impacts on the field of remote sensing, including
the estimation of abundance maps from HS images taken in
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Fig. 17. Convergence analysis using the real images. The top row shows the results of experiments using Jasper Ridge. The bottom row shows the results of
experiments using Samson. (a) Relative error of abundance maps ‖A(t+1) −A(t)‖F /‖A(t+1)‖F versus iteration t. (b) Objective function value ‖A(t)‖1,2,r +

λ1‖D(A(t))‖1 + λ2R(K(EA(t))) + λ3‖L(t)‖1 versus iteration t. (c) �2 distance between V and EA(t) + S(t) + L(t) versus iteration t. (d) �1 norm of
S(t) versus iteration t. (e) MAV of Dv(L

(t)) versus iteration t.

measurement environments with severe degradation. For future
work, we will combine RHUIDR with a learning-based and
a coarse abundance map-based weighted sparse unmixing ap-
proach to realize more noise-robust blind unmixing.
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