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Abstract—Tiny object detection is one of the most difficult and
critical tasks in remote sensing intelligent interpretation applica-
tions. Compared with standard-size object detection, detecting tiny
objects is more challenging as they typically contain fewer pixels.
Besides, the metrics based on intersection-over-union (IoU) are
more sensitive to their positioning bias. However, current main-
stream object detectors usually assign samples to the ground truth
(GT) according to a fixed IoU threshold, which would lead to a
certain number of tiny objects fail to be assigned with high IoU
conditional anchors as positive sample candidates under a static
threshold. Consequently, insufficient positive samples would affect
model training to further constrain the detection performance for
tiny objects. In this article, a sample selection strategy called adap-
tive dynamic label assignment is proposed to optimize the training
effectiveness and improve tiny object detection performance. First,
sample allocation thresholds are individually assigned for each GT
based on their shape, size, and positions on the feature map. Second,
the sample sets are dynamically adjusted during training by using a
newly designed indicator called dynamic IoU. Finally, with the guid-
ance of this adaptive dynamic label assignment strategy, each GT
can acquire sufficient positive samples for practical training. Exten-
sive experiments on the AI-TOD and Levir-Ship datasets show that,
compared with the baseline model, the tiny object detectors trained
by our proposed adaptive dynamic label assignment strategy can
significantly improve the tiny object detection performance without
increasing storage space and inference time. Our method exhibits
high portability and outperforms the state-of-the-art methods.

Index Terms—Adaptive threshold (AT), label assignment,
remote sensing, tiny object detection.

I. INTRODUCTION

T INY object detection is a classical problem in remote
sensing intelligent interpretation with broad application
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scenarios, including marine surveillance and intelligent trans-
portation [1], [2]. Followed MS COCO [3] definition, the objects
with fewer than 162 pixels are tiny objects, whereas objects
within 162 and 322 pixels are defined as small objects. Remote
sensing images usually have a long shooting distance with an
overhead view, which generates massive tiny objects in them.
These objects typically exhibit characteristics of blurred ap-
pearances, dense distribution, and complex background envi-
ronments, which are visually demonstrated in Fig. 1. Despite
the impressive performance of mainstream detectors [4], [5],
[6], [7], [8], [9] in object detection tasks within natural scenes,
their performance is suboptimal when it comes to tiny object
detection tasks in remote sensing scenes. Therefore, it is worth
conducting in-depth research on tiny object detection in remote
sensing images.

To enhance the tiny object detection performance, research
works from multiple aspects have been carried out and made
progress. First, research works on feature extraction and fusion
techniques have been extensively conducted. Enhanced feature
extraction modules [9], [10], [11] are designed to extract richer
feature information from ambiguous object appearances. The
integration of contextual information [12], [13] can effectively
reduce the interference from complex backgrounds. Improve-
ments in feature extraction and fusion can enhance the tiny
object detection capability. However, due to the low tolerance of
tiny objects to bounding box perturbations, a certain number of
tiny objects fail to be assigned with high intersection-over-union
(IoU) conditional anchors as positive sample candidates under
a static threshold. The suboptimal label assignment results in
the features of tiny objects, which are not assigned with positive
samples ignored, and improvements in feature extraction and
fusion cannot change this dilemma either. Therefore, only the
improvement of the label assignment strategy can fundamentally
enhance the detection performance of tiny objects. Second,
methods [14], [15], [16] based on generative adversarial net-
works (GAN) [17] utilize image super-resolution techniques
to enrich the feature representation of tiny objects within the
image, thereby achieving better tiny object detection. However,
GAN-based approaches often lack stability, as the generated
fake object information would impact the relationship between
context and objects. Besides, the generated super-resolution
images increase the size of the input image, resulting in longer
inference times for the detector. Third, research on postprocess-
ing procedures has also attracted some attention. By replacing
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nonmaximum suppression (NMS) [18] with Soft-NMS [19], the
detection challenges arising from dense distribution of objects
can be effectively addressed. However, the effectiveness of this
method is based on the premise that the detector has a fairly high
recall rate of tiny objects, which is precisely where tiny object
detectors fall short. The aforementioned methods have indeed
demonstrated improvements in the detection performance of tiny
objects to some extent. However, they overlook the fundamental
issue in training the detection model, that is how to assign
labels more accurately, enabling the detector to distinguish
between objects and backgrounds precisely. Label assignment
strategies for standard-size objects, such as adaptive training
sample selection (ATSS) [20] and AutoAssign [21], which entail
high computational complexity and depend on hyperparam-
eters, they struggle to effectively adapt to the challenges of
tiny object detection label assignment. Related works on tiny
object detection label assignment, for example, Wang et al.
[22] conducted a study on the quality of anchors, modeled the
bounding box as a 2-D Gaussian distribution, and proposed a
new Wasserstein distance-based evaluation metric for tiny object
detection label assignment. Xu et al. [23] proposed Gaussian
receptive field-based label assignment (RFLA), which utilizes
the receptive field distance (RFD) to measure the similarity
between the Gaussian receptive field and ground truth (GT),
and assigns labels accordingly. These related works primarily
innovate the evaluation process of label assignment by intro-
ducing new metrics to enhance the assessment of the matching
degree between anchors and GT. Moreover, the influence of the
uniqueness of each GT (e.g., size, shape, and distribution) on
label assignment is neglected.

In our study, we delve into the assignment process of label
assignment, conducting a systematic analysis on how tiny ob-
ject GT characteristics, such as size, shape, and distribution,
influence label assignment. This facilitates a more adaptable
determination of positive sample quantities for each GT, im-
proving the detection performance of existing detectors for
tiny objects without introducing additional model parameters or
increasing inference time. In this article, an adaptive dynamic
label assignment method is proposed, which can improve model
detection performance by guiding the sample selection of each
GT according to its shape, size, and distribution characteristics.
First, a simple yet effective threshold-calculating formula is de-
signed for assigning positive and negative samples. Specifically,
each GT is assigned with individual thresholds, and the calcu-
lation takes into account of factors, such as the size, shape, and
distribution characteristics of each GT. It ensures that each GT
can be matched with sufficient positive samples during training.
Second, an indicator is designed to evaluate the potential of
anchor localization objects, which comprehensively considers
both the quality of the preset anchors and the progress in model
optimization. It dynamically adjusts the sets of positive and neg-
ative samples, which prioritize high-quality anchors as positive
samples while discarding negatively optimized anchors as neg-
ative samples. Experimental results on AI-TOD and Levir-Ship
datasets demonstrate that our proposed label assignment strategy
improves the adaptability of the existing detectors to tiny object
detection without increasing any model parameters or inference

time. Our method fundamentally addresses the issue of learning
confusion in the training phase of object detectors and exhibits
excellent compatibility, outperforming existing methods.

The contributions of this article are summarized as follows.
1) A strategy named adaptive dynamic label assignment is

proposed, which can be used in the training stage to
enhance the detection performance of the baseline model
for tiny objects. This strategy holds significant importance
for the advancement of tiny object detection techniques.

2) The low tolerance of tiny objects to bounding box per-
turbations is comprehensively analyzed and demonstrated
that even slight regression deviations would lead to drastic
changes in the IoU, thus affecting label assignment and
object localization.

3) An adaptive threshold (AT) calculation method is pro-
posed, which aims to set positive and negative sample
thresholds for each GT separately to achieve high-quality
sample selection.

4) A label assignment metric named dynamic IoU is pro-
posed from the aspect of matching degree [24], which can
flexibly adjust the sets of positive and negative samples
during training to improve the quality of tiny object de-
tection.

II. RELATED WORKS

A. Object Detection

Object detection technology is mainly used to classify and
locate objects in images. With the rapid development of deep
learning and convolutional neural networks (CNNs) [25], [26],
[27], [28], [29], research on object detection has made remark-
able achievements. Existing object detectors can be categorized
into anchor based and anchor-free based on whether the detector
requires predefined anchors or not. Moreover, according to
whether the region of interest needs to be extracted from input
images, anchor-based object detection methods can be further
divided into one-stage detection models [4], [5], [30], [31] and
two-stage detection models [7], [8], [32]. Typically, two-stage
detectors demonstrate superior detection performance, whereas
one-stage detectors exhibit faster detection speed. With the
proposal of RetinaNet [8] and the utilization of focal loss, the
issue of suboptimal detection performance in detectors caused
by sample imbalance has been alleviated. Consequently, the
disparity in detection accuracy between one-stage and two-stage
detectors has significantly decreased. This progress has enabled
one-stage detectors to achieve efficient and high-precision de-
tection. Besides, inspired by pixel-level semantic segmentation,
the DenseBox [33] embarked on pixelwise classification and
regression experiments on the output feature map, representing
an early exploration of anchor-free object detection algorithms.
Subsequently, key-point prediction models represented by Cor-
nerNet [34] and CenterNet [35], as well as semantic maps-based
detection models represented by FCOS [36] and FoveaNet [37],
have emerged successively. Anchor-free object detection models
discard predefined anchors and significantly improve object
detection speed. In recent years, with the proposal of attention
mechanism [38] and the application of transformer in natural
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language processing, researchers have designed object detection
models [39], [40], [41] based on vision transformer to realize the
prediction of object location and category information through a
set of input queries. Despite the numerous outstanding research
efforts and significant technological advancements in the field
of object detection, the performance in detecting tiny objects in
remote sensing images still remains unsatisfactory. Therefore,
this article aims to address and explore the challenges of tiny
object detection in aerial images.

B. Tiny Object Detection

Tiny objects often lack detailed information about their
appearance compared with objects of standard size. Main-
stream feature extractors typically reduce spatial redundancy
and learn high-level features by downsampling the feature
map, which inevitably causes the loss of feature information
of tiny objects. In addition, tiny objects have a low toler-
ance for bounding box perturbation. Therefore, although ob-
ject detection algorithms have made significant progress, the
detection performance for tiny objects is still unsatisfactory.
In order to enhance the detection performance of tiny ob-
jects, extensive efforts have been undertaken in the following
aspects.

Feature Extraction and Fusion: Some researchers put for-
ward feature extraction and fusion methods based on multiscale
features. Lin et al. [42] improved object detection accuracy,
especially for tiny objects, by incorporating a feature pyramid
network (FPN) in the object detection model. Pang et al. [11] pro-
posed a unified and self-reinforced CNN under the end-to-end
training framework called R2-CNN, which uses the intermedi-
ate global attention block to enlarge the receptive field to inhibit
false positives. Gong et al. [12] proposed the concept of fusion
factor for controlling the information passed from deep features
to shallow features to make FPN more adaptable to tiny object
detection. Lim et al. [13] used additional features from different
layers as contexts by connecting multiscale features to improve
the accuracy of detecting tiny objects. Liu et al. [10] designed
the high-resolution detection network, which uses multidepth
backbones to receive multiresolution inputs, maintaining the
advantages of high-resolution images without introducing new
problems. Li et al. [9] experimentally verified the effect of the
receptive field on the detection of objects at different scales and
proposed TridentNet, which uses a dilated convolution instead
of a standard convolution to adjust the receptive field to improve
the detection performance of the model for objects at different
scales. Qiao et al. [43] introduced recursive feature pyramid
and switchable atrous convolution and proposed DetectoRS.
DetectoRS demonstrates heightened robustness in detecting oc-
cluded objects, resulting in a significant enhancement in object
detection performance. Chalavadi et al. [44] proposed network
for multiscale object detection in aerial images using hierar-
chical dilated convolutions (mSODANet), which utilizes the
bidirectional feature aggregation module to incorporate dense
multiscale contextual features. mSODANet achieved effective
multiscale object detection in aerial images. Wu et al. [45]

proposed feature-and-spatial aligned network (FSANet), which
utilized the alignment mechanism and progressive optimization
strategy to obtain more discriminative features and accurate
localization results. Li et al. [46] proposed a mask augmented
attention feature pyramid network (MA2-FPN) to detect tiny
objects in remote sensing images. In this network, attention
enhancement module (AEM) aggregates tiny target context and
spatial feature information by large kernel separable convolu-
tional attention mechanism, and mask supervision module su-
pervises AEM through a segmentation attention loss to aggregate
attention information more accurately while suppressing the
influence of irrelevant background. Zhang et al. [47] introduced
the attention module (SPAM) to filter out the background noise
in the shallow feature extraction to better extract small object
features.

GAN-based Methods: Some researchers, on the other hand,
have implemented image super-resolution based on GAN [17]
to improve tiny object detection performance by enriching the
feature representation of tiny objects. The perceptual GAN [14]
internally enhance the representation of tiny objects to super-
resolution representation to achieve a feature representation
similar to that of large objects to improve the discriminative
power of the detection model. Inspired by the success of edge-
enhanced GAN [48] and enhanced super-resolution GAN [49],
Rabbi et al. [15] adopted a novel edge-enhanced super-resolution
GAN to improve the quality of remote sensing images. An
attention-based feature interaction method, multiresolution at-
tention extractor [16], is proposed as a general-purpose feature
extractor with significant improvements in tiny object detection
capacity.

Tiny Object Learning Strategy: In addition, some researchers
expect to improve the tiny object detection performance by
designing better detection mechanisms and training strategies.
Chen et al. [50] designed an additional network branch called
degraded reconstruction enhancer, which uses the object-aware
blurred version of the learning regression input image in the
training phase, and the reconstruction branch enables the back-
bone network to focus more on the object region rather than
the background. Wang et al. [22] conducted a study on the
quality of anchors, modeled the bounding box as a 2-D Gaussian
distribution, and proposed a new Wasserstein distance-based
evaluation metric for tiny object detection instead of the com-
monly used IoU criterion, which improved the sensitivity of
tiny objects to location. Li et al. [51] designed a new tiny object
loss constraint term to attempt at overcoming the challenge of
tiny object detection in few-shot aerial image object detection.
QueryDet [52] uses a novel query mechanism to speed up the
inference of an FPN-based object detector. Koyun et al. [53]
and Bosquet et al. [54] investigated the tiny object detection
model and divide the tiny object detection into two stages: the
first stage filters the original image to generate the focal region
containing the object, and the second stage detects the tiny
objects within the focal region. Wang et al. [55] proposed a
unified framework called feature-merged single-shot detection
(FMSSD) network, which aggregates the context information
both in multiple scales and the same scale feature maps. In
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addition, a novel area-weighted loss function is introduced to
guide the framework to pay more attention to small objects.

However, the studies mentioned above have failed to address
the underlying cause of the suboptimal performance of detectors
in detecting tiny objects. The less-than-ideal label assignment
results hinder the model’s ability to learn the complete features
of samples, ultimately limiting the achievement of optimal per-
formance in tiny object detection.

C. Label Assignment

Label assignment refers to the process by which the object
detector classifies anchors into positive and negative samples
during the training phase. Label assignment affects model de-
tection performance by determining the learning target for each
anchor on the feature map. For the classical anchor-based de-
tection method RetinaNet [8], it assigns positive and negative
samples by calculating the IoU between the predefined anchors
and GTs where anchors with IoU above the static threshold are
assigned as positive samples and vice versa as negative samples.
The anchor-free method FCOS [36] determines the positive
and negative samples based on the spatial distance between the
points on the feature map and the center of GT. CenterNet [35]
introduces the Gaussian kernel function, which is applied to map
the GT to the feature map. The positive and negative samples
are determined according to whether the pixels fall into GT’s
Gaussian distribution. Those contained within the Gaussian
kernel are assigned as positive samples and vice versa as negative
samples. Besides, ATSS [20] is a label assignment strategy that
can automatically select positive and negative samples based on
the statistical characteristics of the GT. AutoAssign [21] imple-
ments label assignment through a CNN-based adaptive learning
method. Ge et al. [56] formulated the label assignment process
as an optimization problem in optical transport. Li et al. [57]
explored a novel weighting paradigm known as dual weighting,
which assigns separate weights to positive and negative samples.
Ming et al. [24] proposed a dynamic anchor learning method that
utilizes the newly defined matching degree to comprehensively
evaluate the localization potential of the anchors and carries
out a more efficient label assignment process. Zhang et al. [58]
determined the thresholds for positive and negative samples at
different training iterations based on a combination of anchor
IoU and bounding box IoU calculation. Qian et al. [59] proposed
a pseudosoft label assignment strategy to assign a more precise
soft label for each instance, where the soft label is determined
by the spatial distance between each instance and its nearest
pseudoground-truth instance. For tiny object detection label
assignment, Xu et al. [23] proposed Gaussian RFLA, which
utilizes the RFD to measure the similarity between the Gaussian
receptive field and GT, and assigns labels accordingly. On this
basis, Fu et al. [60] proposed Gaussian probabilistic distribution-
based fuzzy similarity metric (GPM) and the adaptive dynamic
anchor mining strategy (ADAS). The combination of ADAS and
GPM in the anchor-based object detector addresses the issue
of inaccurate similarity measurement between small bounding
boxes and predefined anchors, achieves accurate label assign-
ment. Improvements in label assignment can fundamentally ad-
dress the issue of detection performance during model training,

Fig. 1. Tiny objects in remote sensing images typically exhibit the following
characteristics: features are blurry, distributed densely, and the background is
complex.

making it worthy of thorough exploration. Thus, we rethink the
label assignment strategy and delve into the sample selection
problem in the context of tiny object detection, conducting an
in-depth investigation in this article.

III. PROPOSED METHOD

In this section, we first conducted a meticulous analysis of the
challenges in tiny object detection compared with standard-size
object detection. Subsequently, our proposed AT calculation
method and dynamic IoU metric are described in detail as
follows.

A. Problem Analysis

The object detection model assigns learning objectives to each
anchor based on the label assignment strategy in the training
phase, and the quality of positive and negative samples directly
affects the final detection performance of the model. First and
foremost, compared with detecting objects of standard sizes,
tiny object detection exhibits lower tolerance to bounding box
perturbations. Fig. 2 demonstrates the sensitivity of different
object sizes to positional deviation through changes in IoU. In
Fig. 2(a), when the GT size is same as the anchor size, the IoU
variation becomes more noticeable as the GT size decreases.
In Fig. 2(b), GT with different anchor sizes, the IoU variation
becomes more dramatic as the size gap between GT and anchors
increases. The second point is, the shape of the GT affects its
distribution of IoU with anchors on the feature map. When
the GT sizes are the same, standard square GT tends to match
more high IoU conditional anchors as candidate positive samples
compared with elongated GT. Fig. 3 presents the distribution of
IoU between the anchors and GT on the feature map for both
square-shaped GT (Ar = 1) and elongated GT (Ar = 0.25).
With a fixed threshold of 0.5, the square-shaped GT in Fig. 3(a)
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Fig. 2. Deviation–IoU curve of GT. (a) Same size GT and anchor. When the
GT and anchor deviate from optimal spatial matching by one unit, the IoU of the
tiny object GT changes more dramatically. (b) Different sizes of GT and anchor.
The curve with a significant difference in size between GT and anchor changes
more dramatically. Furthermore, the standard size anchors are often much larger
than the tiny object GT, which makes even if the anchors are spatially matched
to the GT, the IoU of both fail to reach the positive sample threshold.

Fig. 3. IoU distribution of GT with different aspect ratios relative to the
anchors on the feature map. As the Ar approaches 1, the GT becomes closer to
a standard square shape. (a) Ar = 1, using 0.5 as the threshold, nine candidate
positive samples can be found on the feature map. (b) Ar = 0.25, using 0.5
as the threshold, only three candidate positive samples can be found on the
feature map. As the Ar deviates from 1, the anchors distributed in the high IoU
conditional region decrease, leading to a reduction in candidate positive samples.

Fig. 4. IoU distribution of GT at different positions relative to the anchors on
the feature map. (a) GT at the center of the feature pixel. (b) GT deviating from
the center position of the feature pixel. When the GT deviates from the center
of the feature pixel, the anchors distributed in the high IoU conditional region
decrease, leading to a reduction in candidate positive samples.

obtained nine positive samples, while the elongated GT in Fig.
3(b) got none. Furthermore, the position of the object on the
feature map affects the distribution of its IoU with anchors.
GTs located at the center of feature pixels have more anchors
distributed in the high IoU region, whereas when the object
deviates from the center of feature pixels, the number of high
IoU anchors decreases. Fig. 4 shows the statistical results of the
distribution of IoU between objects and anchors for different
relative positions with respect to feature pixels. While the GT
sizes are the same in Fig. 4(a) and (b), the GTs in Fig. 4(b)
that are not located at the center of the feature pixels have no
candidate positive samples, whereas the GTs in Fig. 4(a) at the
center of the feature pixels have five candidate positive samples.
Obviously, the number of high IoU anchors decreases as the
object deviates from the center of the feature pixel.

The presence of the abovementioned characteristics in tiny
objects often makes it challenging for corresponding GTs to
achieve high IoU matching with the preset anchors on the feature
map. In the training phase of the detector, the traditional label
assignment method using a fixed threshold fails to allocate
sufficient positive samples to each tiny object GT. As a result,
the detector cannot achieve optimal performance in tiny object
detection due to suboptimal learning targets. Although this
problem can be effectively alleviated by using high-resolution
feature layers or laying more anchors on the feature map, but this
also leads to an increase in model size and a decrease in inference
efficiency. We aim to achieve optimal detection of tiny objects
by improving the sample selection strategy to assign reasonable
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learning targets for each anchor, without increasing the model
size and inference time.

B. Adaptive Threshold

Setting appropriate positive and negative sample thresholds is
crucial to achieving accurate label assignment and improving the
detection performance of object detectors for tiny objects, with-
out relying on more high-resolution feature maps or increasing
the number of preset anchors. Through the study of sample set
partitioning threshold, a method called AT is proposed. This
method addresses the challenge of designing thresholds for
positive and negative samples in the training stage of tiny object
detection models. Specifically, considering factors, such as the
GT size, shape, and distribution, an appropriate threshold for the
positive and negative sample division is calculated for each GT,
enabling the assignment of an appropriate set of positive and
negative samples. The proposed AT can be formed as follows:

Trp = IoUmax × 3− IoU2
max

4
×mp (1)

Trn = Trp × 4− (IoUmax − 1)2

5
(2)

where IoUmax represents the maximum IoU of the GT with
all anchors, and Trp and Trn are the reference thresholds for
positive and negative samples, respectively, which are calculated
by using our proposed method. mp is a modulation parameter
used to modulate the effect of the aspect ratio (ratio of the short
side to the long side) of the GT on the positive sample threshold,
and it can be calculated from the following equation based on
aspect ratio:

mp =
4 +Ar

5
(3)

Ar =
GTshort−side

GTlong−side
. (4)

For GT with the same area, GT with shape closer to square
is more likely to match suitable anchors. Conversely, as the
aspect ratio deviates from 1, the GT would only match fewer
anchors when the same threshold is applied. To address this, the
modulation parameter Ar was introduced, which represents the
aspect ratio of the GT and is calculated by (4), where GTlong−side

represents the long side of the GT, and GTshort−side represents
the short side of the GT. The value of Ar falls within the range
of (0, 1]. As Ar approaches 1, indicating a more square-shaped
GT, the influence of the aspect ratio is not considered when cal-
culating the positive sample threshold. Consequently, when the
shape of the GT changes, Ar can adjust the threshold downward
enables the GT to match a sufficient number of anchors.

As shown in Fig. 5, two GTs with the same size but different
shapes were selected, and their IoU distribution with anchors
on the feature map were calculated. Fig. 5(a) and (b) shows the
positive sample assignment thresholds without considering the
influence of GT aspect ratio, the square GT (Ar = 1) in Fig. 5(a)
obtained five anchors as positive samples, while the nonsquare
GT (Ar = 0.25) in Fig. 5(b) only got two positive samples.
In order to make GT with different shapes can be assigned

Fig. 5. Relationship between the object adaptation threshold and the IoU
distribution of the anchor and GT before and after using Ar (the red line
represents the object adaptation threshold). The number of positive samples
that can be allocated to the two GTs of the same size but different aspect ratios
according to the object adaptation threshold without considering the effect ofAr

on the threshold is shown as: (a) GT (Ar = 1) obtained five positive samples;
(b) GT (Ar = 0.25) obtained two positive samples. The positive samples
obtained by the above two GTs after adjusting the threshold with Ar are shown
as: (c) GT (Ar = 1) still obtained five positive samples; (d) GT(Ar = 0.25)
obtained five positive samples.

to enough positive samples, when calculating the threshold for
each GT, the object with a smaller aspect ratio should have a
relatively smaller positive sample threshold. With the addition of
the shape modulation parameter Ar, both square and nonsquare
GT can be assigned to five positive samples, as shown in Fig. 5(c)
and (d)

Tp = max(Trp, Tpmin) (5a)

Tn = max(Trn, Tnmin). (5b)

Mislabeled GT or other reasons may cause the IoUmax � 1
and thus affect the training stability. To suppress this inter-
ference, (5) is used to constrain the minimum values of pos-
itive and negative sample thresholds. In the experiment, we
set Tpmin = 0.1 and Tnmin = 0.05. Through this constraint, we
eliminate the interference of mislabeled GT on training, but may
cause some GT (IoUmax � 1) with extreme shape sizes to fail
to assign positive samples. Some methods to forcibly specify
positive samples can solve this problem. However, we cannot
ensure that anchors of low quality in the initial stage can return
to high-quality prediction after training. To solve this problem,
a regression IoU-guided dynamic label assignment method was
proposed.

C. Training-Based Dynamic Label Assignment

When studying arbitrary-oriented object detection, Ming et al.
[24] observed that the localization performances of the samples
assigned to the GT were inconsistent with the learning goal.



GE et al.: ADAPTIVE DYNAMIC LABEL ASSIGNMENT FOR TINY OBJECT DETECTION IN AERIAL IMAGES 6207

After training, partial anchors selected as positive samples are
returned to low-quality positioning boxes, whereas the anchor
of partially negative samples return to high-quality positioning
boxes. This phenomenon can be called as sample isolation.
They introduced the concept of matching degree (md), which
comprehensively utilizes the spatial matching of anchors and
the posterior information of training regression. The matching
degree is defined as follows:

md = αAIoU + (1− α)RIoU − uγ (6)

u = |AIoU −RIoU| (7)

whereAIoU represents the IoU of anchor and GT,RIoU represents
the IoU of regression box and GT, andα and γ are hyperparame-
ters used for weighting.u is a penalty factor, which is obtained by
calculating the difference of IoU between anchor and GT before
and after regression, and u characterizes the change value of
anchors before and after regression.

It is believed that this idea can also be used to solve the
problem that GT cannot be assigned to positive samples be-
cause of the low maximum IoU of the anchor to GT. At the
same time, as tiny objects are more sensitive to position de-
viation, the problem of sample isolation is more serious. The
adaptability of (6) was researched to guide label assignment
in tiny object detection models. Theoretically, when training
improves the positioning quality of the anchor (RIoU > AIoU),
the md should be greater than AIoU, but there is a problem that
md is less than AIoU when the value of AIoU is low (AIoU ≤ α),
which is considered illogical, as shown in Fig. 6(a). Moreover,
due to the high sensitivity of tiny object detection to position
deviation, low IoU samples are very common, which leads to
the fact that (6) does not have the ability to be used directly in
the assignment of tiny object detection labels. Based on this, the
training-based dynamic label assignment (DLA) was proposed,
which employs dynamic IoU to dynamically adjust the sample
sets during training. DIoU is defined as

DIoU = αAIoU + (1− α)RIoU − βuγ . (8)

The definitions of AIoU, RIoU, α, γ, and u are the same as
those in (6). The weight factor β is added to adjust the penalty
term, so that the indicator is applicable to the low IoU samples
in tiny object detection. β can be determined in two ways: one is
determined dynamically according to (9) based on the value of
α, and the other is to use a fixed value according to experience.
The range of DIoU is from 0 to 1. The higher the value of DIoU,
the more likely the anchor is to regress to accurate detection.
Fig. 6(b) shows that our DIoU has better adaptability to positive
samples of low IoU

β = 1− α. (9)

In particular, our adaptive dynamic label assignment strategy
follows the following procedure. First, before training com-
mences, we calculate the IoU between GT and predefined an-
chors and derive Tp and Tn based on (1) and (2). Subsequently,
during label assignment, the DIoU of each anchor is calculated,
and anchors are designated as positive samples when DIoU is
greater than Tp, while anchors with DIoU less than Tn are

Fig. 6. Differences between md and DIoU were compared under the same
conditions. (a) When using md to evaluate the quality of the anchor, there is
a problem that when the anchor IoU is lower than α, although the network
makes the anchor tend to detect accurately (RIoU > AIoU, the red line in the
figure), md is smaller than the anchor IoU, which does not meet the theoretical
requirements. (b) Using DIoU(β = 1− α) to evaluate the quality of the anchor,
when the network makes the anchor tend to detect accurately, DIoU constant is
greater than anchor IoU, which meets our theoretical requirements.

categorized as negative samples, with the remaining anchors
being disregarded. The entire process is detailed in Algorithm
1. For the stability of training, dynamic IoU is not used as the
basis for label assignment in the initial stage of training, but keep
increasing the influence of regression IoU on sample selection
with training iteration. Theα for each stage is adjusted following
the following criteria:

α(p, α0) =

⎧⎪⎨
⎪⎩

1, 0 ≤ p < 0.1
α0−1

0.5−0.1 (p− 0.1) + 1, 0.1 ≤ p < 0.5

α0, p ≥ 0.5

(10)

where p = epoch
epochs , epochs is the total number of training epochs,

epoch is the current training epoch, and α0 is a predefined
hyperparameter. α in (8) and (9) represents the actual weight of
α0 at the current training epoch, which is determined specifically
by (10).

IV. EXPERIMENTS

A. Datasets

AI-TOD [61] benchmark is a remote sensing dataset for tiny
object detection, which is built by Wuhan University based on
public large aerial image datasets. It contains 280 036 aerial
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Algorithm 1: Adaptive Dynamic Label Assignment Strat-
egy.

Input:
G is a set of ground-truth boxes on the image
A is a set of all anchor boxes
M(·) represents the regression process of the model to
the anchor
IoU(a, b) represents the calculation process of IoU
between a and b
epochs is the total number of training iterations
α0 and γ are the predefined hyper-parameters
Output:
P is a set of positive samples
N is a set of negative samples
I is a set of ignore samples

1: P,N , I ← ∅

2: Compute Tp and Tn for each GT using (1), (2) and (5)
3: for epoch = 1, 2, 3, . . ., epochs do
4: p = epoch

epochs

5: α = α(p, α0), where α(p, α0) is expressed by (10)
6: β = 1− α
7: for each anchor box a ∈ A do
8: AIoU = IoU(a,G)
9: RIoU = IoU(M(a),G)

10: DIoU =
αAIoU + (1− α)RIoU − β(AIoU −RIoU )

γ

11: Compare DIoU with Tp and Tn

12: Put a into P,N or I
13: end for
14: end for
15: return P,N , I

images with the size of 800× 800 pixels, containing a total
of 700 621 object instances. The dataset contains eight object
classes: airplane (AI), bridge (BR), storage-tank (ST), ship
(SH), swimming-pool (SP), vehicle (VE), person (PE), and
wind-mill (WM). Compared with the existing object detection
datasets in aerial images, the average side length of the object in
AI-TOD is only 12.8 pixels, which is smaller than the general
remote sensing dataset DOTA [62] (55.2 pixels). The training
set of 11 214 images and the validation set of 2804 with a total
of 14 018 images are used for training, and the test set of 14 018
images are used to evaluate the model performance.

LEVIR-SHIP [50] concentrate on tiny ship objects with a
lower spatial resolution. The dataset consists of images cap-
tured from multispectral cameras of GaoFen-1 and GaoFen-6
satellites. Initially, 85 scenes with pixel resolution between
10 000× 10 000 and 50 000× 20 000 were cropped to create
3896 remote sensing images with a resolution of 512× 512.
These images were then split into training, validation, and test
sets in a 3:1:1 ratio. The dataset contains labels for 1973 tiny ship
objects. In Levir-Ship, ship pixels are typically below 20× 20
and centralizes at around 10× 10, which is relatively small
compared with the vast background.

TABLE I
EVALUATION RESULTS OF DIFFERENT ANCHOR SIZES ON AI-TOD DATASET

B. Evaluation Metric

Average Precision (AP): The AP metric is used to evaluate the
performance of the proposed method. Specifically, AP50 means
the IoU threshold of defining true positive (TP) is 0.5, AP75

means the IoU threshold of defining TP is 0.75, and AP means
the average value from AP50 to AP95, with an IoU interval of
0.05. APvt represents the AP for objects with an absolute size
within [0, 82] pixels, APt represents the AP for objects with
an absolute size within [82, 162] pixels, APs represents the AP
for objects with an absolute size within (162, 322] pixels, and
APm represents the AP for objects with an absolute size within
(322,+∞] pixels.

Parameters: Parameters metric represents the total number
of parameters in the detector that need to be trained. More
parameters means more storage space. Megabits are used to
measure parameters.

Floating Point Operations (FLOPs): FLOPs metric refers to
a floating-point operand, understood as the amount of compu-
tation. FLOPs can be used to measure the complexity of an
algorithm/model. GFLOPs are used to measure FLOPs.

C. Experiment Settings

The official RetinaNet code was used for initial experiments
and other codes were built upon MMdetection [63]. The Ima-
geNet [64] pretrained model is used as the backbone. To make
the model more applicable for tiny object detection, the P6 and
P7 characteristic layers for detecting large objects have been
eliminated, and the P3–P5 characteristic layers for detecting
tiny and medium objects have been retained. This adjustment
can save network storage space and improve detector operation
speed without compromising the detector’s performance for tiny
object detection. The stochastic gradient descent [65] optimizer
was utilized, and the initial learning rate was set at 0.1, with a
momentum of 0.9. The total number of epochs was set to 12.
Experiments were conducted on an NVIDIA GeForce RTX 3090
GPU with a batch size set to 4.

D. Implement Details

1) Anchor Size: Anchors with the original size [see Fig. 7(a)]
and anchors with side length reduced by two times [see Fig. 7(b)]
are used to verify the influence of anchor size on the performance
of tiny object detection in the experiment. The original anchors
have areas of 322 to 1282 on feature maps P3–P5, respectively. At
each feature map, we use anchors at three aspect ratios {1 : 2, 1 :

1, 2 : 1} and add anchors of sizes {20, 2 1
3 , 2

2
3 } of the original set

of three aspect ratio anchors. While our adjusted anchors have
areas of 162 to 642 on feature maps P3–P5 with the same aspect
ratios and anchor sizes as the original anchors, respectively. The
experimental results are given in Table I. Compared with the
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Fig. 7. Comparisons of feature point with anchors of different sizes on the
P3 feature layer are shown. (a) Original anchors have areas of 322 on feature
layer P3, with anchors at three aspect ratios {1 : 2, 1 : 1, 2 : 1} and add anchors

of sizes {20, 2 1
3 , 2

2
3 } of the original set of three aspect ratio anchors. (b) Our

adjusted anchors have areas of 162 on feature layer P3 with the same aspect
ratios and anchor sizes as the original anchors.

TABLE II
EVALUATION RESULTS OF DIFFERENT BACKBONES ON AI-TOD DATASET

set of standard-size anchors, reducing the size of the anchors
to make the set of anchors more suitable for the GT of tiny
object dataset can improve the AP50 metric of the baseline model
by 20.04%. Therefore, our subsequent ablation experiments all
utilize subsize anchors.

2) Backbone: Our method is designed to be a plug-and-play
solution, capable of enhancing the model’s detection perfor-
mance for tiny objects using any backbone. Experimental results
on various backbones are presented in Table II, with model’s
trained using our method denoted by an asterisk (*). First, we
confirm the compatibility of our method with diverse backbones.
Second, the performance of the object detection network trained
using our method improves with the enhancement of the back-
bone’s feature extraction capabilities. However, the performance
improvement is not very pronounced when transitioning from
ResNet50 [66] to ResNet101 as the backbone. Consequently,
taking into consideration the storage space and inference time
requirements for remote sensing object recognition tasks, we opt
to use ResNet50 as the backbone in subsequent experiments.

E. Comparative Experiments

Comparative experiments have been carried out. Different
baseline models have been used to train on the AI-TOD and
Levir-Ship datasets and detection results have been obtained.
Subsequently, under the same experimental conditions, these

Fig. 8. Using our label assignment strategy (blue line) can improve the
detection performance of the baseline model (red line) for tiny objects without
increasing model parameters and inference time.

baseline models were retrained using the label assignment
strategy proposed in this study, and experimental results were
counted.

Main results on AI-TOD: Multiple different types of detectors
were selected for conducting comparative experiments. The
results are given in Table III, and models trained by using our
proposed method are marked with an asterisk (*) for reference.
The best indicators are highlighted in bold, and the suboptimal
indicators are underlined. The experimental results on AI-TOD
demonstrate that our method exhibits excellent compatibility.
When applied to RetinaNet, Faster R-CNN, Cascade R-CNN,
Mask R-CNN, TridentNet, and DetectoRS, it significantly en-
hanced the AP50 metrics by 18.9%, 10.5%, 10.2%, 11.7%,
12.2%, and 23.3%, respectively. Fig. 8 visually demonstrates
the variations of each metric. Second, other label assignment
methods, such as ATSS [20] and AutoAssign [21], are also used
for comparison with our approach. The experimental results
demonstrate that our approach is both simpler and more effec-
tive. The models trained using our proposed label assignment
strategy achieve higher AP50 metric, with improvements of
33.0% and 19.3% compared with ATSS and AutoAssign, re-
spectively. This superiority is attributed to the fact that ATSS and
AutoAssign, as closely related comparison methods, overlook
the uniqueness of tiny object samples, leading to suboptimal
performance when compared with our proposed method. The
effectiveness of our method has been empirically validated, and
it outperforms existing label assignment strategies in improving
the detection performance of tiny objects. In addition, employing
DetectoRS as the baseline model, the AP50 metric exhibits
optimal performance, reaching 55.5%. In comparison with other
state-of-the-art (SOTA) tiny object detection algorithms, our best
AP50 metric surpasses FSANet [45] and RFLA [23] by 2.7%,
accompanied by improvements in other evaluation metrics. The
experimental results indicate that our method has achieved
SOTA performance. Fig. 9 showcases a selection of our detecting
results on the AI-TOD benchmark.

Main results on Levir-Ship: To demonstrate the generalization
of our method, besides the AI-TOD, the Levir-Ship dataset is
also utilized. The experimental results on Levir-Ship show that
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TABLE III
EVALUATION RESULTS OF DIFFERENT MODELS ON AI-TOD DATASET

our method exhibits good generalization on other datasets as
well. When using Mask R-CNN as the baseline model, the AP50

metric is improved by 3.2%, reaching 83.8% and achieving the
SOTA performance. The results are given in Table IV.

Experimental results show that guiding the model to ac-
curately differentiate between objects and background during
training can effectively improve the detector’s performance in
tiny object detection. Compared with the methods that concen-
trate on enhancing the detection network structure and post-
processing techniques, our proposed label assignment strategy
fundamentally tackles the problem of learning confusion arising
from improper label assignment. Furthermore, our approach
demonstrates outstanding compatibility, enabling seamless in-
tegration with other optimization techniques.

F. Ablation Study

1) Evaluation of Different Components: The effectiveness of
AT and DIoU is verified separately. Compared with the label
assignment strategy using fixed thresholds, using AT can im-
prove the AP50 metric by 14.5%, while the use ofDIoU(α = 0.6,
γ = 1.5) can increase the AP50 metric by 5.5%. On this basis,
by combining the use of AT and DIoU, we achieved better tiny
object detection performance than using either method alone,
with an AP50 score exceeding the baseline model by 19.1%. The
effectiveness of our methods have been demonstrated. Table V
gives the results of our experiment.

2) Evaluation of md and DIoU: The adaptability of md and
DIoU in tiny object detection label assignment was independently

TABLE IV
EVALUATION RESULTS OF DIFFERENT MODELS ON LEVIR-SHIP DATASET

verified. Leveraging AT as the basis, md and DIoU were em-
ployed as dynamic label assignment metrics, and the experimen-
tal data are presented in Table VI. Obviously, when md is used,
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Fig. 9. Visualization of detection results by using different label assignment methods on the AI-TOD dataset. The yellow boxes (odd row) represent the TP
detections by the model trained using a fixed threshold method. The green boxes (even row) represent the TP predictions by the model trained using our AT method.
The red boxes represent the false negative predictions.

TABLE V
EFFECTIVENESS OF THE PROPOSED METHODS

the model’s detection performance drops, exhibiting reverse
optimization during training. Conversely, when DIoU is applied,
the model’s detection performance for tiny objects is further
improved. This experiment confirms that md is not suitable for
label assignment in tiny object detection and underscores the
enhanced robustness of our adjusted DIoU.

3) Parameters in AT : Guided by theoretical insights, we
explored potential parameter combinations for calculating AT
through a series of rigorous experiments. The experimental
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TABLE VI
COMPARISON OF DIFFERENT DYNAMIC LABEL ASSIGNMENT INDICATORS ON

AI-TOD

TABLE VII
EFFECTS OF DIFFERENT AT CALCULATION PARAMETERS ON DETECTOR

PERFORMANCE

results for different parameter combinations are presented in
Table VII, where PTp

represents the parameter in (1), and
PTn

represents the parameter in (2). The experiments clearly
indicate that our method achieves optimal performance in tiny
object detection when PTp

= 3/4 and PTn
= 4/5. Based on

these stringent experimental results and for the sake of clarity
and practicality, we have opted to employ fixed values for the
parameters in (1) and (2).

4) Hyperparameters in DIoU: The interplay of various hy-
perparameters and their influence on detector performance are
investigated, so as to find the appropriate hyperparameters con-
figuration. First, the way to determine β was investigated. In the
training phase of the detector, α decays gradually from 1 to a set
value, and the results are shown in Fig. 10. If a fixedβ is used and
set to fit the stabilized α, in the phase where α decays, β would
cause the same problem as md due to the excessive impact of
the penalty term on DIoU caused by overweighting. Therefore,
in order to adapt β well to α at each stage of training, the
adjustment strategy that β changes dynamically according to α
was adopt. Then, the relationship between hyperparameters and
detector performance was experimented, where α balances the
effect of feature alignment on label assignment, which increases
as α decreases; γ reflects the adjustment effect of u on DIoU,
where u refers to the change of IoU before and after regression,
and the larger the γ is, the smaller the effect of u on DIoU.
The specific experimental results are given in Table VIII. As α
decays, the impact of feature alignment on DIoU becomes more
pronounced, resulting in an increase in AP50, which indicates
that using the indicator of adding RIoU to assess anchor quality
as the basis for label assignment is beneficial to improve detector
performance, while as α decreases further, the effect of feature
alignment further increases, AP50 decreases instead, suggesting
that excessively high feature alignment weights damages the
stability of training.

TABLE VIII
EFFECTS OF DIFFERENT HYPERPARAMETERS CONFIGURATIONS ON DETECTOR

PERFORMANCE

Fig. 10. This figure shows the relationship between β and DIoU in the decay
phase of α. We set α = 0.4 in the stabilization phase, when β = 0.6. (a) β is
constant, when α decays, β is too large, and the penalty term has an excessive
impact on DIoU, this makes the calculation result of DIoU illogical. (b) β is
dynamic, α and β have a good fit at different stages, and DIoU meets theoretical
needs.

V. CONCLUSION

In this article, the phenomenon that the IoU metric for tiny
objects is highly susceptible to position deviations is thoroughly
analyzed. This poses a challenge for the standard label assign-
ment strategy in assigning appropriate positive samples to tiny
object GT, thereby impacting the performance of the detector.
To address this issue, a novel method called AT was proposed
to determine the positive and negative sample thresholds for
GT. This method enables the assignment of label assignment
thresholds for each GT individually. In addition, the concept
of dynamic IoU was introduced to resolve the issue of GT
not receiving positive samples when IoUmax ≤ Tpmin, thereby
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mitigating sample isolation. Experimental results demonstrate
that our proposed method significantly enhances the detection
performance of tiny object without the need for increased feature
layers or additional predefined anchors, and achieving SOTA
performance on both the AI-TOD and Levir-Ship datasets. Fur-
thermore, our method can be easily integrated as a plug-in into
various models.

Moreover, the concept of adaptive threshold is not limited
to the IoU-based models. As research progresses and more
advanced evaluation metrics regarding anchor quality are in-
vestigated and proposed, these studies delve deeper into the
potential of anchors, thereby positively influencing label assign-
ment guidance. However, regardless of the chosen standard, the
selection of thresholds remains an inevitable topic. Our approach
can be applied to any anchor quality evaluation metric, making
the process of setting label assignment thresholds more flexible
and straightforward. This training-based adaptive concept holds
promise for further promotion in future research.
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