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Abstract—Individual tree segmentation (ITS) is a pivotal tech-
nique in orchard research, estimating tree counts and delineating
crown contours. This method provides foundational data for assess-
ing orchard health, nutritional composition, and predicting yield.
Unmanned aerial vehicles (UAVs) have become an essential data
source for (ITS) due to their capability to capture ultra-fine de-
tails. However, current deep-learning-based ITS methods struggle
to accurately handle densely overlapping fruit tree distributions
with similar characteristics in UAVs images, primarily due to the
intricate nature of spatial arrangements in such scenarios. In this
article, we propose CEDAnet, a context enhancement, and density
adjustment network, to address the challenge of dense fruit trees
segmentation. Specifically, a transformer-based contextual aggre-
gation module is designed to distinguish different instances and
refine the boundary of the instances. We have proposed a density-
guided nonmaximum suppression method to adaptively generate
sufficient candidate bounding boxes, aiming to retain more poten-
tial instances in dense trees. To evaluate the effectiveness and ro-
bustness of our proposal, we curated two ITS datasets constructed
with imagery captured by UAVs, namely instance segmentation
in Conghua images dataset (iISCHID) and instance segmentation
in Maoming images dataset (iISMMID) based on their respective
spatial characteristics. Experimental results on both two datasets
demonstrated that CEDAnet yields competitive results in ITS tasks,
with the bounding box AP of 0.498, segmentation AP of 0.493 in
iSCHID, and the bounding box AP of 0.706, segmentation AP of
0.703 in iSMMID.

Index Terms—Benchmark dataset, deep learning (DL), indivi-
dual tree segmentation (ITS), instance segmentation, unmanned
aerial vehicle (UAV).

I. INTRODUCTION

NDIVIDUAL tree segmentation (ITS), which means seg-
menting the contour of each tree and identifying each unique
tree, is essential for forests and agriculture management [1], [2],
[3]. ITS involves separating the relevant pixels, forming precise
masks, and creating a distinct identifier for each tree in remote
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sensing (RS) images. Specifically, ITS of fruit trees offers basic
data to enable growth monitoring, disease detection, and other
related orchard planting applications. Traditional ITS based on
RS images mainly relies on manual visual interpretation [4].
Recently, automatic segmentation technology reduces abundant
labor costs and time consumption, and improves the generaliza-
tion and efficiency [5], [6].

In recent years, unmanned aerial vehicles (UAVs) have pro-
vided the possibility for precise ITS with the ultra-high spatial
resolution images [7], [8]. Satellite-based RS has made some
remarkable progress in large-scale ITS, especially for sparse
forests in Africa and regular economic forests [9]. However,
faced with low height and dense distribution of artificial fruit
trees in orchards, satellite-based RS with relatively coarse reso-
lution makes it difficult to characterize the detailed morphology.
UAVs with higher spatial resolution of centimeter level [ 10] have
become valuable tools in orchard management and precision
agriculture [11], [12], and its fine-grained detail allows the
precise analysis of individual fruit tree crowns, enabling targeted
interventions and management strategies.

Although UAVs provide unprecedented clear details, classical
ITS methods like morphological processing are hard to deal with
the complex and redundant information in UAVs images. Mor-
phological algorithms extract rough tree boundary information
in an unsupervised manner, including local maximum [13], edge
detection algorithm [14], watershed algorithm [15], and region
growth algorithm [16]. However, these morphology-based ap-
proaches face the problem of complex spatial structure in UAV's
images, such as the confusion with the surrounding grass and
shrub pixels. Moreover, these methods often rely on manual
intervention and threshold adjustment, which are difficult to
be applied on a large scale. Therefore, supervised algorithms
with strong spatial feature representation capability are needed
to extract accurate tree information from UAV images.

Due to the powerful spatial feature mining ability and gen-
eralization performance of deep learning (DL) [17], [18], [19],
ITS has achieved significant improvement by using various deep
networks. Especially, the proposal-based framework has gained
significant popularity in object detection systems, including both
one-stage and two-/multistage methods [20], [21]. The paradigm
generally has a two-step pipeline: first, generating excessive ob-
ject proposals in handcraft (e.g., predefined anchors) or learnable
[e.g., region proposal networks (RPNs)] manner. The success of
this framework is largely attributed to the ability of the RPN to
generate multiscale and translation-invariant region proposals.
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And then, predicting a single instance corresponding to each
proposal box with a confidence score and a refined location. To
remove duplicate predictions, methods, such as nonmaximum
suppression (NMS) [22], are usually required for postprocess-
ing. Object detection and instance segmentation offer numerous
advantages over direct segmentation for ITS in DL. They enable
fine-grained segmentation by accurately labeling each object
instance, providing detailed information about object position,
shape, and size, which facilitates object recognition and tracking
tasks. In addition, instance segmentation provides semantic un-
derstanding by revealing object relationships within the scene,
aiding in better scene interpretation.

However, the dense distribution of trees with similar char-
acteristics in orchards still presents challenges for DL-based
methods. Some studies have focused on achieving precise seg-
mentation of dense instances. One approach is to improve the
segmentation performance of dense instances by utilizing mul-
tiscale processing [23]. This involves using a multiscale image
pyramid to capture object information at different scales and
performing segmentation and fusion at different scales. To guide
the model optimization process, another approach is to design
effective loss functions that accurately measure the differences
between predicted results and ground truth segmentation [24].
However, from the overlooked perspective of UAVs, the shapes
and colors appear highly similar in the dense trees compared
to natural images from a head-up perspective. As a result, it
is difficult for a detector to generate distinguishing predictions
for each proposal, respectively, at the areas of high overlap.
Moreover, since the substantial intermingling of instances, the
predictions are prone to be mistakenly suppressed by NMS,
resulting in discarded instances that should have been retained.
Meanwhile, few works provide annotated datasets for dense ITS,
which greatly limits the algorithm development and application.

To deal with the above problems, in this article, we propose
a context enhancement and density adjustment network called
CEDAnet. First, in order to overcome the difficulty of segment-
ing dense fruit trees, we build an improved density-guided NMS
module (DG-NMS) to retain more potential instance bounding
boxes and reduce false positives (FPs). DG-NMS utilizes the
foreground density of tree pixels within the bounding box as
prior knowledge to dynamically adjust the threshold. Second, to
distinguish between different instances and refine their bound-
aries, we construct a transformer-based contextual aggregation
module (TCAM). This module is designed to aggregate contex-
tual information on the feature map, thereby enhancing the over-
all context for improved boundary delineation. Two datasets,
instance segmentation in Conghua images dataset (iISCHID) and
instance segmentation in Maoming images dataset (iSMMID),
specifically curated for dense fruit tree instance segmentation,
have been annotated and made publicly available.

There are three following contributions in this article.

1) In CEDAnet, the DG-NMS algorithm achieves more pre-
cise preservation of individual tree extraction in dense
orchards through dynamic threshold adjustment methods.

2) TCAM leverages the powerful context aggregation capa-
bilities of transformers to capture long-range dependen-
cies and contextual information, enabling precise segmen-
tation of individual fruit trees even in dense orchards.
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3) We offer two ITS datasets captured via UAVs for fruit
tree instance segmentation research. The iSCHID dataset
highlights densely distributed fruit trees, with experiments
confirming its contributions to instance segmentation in
complex scenes.

II. RELATED WORK
A. Deep-Learning-Based ITS

In practice, the undertaking of ITS from images is familiar
to us, and over the years, numerous researchers have developed
DL methods to explore research in this domain. For instance, in
2019, Wang et al. [20] utilized faster R-CNN for the segmen-
tation of individual rubber trees. Weinstein et al. [21] proposed
a semisupervised DL method for identifying individual trees,
incorporating light detection and ranging for the unsupervised
generation of training samples. Ferreira et al. [25] employed
a fully convolutional neural network (CNN) to extract tree
crowns from images captured by UAVs over Amazon palm trees.
Plesoianu et al. [26] introduced the single shot detector (SSD),
a DL ensemble design. Miyoshi et al. [27] proposed a novel
hyperspectral image DL method for recognizing single tree
species in high-density regions. Culman et al. [28] implemented
a segmentation model based on CNNs for tree segmentation
in high-resolution aerial images, followed by similar work by
Sun et al. [29]. In 2021, Korznilov et al. [30] used a U-Net-like
network for tree recognition, while Chen et al. [31] combined
voxelization strategy with the PointNet DL framework to accu-
rately segment individual trees from point clouds. Simultane-
ously, Zamboni et al. [32] benchmarked DL methods based on
anchor and anchor-free, such as RetinaNet and Faster R-CNN
did not exhibit satisfactory performance in RS.

Furthermore, results vary significantly when detecting and
identifying different tree species in different scenes. The re-
searches conducted by some researchers has provided us with
cases and methodologies for ITS in diverse scenarios and for
different tree species. For instance, in different scenarios, Tang
etal. [33], Igbal et al. [34], and Safonova et al. [35] conducted ex-
tensive work in plantations. Braga et al.’s [36] research focused
on ITS in tropical forests, while Ocer et al. [37], Zhang et al.
[38], and Sun et al. [39] explored urban trees. Yang et al. [40]
investigated trees in urban parks, and Guirado et al. [41] studied
trees in arid lands. Regarding different tree species, works have
been conducted on various types, such as Brazilian palm trees
[25], Brazilian nut trees [42], other tree species in the Amazon
[43], and lychee trees [44]. Their studies contribute valuable
insights for navigating the challenges associated with ITS across
varied environmental contexts and tree types.

B. Instance Segmentation

Instance segmentation, a pivotal task in computer vision,
involves identifying individual object instances and performing
pixelwise segmentation. DL, notably with CNNs, has signif-
icantly advanced this field. Fully convolutional network [45]
introduced in 2015 addressed semantic segmentation but lacked
the ability to distinguish between instances within the same
category. In response, faster R-CNN, proposed by Ren et al.



7042

[46], introduced an RPN for object detection, setting the stage
for subsequent instance segmentation methods. Mask R-CNN
[47], building upon faster R-CNN, integrated a mask branch for
fine-grained instance segmentation masks, marking a significant
stride in seamlessly combining object detection and instance
segmentation within a single framework.

These methodologies demonstrated the transition of single-
tree segmentation from semantic segmentation to object detec-
tion, effectively highlighting the capabilities of DL models. They
established a robust foundation for addressing complex instance
segmentation challenges. Concurrently, we aimed to contribute
to this field by employing a transformer-based contextual en-
hancement for the instance segmentation of densely populated
lychee trees.

III. MATERIALS AND METHOD
A. Dataset

In this part, we will introduce two datasets prepared for the ex-
periment. Both datasets, captured through UAV imagery, show-
case dense lychee orchards in China’s Guangdong province—
one situated in Guangzhou and the other in Maoming.

The selected datasets exhibit different planting densities, pro-
viding diverse perspectives and scenes, thereby enriching the
diversity of training data. Such diversity facilitates the model’s
better understanding of the visual characteristics and growth
patterns of lychee trees under varying planting densities. The
model adapts to the visual and morphological variations of
lychee trees across different planting densities, contributing to
enhanced generalization performance. This enables the model to
accurately identify and segment lychee trees of various densities
in practical applications. Meanwhile, the intentional selection of
diverse locations adds intrinsic value to our experiment, allowing
us to explore and analyze the impact of geographical variability
on our research outcomes. This geographical contrast enriches
the datasets and enhances the universality of our findings, em-
phasizing these selected sites make a distinctive contribution to
the boarder academic community. These datasets are publicly
available to meet different research needs.

1) iSCHID: The iSCHID focuses on the Li-Bo Park area
in Conghua District, Guangzhou City, Guangdong Province,
China. The orchard covers an area of about 200 km?, and a
large number of litchi trees is planted, as shown in Fig. 1. The
images of the study area were taken by DJI M30 UAYV, and the
flight patrol was carried out with a 75% side overlap rate, 75%
heading overlap rate, and navigation height of 200 m. Finally,
the captured images were processed by DJI mapping software
to automatically build the digital orthophoto map of the study
area.

We geospatially divided the study area into training and test
areas. In the training area, we sliced the digital orthophoto map
and clipped it with an overlap rate of 70%. The training and
validation data were collected from the training area, the test
data were collected in the test area, and the data were manually
annotated on the Labelme software as shown in Fig. 1. The
training and testing datasets contain the 265 and 64 pairs of
data.
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(a),

Fig. 1. Two study areas and datasets. (a) Ground truth. (b) Mask on image.
(c) UAV Image.

2) iSMMID: The study area of iSMMID is located in Dianbai
District of Maoming City, Guangdong Province, which covers
an area of 800 km?. A large number of litchi trees are also planted
in the orchard, as shown in Fig. 1. In the same way as the iISCHID
dataset, we also build the digital orthophoto map of the study
area by DJI M30 UAV, then slice the digital orthophoto map
and clip them with a 25% overlap rate. We manually annotate
individual tree on the Labelme software. The training and testing
datasets were randomly split and contained 270 and 55 pairs of
images, respectively.

B. CEDAnet

The overall framework of the proposed CEDAnet method
is illustrated in Fig. 2. First, given an input UAV image, we
use the ResNet50 [46] to generate the feature map. Second, we
utilize the TCAM for in-depth supervision of the feature map
derived from ResNet50, subsequently replacing original feature
map. During object detection on the new feature maps, the
DG-NMS algorithm is employed. This algorithm dynamically
adjusts thresholds utilizing prior density knowledge to more
judiciously retain bounding boxes. Finally, using fully connected
layer, the classifier outputs a score for each class, the bounding
box regression predicts the precise object localization and the
mask branch outputs the segmentation results. We next describe
our module of the proposed framework.

1) TCAM: To further enhance the modeling and integration
of multiscale information extracted by the feature extractor,
we introduce a context enhancement module within CEDAnet,
denoted as TCAM.

TCAM, comprising a token encoder and a decoder within the
transformer architecture, efficiently captures contextual infor-
mation from feature maps. In the context of ITS, TCAM excels
in handling intricate canopy patterns, enhancing the ability to
compute losses with mask labels. This module plays a pivotal
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Fig. 2.

role in discerning fine-grained details within the canopy struc-
ture, contributing significantly to the model’s overall accuracy
and precision in ITS tasks.

a) Token encoder: Utilizing a context enhancement mod-
ule based on the transformer to process the feature maps obtained
from the backbone, the original feature maps outputted by
ResNet50 are replaced.

The obtained 32 x 32 feature map is inputted to the token
encoder, employing spatial attention and transformer modules
for token encoding. This step is essential to enhance context
and extract tree-related features. Spatial attention ensures rele-
vant features are highlighted, contributing to the overall texture
enhancement effect.

The input feature map F' € RP*<*"*® experiences a 1 x
1 convolution to adjust channel numbers, resulting in F' €
RUxIxhxw B/ s reshaped to a token f' e RU*x(hxw) gj
multaneously, the original feature map, without convolution, is
reshaped to f € Rb*ex(hxw),

An einsum operation is applied to f € RP*¢*(Pxw) and
f! e Rb<Ix(hxw) "eliminating the last dimension to obtain ¢ €
Rb*exl represented as

ty = f' (hw) foe (hw) (1)

where b, ¢, h, w, and [ represent batch size, channel number,
height and width of the feature map, and token length, respec-
tively.

Next, position embedding is introduced through elementwise
addition to each position of the token ¢. The resulting ¢’ is
expanded using a linear layer and inputted into the multihead
self-attention (MHA) module, capturing contextual information
between tokens. This attention mechanism enhances the model’s
ability to discern intricate textures related to trees.

The architecture of the MHA module is as follows. MHA
extends ¢’ to a new embedding 7 using a linear layer, represented
as

V= tWI,t/ c belx(nxde) )

where W' is the weight of the linear layer, n is the head
number of MHA, and d is the dimension for subsequent ten-
sors. n and d are set for 8 and 64, respectively.
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Tlustration of the designed CEDAnet where TCAM is a transformer-based module to aggregate context and DG-NMS is a density-guided NMS algorithm.

First, ¢’ is normalized, and linear layers transform it into
query (Q € RV™<xd) key (K € RV*™*!*d) and value (V €
Rbxmxixdy represented as

Q K,V = tWe Wk ¢w) (3)

where WiQ, WK, and W} denote the weights of the linear layers
to map O, K, and V, respectively.

The scaled dot-product attention mechanism is then used to
calculate attention values between query and key. The weighted
sum of all ¢ using attention values yields attention maps, repre-
sented as

. QKT
Attention (Q, K, V) = softmax | — | V. 4)
vD
Finally, the outputs of each head are concatenated and input
to a linear layer, producing the final output of MHA, expressed
as

head; = Attention (t’WiQ, Wk, t’WiV> , 1€ (0, n]

MHA (Q, K,V) = Concat (head;, ..., head,) W (5)

where WiQ, W, and W} denote the weights of the linear layers
of the ith head to map Q, K, and V/, respectively; and W %is
the weight of the last linear layer in MHA.

The final output of MHA is a concatenated representation of
the outputs from each head, contributing to the overall enhance-
ment of tree-related features.

In FFN, two linear layers and a Gaussian error linear unit
activation [48] are used to further transform the learning token
of MHA.

A larger, richer dictionary may enable the token encoder to
better understand features in the input image, enhancing the
model’s ability to model image feature information and handle
contextual information more effectively, achieving the desired
context enhancement effect. Fig. 3 shows the token encoder
module.

b) Token decoder: The token decoder receives two inputs:
the convolution features F and the token embedding ¢ from the
token encoder. In the token decoder, before F and ¢ are input
to the transformer decoder, trainable parameters are added to F'
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Fig. 4.

with the aim of reprojecting the token embedding back into pixel
space and enhancing F.

In the token decoder, before the use of the MHA module,
weight-sharing LN is applied to both F and ¢. This is similar to
the MHA in the token encoder. The key distinction lies in the
fact that the query is derived from F, while the key and value
mappings come from z. The final output image maintains the
same size as the input image.

2) DG-NMS: After generating bounding boxes in the RPN,
NMS method is usually used to suppress excessive boxes. But
in scenarios of substantial object overlap, the traditional NMS
selectively preserves only the box with the highest score, result-
ing in the removal of the prediction box for the other heavily
overlapped object.

To address this limitation, we introduce DG-NMS, a method
that dynamically adjusts thresholds to resolve the issues inherent
in traditional NMS. DG-NMS makes an important contribution
by adapting to varying degrees of object overlap, ensuring more
accurate preservation of prediction boxes in scenarios with
substantial overlap. First, for bounding boxes (M) whose overlap
with the highest scoring box exceeds the predefined threshold /Vy,
their confidence is diminished rather than promptly excluded.
This approach allows more boxes to be retained, mitigating the
occurrence of overlaps to some extent. In the vicinity of the
same object, there are often multiple boxes. By consistently se-
lecting the box with the highest score, the surrounding boxes are
suppressed. The degree of suppression increases with a higher
Intersection over Union (IOU) with the highest scoring box.
Generally, the IOU of boxes representing the same object tends
to be greater than that of boxes representing different objects.
Consequently, this process retains boxes for other objects while
removing those for the same object. DG-NMS reduces scores
in a way that avoids forcefully setting the scores of overlapping
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boxes to zero. Instead, it employs a gentler suppression mecha-
nism

g — {SZ- iou (M, b;) < Ny ©)
YOS (T —idou (M, b)),  iou(M,b;) > Ny

where S; represents the score of a detected bounding box,

M denotes the highest score detected bounding box, and b;

represents the one detected bounding box.

Second, based on the position of the target box, the orig-
inal image patch corresponding to the box position can be
obtained, and we can apply the Otus binarization [48] method
to separate the foreground and background of this image slice.
The Otus algorithm is a classical algorithm used for image
segmentation, aiming to automatically determine the threshold
of image grayscale levels and divide the image into background
and foreground parts. It is to determine the optimal threshold
by maximizing the between-class variance. The between-class
variance is a measure of the difference between the two seg-
mentation parts of the image. When the between-class variance
is maximized, it means that an optimal threshold has been found,
which can best separate the foreground and background.

Typically, slices from densely distributed fruit trees should
have a much higher foreground pixel ratio than the background
pixel ratio. Therefore, the NMS threshold can be appropriately
adjusted based on the foreground pixel ratio, allowing more
boxes to be retained. The threshold /N; calculation can be ex-
pressed as

Ny

N =
¢ Nhw

(N
where IV; represents the threshold, Ny indicates the number of
foreground pixels after Otus binarization, and N hw refers to the
total number of pixels in the original image corresponding to the
target. Fig. 4 shows the DG-NMS.

DG-NMS further refines this process by adjusting the fac-
tor and incorporating the DG-NMS threshold. The DG-NMS
threshold is determined based on the foreground pixel count
after Otus binarization. We use it as prior knowledge to achieve
adaptive adjustment of NMS threshold. This adaptation ensures
a balanced preservation of overlapping boxes and optimized
NMS thresholds based on the foreground pixel distribution.

IV. EXPERIMENTS
A. Implementation Details

We clip the digital orthophoto map of the study area to 512 x
512 slice data for train and test. Construction and preprocessing
of the datasets are completed by QGIS, GDAL-python, and
MATLAB.

For the model training, the optimizer is Adam; the initial
learning rate is 0.01; the beta is 0.9 and 0.999; and the weight
decay is 0.0001. The learning rate decay strategy is StepL.R with
step size as 10, gamma as 0.8, and last epoch as 200. All models
are trained for 250 epochs. Our models and experiments are
based on the open-source DL framework MMDetection [49].
The experimental environment is Centos 7.5. 1804. The GPU
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is GeForce RTX 4090ti. The CPU is Intel(R) Xeon(R) CPU
E5-2680.

B. Comparisons With Baseline Methods

1) Comparative Models:

a) Mask R-CNN [47]: Mask R-CNN is a DL-based object
detection and instance segmentation model that can simulta-
neously predict object bounding boxes and pixel-level masks,
enabling accurate object detection and fine-grained instance
segmentation. By adding an additional branch to the faster
R-CNN architecture [46], mask R-CNN predicts pixel-level
masks for objects, achieving the capability of both detection
and segmentation.

b) Cascade mask R-CNN [51]: Cascade mask R-CNN is
amask R-CNN based instance segmentation model that utilizes
a cascaded structure to progressively improve the detector’s
accuracy. It achieves higher detection performance and lower
FP rates by cascading multiple detection stages, with each stage
performing stricter filtering based on the results of the prevIOU
stage.

¢) Mask scoring R-CNN [52]: Mask scoring R-CNN (MS
R-CNN) is another mask R-CNN based on instance segmenta-
tion model that aims to improve the quality of instance segmen-
tation masks. It introduces an MS branch to evaluate the quality
of predicted masks, enabling the model to assign higher scores
to more accurate masks and filter out low-quality ones, leading
to enhanced segmentation results.

d) SOTR [53]: Segmenting objects with transformers is a
method for object detection and segmentation based on trans-
former architecture. By employing row—column separated at-
tention mechanism, it captures relationships between different
positions in images. Coupled with convolutional layers and
activation functions, it enables end-to-end object detection and
segmentation.

e) Instaboost [54]: Instaboost is a data augmentation
method for object detection and segmentation that enhances
the robustness and generalization of the model by dynamically
adjusting and resampling samples during training. It effectively
alleviates class imbalance and hard example issues, improving
the performance and stability of instance segmentation models.

2) Evaluation: In this article, we use the average precision
(AP) to evaluate the results. Among different annotated datasets
used by object detection challenges and the scientific commu-
nity, the most common metric used to measure the accuracy
of the detections is the AP. Before examining the variations
of the AP, we should review some concepts that are shared
among them. The most basic are the ones defined as follows:
true positive: a correct detection of a ground-truth bounding box;
FP: an incorrect detection of a nonexistent object or a misplaced
detection of an existing object; false negative: an undetected
ground-truth bounding box. It is important to note that, in the
object detection context, a true negative result does not apply, as
there are infinite number of bounding boxes that should not be
detected within any given image. The above definitions require
the establishment of what a “correct detection” and an “incorrect
detection” are.
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TABLE 1
EXPERIMENTAL RESULTS WITH OTHER NETWORKS ON ISCHID
bbox
APbbox Angox API;lsmx Apgbox AP%’OX AP?box
Mask R-CNN 0466 0.753 0514 0.171  0.418  0.593
Cascade 0469 0.755 0519 0.175 0.421 0.601
Mask R-CNN : : : : ’ :
MS 0481 0.748 0.524 0.18 0.432 0.597
R-CNN : ’ ’ : : ’
SOTR 0469 0.741 0.495 0.19 0.406 0.592
Instaboost 0453 0.75 0.483 0.179 0.407 0.57
Ours 0498 0.769 0.561 0.217 0.449 0.63
Segmentation
APbbox APISJgox AP??OX AP?box AP[Z{/Ibox AP?box
Mask R-CNN  0.462 0.742 0.532 0.112 0413 0.611
Cascade 0466 0748 0541 0.2 0433  0.625
Mask R-CNN ’ ’ : ’ ’ :
MS 0466 0.741 0.525 0.12 0.406 0.595
R-CNN ' ' ' ’ ’ '
SOTR 0467 0.713 0.484 0.144 0.451 0.606
Instaboost 0433  0.727 0.469 0.099 0.389 0.566
Ours 0493 0.793 0.571 0.19 0.458 0.636

A common way to do so is using the IOU. It is a concept
usually used in object detection and semantic segmentation, and
is the overlap rate between the generated candidate bound and the
original ground truth bound, that is the ratio of their intersection
to union. In this experiment, we utilize IOU within the DG-
NMS framework to compute the overlap between two candidate
bounding boxes and determine whether to retain them based on
a threshold. Here, the calculation of IOU will affect the results
of AP.

The numerator part calculates the number of pixels to cor-
rectly predict in the foreground, and the denominator part cal-
culates the number of pixels in the images and sets the real
foreground and predicted foreground. The process of calculating
a debit note can be expressed as

10U = ™ . (8)
FN + TP + FP

AP is a commonly used precision evaluation metric in object
detection tasks. It measures the accuracy and recall of the de-
tection results at different confidence thresholds. First, based on
the model’s output, the detection results are sorted in descending
order of confidence. Then, for different confidence thresholds,
the precision and recall are calculated. Precision represents the
proportion of correctly predicted positive samples among all
samples predicted as positive by the model. Recall represents
the proportion of correctly predicted positive samples among all
actual positive samples. Next, the precision and recall values are
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Fig. 5.
(h) Instaboost. (i) Ours.

calculated for each confidence threshold, and a precision-recall
curve is plotted. Finally, the area under the curve, known as AP,
is computed. The value of AP ranges from 0O to 1, with higher
values indicating more accurate detection results. Typically, AP
decreases as the confidence threshold increases. The AP is eval-
uated with different IOU. It can be calculated for 10 IOU varying
in a range of 50% to 95% with steps of 5%, usually reported as
AP@50:5:95. It also can be evaluated with single values of IOU,
where the most common values are 50% and 75%, reported as
APj5pand AP, respectively. The AP is determined for objects
in three different sizes: small (with area <327 pixels), medium
(with 322 < area <967 pixels), and large (with area >967 pixels)

3) Comparison of iSCHID: We tested our own model on the
dataset and compared it with state-of-the-art instance segmenta-
tion models. As can be seen from Table I, the proposed method
CEDAnet outperforms all baselines on the iSCHID, achieving
the highest AP scores on test datasets. Our method has achieved
good results in both target box detection and target segmentation,
especially in the detection and segmentation of small targets,
which can also prove that our weak supervision module plays
a certain role. By comparing with other instance segmentation
models, our model demonstrated the highest accuracy in terms
of numerical evaluation. As Table I shows, Instaboost obtains
the lowest AP and AP of 0.453 and 0.433 among the
compared methods, which is followed by mask R-CNN. Mask
R-CNN obtains an APP™* of 0.466 and an AP*°¢ of 0.462. SOTR
obtains the APPP°* and APs€ of 0.469 and 0.467, which shows
the SOTR can slightly improve the model accuracy here. Our
method achieved the highest AP of 0.498 and an AP*% of
0.493 among all the compared methods, which denote that con-
text enhancement module is capable of capturing and leveraging
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Some visualization results on iSCHID. (a) GT. (b) Mask. (c¢) UAV image. (d) Mask R-CNN. (e) Cascade R-CNN. (f) MS mask R-CNN. (g) SOTR.

features of ITS in the image more effectively, thereby enhancing
segmentation performance and providing more precise results
for practical applications.

Below, we will showcase some details on the result images.
Fig. 5 provides more intuitive pictures of each network’s per-
formance on the iISCHID. Mask R-CNN which has the ability
to segment relatively apparent individual fruit trees, but not
do well in extracting the high-density boundaries of trees and
small trees. Among the deep networks, cascade mask R-CNN
and MS R-CNN can get more detailed detection and segmen-
tation results. However, the models still struggle to effectively
segment individual trees in large areas with dense clusters of
fruit trees. SOTR, as an instance segmentation method based
on transformer, demonstrates suboptimal performance in the
experiments. Our proposal gives more correct bounding box
results and refined boundaries of trees (row 1 of Fig. 5).

4) Comparison of iSMMID: The spatial distribution of fruit
trees in this dataset is not as dense as iSCHID. Similarly, our
method still achieved promising results.

As can be seen from Table II, the proposed method also
outperforms all baselines on the iSMMID dataset, achieving
the highest AP™* and AP scores of 0.706 and 0.703, re-
spectively. The second-ranked MS R-CNN obtains an APPP°X
of 0.699 and an AP*® of 0.694, which further proves the
advancement of context enhancement. The mask R-CNN scores
0.691 APP™* and 0.667 AP%¢, while the cascade mask R-CNN
scores 0.695 AP and 0.671 AP*¢, This shows that the aggre-
gation of features can slightly improve the model accuracy here.
SOTR obtains the APPP% and AP%e¢ scores of 0.701 and 0.693,
which shows that proposal boxes have significant advantages in
improving accuracy.
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TABLE I
EXPERIMENTAL RESULTS WITH OTHER NETWORKS ON ISMMID
ISMMID
bbox
APbbnx Angnx API;I;DX Apgbox APII\J/Ibox AP?bnx
Mask R-CNN  0.691 0.973 0.89%4 -1 0.674 0.714
Cascade 605 0979 0.899 -1  0.681 0.723
Mask R-CNN : : : ’ :
MS
R-CNN 0.699 0.977 0.889 -1 0.689 0.738
SOTR 0.701 0979 0.892 -1 0.685 0.751
Instaboost 0.701 0977 0.886 -1 0.69 0.745
Ours 0.706 0.983 0.899 -1 0.697 0.752
Segmentation
APbbnx APl;gnx AP??DX Apgbox APII\J/Ibox Apﬁbnx
Mask R-CNN  0.667 0.959 0.963 -1 0.635 0.701
Cascade
Mask R-CNN 0.671 0963 0.961 -1 0.643 0.712
MS
R-CNN 0.694 0977 0.913 -1 0.68 0.739
SOTR 0.693 0.988 0.938 -1 0.669 0.715
Instaboost 0.688 0.986 0.904 -1 0.678 0.722
Ours 0.703 0.988 0.971 -1 0.661 0.745

Fig. 6 demonstrates the behavior of different methods on the
iISMMID. Our method can precisely segment small instances
(row 4 of Fig. 6). It can be observed that our model achieves
more precise delineation of boundaries for small objects. Mask
R-CNN can roughly segment the boundaries of trees, but there
is still a significant gap between their boundary contours and
the annotated mask. Because of the refinement of spatial context
information during feature extraction, the cascade mask R-CNN
is better to keep precise boundaries of these small objects,
while it is relatively rough and supersaturated compared to the
ground truth. SOTR, as an instance segmentation method based
on transformer, do not show good performance on this dataset
as well. This demonstrates that the integration of our modules
can help to restore the spatial information and improve the ITS
accuracy.

C. Ablation Experiment

CEDANet integrates both TCAM blocks and DG-NMS mod-
ule for accurate instance segmentation. We design ablation
experiments to verify the improvement of context enhancement
and prior knowledge for instance segmentation. In Tables III
and IV, the “Base” baseline denotes the basic model mask
R-CNN. The “Base+TCAM” model means mask R-CNN with
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TABLE III
EXPERIMENTAL RESULTS WITH OTHER NETWORKS ON ISCHID
bbox

APbbox Apggox AP!;!;OX Apgbox AP%)O}C Apfbox

Base 0.466 0.753 0.514 0.171 0.418 0.593
BasetTCAM 0.475 0.756 0.528 0.215 0.434 0.619
Baset+DG-NMS 0.492 0.767 0.552 0.205 0.448 0.605

CEDAnet 0.498 0.769  0.561 0.217  0.449 0. 63

Segmentation

APsed APYY  APY APYY A pﬁ;fﬂ AP)Y

Base 0462 0.742  0.532 0.112 0.413 0.611
Base+tTCAM 0.478 0.752 0557 0.157 0.43 0.639
Baset+DG-NMS 0.473 0.75 0.521 0.13 0.418 0.636
CEDAnet 0.493  0.793  0.571 0.19 0.458  0.636

TABLE IV
EXPERIMENTAL RESULTS WITH OTHER NETWORKS ON iSMMID
bbox
APbbox Apggox AP!;I;DX AP?bux AP%)GX AP?bux
Base 0.691 0.973 0.894 -1 0.674 0.714
Base+tTCAM 0.697 0.987 0.894 -1 0.679 0.725
Base+DG-NMS 0.697 0987  0.894 -1 0.679  0.725
CEDAnet 0.706 0.983 0.899 -1 0.697 0.752
Segmentation

AP AP’ APYY  APYY pphed AP

Base 0.667 0959  0.963 -1 0.635 0.722
Base+TCAM 0.678 0987  0.865 -1 0.654  0.722
BasetDG-NMS 0.685 0.988 0.889 -1 0.661 0.725
CEDAnet 0.703  0.988 0.971 -1 0.661 0.745

context aggregator to context enhancement. The “Base+DG-
NMS” model means mask R-CNN with DG-NMS algorithm
to dynamically adjust the NMS threshold by acquiring prior
knowledge of densely populated trees. The “CEDAnet” model
is the proposal of this article with the transformer-based context
aggregator module and dense-guided NMS algorithm.

As can be seen from Table III, the incorporation of both
TCAM and DG-NMS can improve the model performance on
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(a) (b)

Fig. 6.
(h) Instaboost. (i) Ours.

both datasets. More specifically, the AP?* and AP can be
improved by 1.9% and 3.4% on the iSCHID and by 0.86% and
1.6% on the iSMMID after adding TCAM layers. It shows that
deep supervision on the feature map does enhance the ability
of the model. Besides, the DG-NMS can improve the AP
and AP*% of the iISCHID by 5.6% and 2.3% and those of the
iISMMID by 1.6% and 2.7%, respectively; this indicates that
DG-NMS can contribute substantially to the subsequent metric
learning by making the feature pairs more distinguishable from
each other. Notably, compared to the “Base” model, the AP
and AP of the CEDAnet with both TCAM and DG-NMS
integrated are increased by 6.9% and 6.7% on iSCHID, and 2.2%
and 5.4% on iISMMID, respectively. The great improvement
of the CEDAnet not only further proves the effectiveness of
TCAM and DG-NMS, but also proves the gain effect of their
combination.

V. DISCUSSION
A. NMS Threshold

The threshold for NMS is a hyperparameter in this experiment
that directly determines whether multiple bounding boxes of
dense regions are retained, thus directly affecting the effec-
tiveness of dense instance segmentation. Therefore, we also
designed an experiment to verify the rationality of dynamically
adjusting the NMS threshold. We manually adjusted the NMS
threshold to determine the optimal value on iISCHID. As can
be seen from Table V, when the threshold is set to 0.6, the
majority of the accuracy reaches its peak. However, setting the
threshold to other values also yields optimal accuracy for certain
cases. When we dynamically adjust the threshold by adding
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Some visualization results on iSMMID. (a) GT. (b) Mask. (c) UAV image. (d) Mask R-CNN. (e) Cascade R-CNN. (f) MS mask R-CNN. (g) SOTR.

TABLE V
EXPERIMENTAL RESULTS WITH OTHER NETWORKS ON ISCHID

bbox
APbbox  Apbhox  ppbbox  gpbbox  ppbbox 4 pbbox
t=0.3 0423  0.724 0426 0.146 0.383 0.535
t=0.4 0422 0739 0475 0.148 0.403 0.58
t=0.5 0432 0736 0473 0.157 0.406 0.571
t=0. 6 0466 0.753  0.514 0.171 0.418 0.593
t=0.7 0459 0742 0.492 0.167 0.429 0.61
t=0. 8 0.448  0.738  0.492 0.152 0.411 0.598
BasetDG-NMS  0.492  0.767  0.552 0.205 0.448 0.605
Segmentation
APses APLY AP APYY Apfjeg AP}
t=0.3 0453 0.753  0.498 0.108 0.412 0.583
t=0. 4 0.463  0.758  0.508 0.110 0.41 0.618
t=0.5 0461  0.75 0.503 0.109 0.408 0.624
t=0. 6 0462 0.742 0.532 0.112 0.413 0.611
t=0. 7 0458 0.742 0518 0.110 0.413 0.635
t=0. 8 0458 0.741 0516 0.108 0.414  0.624
Base+tDG-NMS 0473  0.75 0.521 0.13 0.418 0.636

our DG-NMS module to the mask R-CNN model, all bounding
box accuracy is significantly improved, and all segmentation
accuracy is improved while the threshold is set to 0.4 that the



ZHU et al.: CEDANET: INDIVIDUAL TREE SEGMENTATION IN DENSE ORCHARD VIA CONTEXT ENHANCEMENT AND DENSITY PRIOR

AP gets highest and the threshold is set to 0.6 that APY¥ gets
highest. In general, this demonstrates the rationality of adap-
tively adjusting the NMS threshold based on prior knowledge.

B. Application

Based on the segmentation results of ITS of fruit trees, it
is possible to estimate the yield of orchards. By calculating
the canopy area based on plant masks and determining the
latitude and longitude coordinates using plant bounding boxes,
it becomes feasible to estimate the fruit yield of each plant. By
capturing aerial photos of fruit trees during the fruiting period
using UAV and applying object detection algorithms to detect
fruits, the number of fruits within the field of view can be
counted. By combining the field of view angle parameters of
the UAV and the canopy area of the specific plant, it becomes
possible to collectively estimate the quantity or yield of fruits
for that particular plant. This integrated approach leverages the
power of spatial data analysis and RS technology to provide
accurate and efficient yield estimation for fruit tree orchards.
In the future, this article will conduct a yield assessment of the
orchard.

VI. CONCLUSION

In this article, we have proposed a novel framework to
tackle the problem of dense distribution in ITS. The key idea
of the proposed method is to utilize a TCAM to encode and
decode contextual information of instance features, facilitating
feature fusion and enhancement. In addition, the DG-NMS al-
gorithm is employed during the candidate box generation stage,
dynamically adjusting thresholds to adaptively generate a suffi-
cient number of candidates bounding boxes, thereby improving
the performance of instance segmentation.

Experimental validations on two different ITS datasets (iS-
CHID and iSMMID) demonstrate the effectiveness of the
proposed CEDAnet in segmenting individual trees within ly-
chee orchards of varying density. Further ablation experi-
ments confirm the effectiveness of integrating TCAM and
DG-NMS. Specifically, TCAM is capable of acquiring and
more fully utilizing information regarding fruit tree morphol-
ogy, while DG-NMS enhances segmentation accuracy. Hence,
our method is applicable to ITS of fruit trees, demonstrat-
ing its capability for instance segmentation in such complex
and dense scenarios. In future article, we will continue to en-
hance this framework to improve its detection and segmentation
performance.
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