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Abstract—Acquiring a comprehensive understanding of crop-
ping patterns and their spatiotemporal distribution is crucial for
sustainable agricultural development and ecological environment
protection. However, the similarity of crop spectra and the diversity
of ecosystem types hinder the accurate mapping of cropping pat-
terns, especially in agricultural landscape regions. Hence, taking
Xinghua County as study area, this article proposed a novel method
for integrating multidimensional feature indices and phenological
windows, named phenological window feature (PWF), to achieve
efficient and accurate mapping of cropping patterns. In this study,
we adopt a two-step approach. First, time-series curves of feature
indices were constructed using Sentinel-1/2 satellite data to deter-
mine the phenological windows of different cropping patterns and
construct PWF sets. Then, the ruleset threshold method (RTM) and
random forest (RF) algorithms were used to map cropping patterns
including wheat-rice, crayfish-rice, vegetable-rice, rice-rapeseed,
rapeseed-vegetable, and year-round vegetables. The results indi-
cate that the phenological windows extracted from the cropping
patterns in the study area were 30-120, 90-135, and 200-270 days,
respectively. The overall accuracies of RTM and RF, based on PWF,
were 85.91% and 89.50%, respectively, and the kappa coefficients
for RTM and RF were 0.831 and 0.872, respectively. In terms of clas-
sification performance, RF slightly outperformed RTM. The study
demonstrates that PWF proposed in this article can be effectively
utilized for mapping cropping patterns in complex agricultural
landscape regions.

Index Terms—Cropping pattern, feature indices, Google earth
engine, phenological window, Sentinel-1/2.

I. INTRODUCTION

AND resources are an integral part of the ecosystem [1].
A growing body of research suggests that land manage-
ment practices can have a significant impact on the delivery
of ecosystem services at the landscape level [2], [3], [4]. Crop
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rotation, as a biological measure that combines land use and
land cultivation, constitutes a significant factor influencing the
quality of cultivated land and crop yield [5], [6], [7]. Here, we
define cropping patterns as the sequential interseasonal rotation
of different crops or complex planting combinations on the
same field during the year [8], [9]. However, in many regional
statistical yearbooks, only information on arable land area and
crop types are reported, ignoring the impact of cropping pat-
terns on sustainable agricultural use [10]. Current research also
focuses on mapping individual crop types or cropping intensity,
and there is not yet a suitable method for mapping cropping
patterns in agriculturally intensive regions [11], [12], [13]. As
such, obtaining rapidly high-precision distribution information
of cropping patterns plays a crucial role in advancing sustainable
agricultural development in the region.

The rapid advancement of satellite remote sensing technology
has facilitated more convenient periodic monitoring of crop
cycles and provided more possibilities for mapping cropping
patterns through remote sensing [14], [15], [16]. Research on
mapping cropping patterns is currently primarily categorized
into three types. The first involves multitemporal image change
detection, relying on examining statistical measures or models
to detect changes in pixels or objects across different time
periods, thereby discerning crop rotation practices. For example,
Ye et al. [17] proposed an unsupervised object-oriented crop
rotation detection method using time-series polarimetric syn-
thetic aperture radar data to detect crop rotation changes [17].
Ma et al. [18] utilized bitemporal-feature-difference method to
map rice-crayfish fields in Sihong, achieving an accuracy of
94% [18]. This method leverages multitemporal images and a
set of algorithms to rapidly obtain crop rotation information for
large regions. However, such approaches often can only detect
whether crop rotation has occurred or identify a single cropping
pattern, potentially limiting their applicability in regions with
complex cropping patterns.

Second, mapping cropping patterns through spatial overlay
analysis based on mapping results of single-season crops.
This method entails extracting crop types during the same
growing season and integrating spatial distribution information
of single-season crops into a single vector data layer, thereby
deducing cropping patterns. Waldhoff et al. [19] obtained diverse
crop sequences by combining annual crop maps spanning eight
consecutive years, identifying dozens of representative crop
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rotations [19]. However, this method relies on the accuracy
of single-season crop mapping [20], and the combination of
multiple independently generated crop distribution maps may
result in meaningless crop sequences. This limitation restricts
the practical decision-making for farmers in agricultural
management.

The third category involves capturing the distinctive pheno-
logical characteristics of crops to characterize changes in the
crop growth cycle and subsequently map cropping patterns. This
represents the current mainstream direction in the mapping of
cropping patterns [10], [21], [22]. Currently, research is primar-
ily categorized into two approaches. The first method is to utilize
the threshold of a certain feature of VIs at a certain time node
in the time series curve, such as the peak, the amplitude of the
growing season, and the maximum slope of change value. This
is then combined with a dedicated decision tree or rule set to
map cropping patterns. For example, Chen et al. [14] employed
NDVI time series data to formulate five temporal indices, and es-
tablished a decision set with optimized thresholds to categorize
cropping patterns in the Mato Grosso state of Brazil, attaining an
overall accuracy of 73% [14]. Liu et al. [9] utilized the maximum
value, the average value of the growth duration, and the coeffi-
cient of variation of the seasonal amplitude in the EVI time series
curve to calculate flooding frequency, cropping intensity, crop-
ping diversity, and coefficient of variation, and partitioned the
cropping patterns into nine subsystems subsequently [9]. This
approach underscores the importance of selecting appropriate
time points and threshold during the crop growth cycle to map
cropping patterns, yielding relatively high accuracy. However,
due to the subjective nature of threshold selection, it will be
a challenge when directly applying this method to extensive
geographical areas, particularly in regions with insufficiently
detailed ground observations. Second, methods based on super-
vised classification. The selection of suitable feature variables
and classifiers is important to map cropping patterns. Liu et al.
[23] collaborated on optical and SAR time series, extracting time
features and the growing characteristics of the rotation systems,
and employed a hybrid deep learning architecture to discern
the rice rotation pattern in Hunan Province [23]. Li et al. [4]
utilized the peak and valley quantity characteristics in the NDVI
time series curves of double-cropping rice, single-cropping rice,
and winter wheat during the overwintering period, and mapped
the spatial distribution of single-cropping rice, double-cropping
rice, and rice-wheat rotation, using random forest models and
decision rule models [24]. This process also found that the
random forest-based model is more suitable for mapping crops
in multiple growing seasons. This conclusion aligns with the
findings of Tariq et al. [16]. However, these studies also re-
vealed that different crops with similar phenological periods may
display similar characteristics. Additionally, the time points for
distinguishing the same crop, influenced by variations in crop
sowing times, may be inconsistent. Thus, models relying on
decision rules may face challenges in effectively detecting dif-
ferences, resulting in a relatively lower accuracy in the extracted
information. Furthermore, some studies like [25] and [26] con-
tend that integrating multiple features, such as SAR images
and elevation, proves advantageous in effectively characterizing
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distinct differences among various crops, which improves the
accuracy of mapping cropping patterns, consequently.

In summary, the selection of suitable time nodes and charac-
teristic variables proves advantageous in the mapping of crop-
ping patterns. Thus, this study proposed a method that integrates
multidimensional feature variables and optimal phenological
windows to map cropping patterns distribution, using radar and
optical data from S1 and S2, and explored its applicability in
agriculturally intensive areas by the currently popular threshold
method and random forest method.

II. MATERIAL AND METHODS

A. Study Area

Xinghua County is located in the center of the Lixia River Sag
in the Jianghuai Plain (32°44’'N-33°16'N, 119°43'E~120°16'E)
(see Fig. 1). The county covers an area of 2393.35 km? and
belongs to the north subtropical humid monsoon climate, with
four distinct seasons, simultaneous rain and heat, rich water
resources, and superior farming conditions. The area has a
high level of agricultural intensification and complex cropping
patterns and the main crops are rice, wheat, and rapeseed, with
a typical cropping structure of two cropping seasons per year.
In addition, the total scale of local vegetable cultivation is large,
including chives, Longxiang taro and cabbage, etc. There are
many types of vegetables, but all of them have smaller scales
compared to the main crops. Therefore, in this article, they will
be uniformly classified as a single class of vegetables for analy-
sis. Xinghua County, with a water area of nearly 1.2 million mu,
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TABLE I
CROP CALENDARS OF MAJOR CROPS IN THE STUDY AREA

Month Oct Nov Dec Jan Feb

Mar Apr  May Jun Jul Aug Sep

Ten days
Wheat

Rapeseed
Rice

Taro

Chives

FMLFMLVFMLT FMLFMLTFMLTFMLTFMLTFMLTFMLTFMLTFML

I

is known for its rich aquatic resources and is often referred to
as the “Land of Fish and Rice.” In recent years, the scale of
crayfish-rice co-cropping as an emerging farming model in the
study area has been increasing. The cocropping process can be
divided into two stages, the rice planting stage from the begin-
ning of June to the beginning of November, and the irrigation
and soaking stage for the rest of the time [18]. In summary,
the cropping patterns of the study area can be divided into
six cropping patterns: wheat-rice, crayfish-rice, vegetable-rice
rapeseed-rice, rapeseed-vegetable, and year-round vegetables.
The crop calendars of the study area are shown in Table I.

B. Sentinel-1 SAR GRD and Sentinel-2 MSI Data

The S1 SAR GRD data adopts the VH (vertical trans-
mit/horizontal receive) cross-polarization method under the in-
terferometric wide swath mode. Its advantage is that it is not
affected by clouds and rain, and the revisit cycle is short [27].
S1 SAR GRD data in the GEE (Google Earth Engine) platform
has been preprocessed by past thermal noise and radiation
calibration. Because of the influence of different polarization
methods on the backscattering coefficient [28], combined with
the study area, this study selected the S1 VH polarization data
in 2020 and converted it into the backscattering coefficient.

The S2 MSI optical remote sensing data are Level-2A prod-
ucts that have undergone atmospheric correction and geometric
correction. There are 13 bands in total, ranging from visible light
to near-infrared and short-wave infrared bands, with a spatial
resolution of 10-60 m and a temporal resolution of about 5 days
[29]. Its built-in quality assessment band has identified cloud
pixels [30]. In this study, the S2 image data with cloud cover
less than 30% of the study area in 2020 were selected, and
preprocessing such as cloud removal was performed, and the
spatial resolution was uniformly resampled to 10 m.

C. Ground Reference Data

Combining the field survey results with the historical images
of 2020 on Google earth to select samples, the sample informa-
tion is as follows: 241 sample points of rice-wheat, 44 sample

points of rice-crayfish, 139 sample points of vegetable-rice, 120
sample points of rape-rice, 224 sample points of rape-vegetable,
193 sample points of annual vegetables, and 88 sample points
of other cropping patterns (including rape-soybean, rape-corn,
single-season fallow), which are divided into categories 1-7
according to the above order, and a total of 1049 sample points
(see Fig. 1).

To exclude the interference of nonvegetated land cover types
such as built-up areas on sample selection. In this study, prese-
lected sample points of various ground objects were used to train
the RF classifier for land use classification in the study, which
included five types: cultivated land, forest, water, building, and
others. The noncultivated land areas were then masked out to
focus on the cultivated layer for mapping cropping patterns.

III. METHODOLOGY

In this study, the phenological window feature (PWF) was
proposed to create a new feature. The crux of constructing
PWF involved selecting classification features and determining
phenological windows (number and period of windows). The
specific approach was as follows: initially, chosen appropriate
features and built a time series curve to observe the distinct dif-
ferences between different cropping patterns. Then, determined
the number of windows and their periods following phenological
window division rules. Finally, employed RTM and RF methods
to validate the classification effectiveness of PWF and mapped
the cropping patterns in the study area (Fig. 2). PW1, PW2, and
PW3 represent phenological windows 1, 2, and 3.

A. Index Calculation and Time-Series Construction

Time-series analysis of crop phenology is the basis for map-
ping cropping patterns [31], [32]. In this study, we used the
NDVI, EVI, LSWI, RVI, and VH time series curve of represen-
tative training samples to identify crop phenological features and
reflect crop growth process, such as sowing, seedlings, heading,
maturation and harvest within a year. In order to analyze the
overall trend and express the effect, we calculated the average
value of VIs and VH obtained during half a month to develop a
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half-month composite image (see Figs. 3 and 4). The calculation
formula of VIs is as follows:
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Fig.4. VHcurves of main cropping patterns. (a) Wheat-rice. (b) Crayfish-rice.
(c) Vegetable-rice. (d) Rice-rapeseed. (e) Rapeseed-vegetable. (f) Year-round
vegetables.

Bs — B
LSWI= ——— 3
Bs + Bi; S
Bs
RVI = =8 4
B, 4)

where the B2, B4, B8, and B11 represent the blue band, the
red band, the near infrared band, and the short wave infrared,
respectively.

B. Phenological Window Determination

Each crop exhibits unique phenological features during the
planting, growing, and harvesting stages, which offer the oppor-
tunity to utilize remote sensing time series images for mapping
different cropping patterns [33]. In this article, we named this
unique feature that different crops exhibit within their specific
growth stages as the PWF. Therefore, it is important to express
this feature with an appropriate index and capture this specific
time window. The determination of the phenological window
involves three steps. First, identifying the features that can
differentiate a specific crop from others during its growth period.
Second, determining the time window in which these features
persist, which means that finding the starting point and the end
point of the feature difference, respectively, similar to finding the
SOS and EOS of the crop growth cycle. Last, merging similar
time windows while preserving the differences in features within
the same window.

Based on the above definitions, we performed a brief analysis
of Figs. 3 and 4 to determine the phenological window. Among
winter crops, wheat exhibits a higher NDVI value at 60—120 days
compared to rapeseed and vegetables during the same period.
Vegetables, on the other hand, show a significantly smaller RVI
value at 1-120 days compared to wheat and rapeseed during
the same period. Moreover, rapeseed demonstrates a higher
VH value at 1-140 days compared to other crops, with a more
pronounced difference at 90—135 days. During the summer and
autumn cropping seasons, rice exhibits a higher NDVI value at
200-270 days compared to vegetables during the same period.
Furthermore, NDVI and EVI values are generally higher than
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TABLE II
CHARACTERISTIC SIGNAL COMBINATIONS FOR DIFFERENT
CROPPING PATTERNS

phenological PW1 PwW2 PW3
window
Rice-Wheat SPS / SPS
Rice-Crayfish FS / SPS
Rice-Vegetable VS / SPS
Rice-Rapeseed / RFS SPS
Rapeseed- / RFS WPS
Vegetable
year-round VS / WPS
Vegetables

LSWI during the growth of crops. However, in the case of
crayfish-rice cocropping in flooded fields, NDVI and EVI values
are smaller than LSWI, and VH values from 1 to 150 days
are also significantly lower compared to other crops during the
same period. Based on the analysis, the determined time win-
dows for this study were 30-120, 1-120, 90-135, and 200-270
days, respectively. During the process of merging similar time
windows, it was observed that combining the time windows of
30-120 and 1-120 days into 30-120 days did not result in a
decrease in the differences in characteristics. However, merging
the time window for rape recognition into 90-120 or 30-120
days resulted in a significant reduction in feature variance. Based
on the principle of determining the phenology window, this study
classified the time window of 30—120 days as PW1 (phenology
window 1), 90-135 days as PW2, and 200-270 days as PW3.

C. RTM Model

The PWF of different cropping patterns exhibit distinct char-
acteristic differences within phenological windows. In this study,
these characteristic differences were utilized as characteristic
signals, and the combination of characteristic signals from dif-
ferent cropping patterns is shown in Table II. By formulating the
appropriate rule set and counting the frequency of the character-
istic signal of each pixel in the Sentinel dataset during different
phenological windows, including SPSFpyy, (strong plant signal
frequency in PW,,), WPSFpw, (weak plant signal frequency),
FSFpw, (flooding signal frequency),VSFpw,, (vegetation sig-
nal frequency), and RFSFpy, (rapeseed flowering signal fre-
quency), only the pixels whose frequency of occurrence of this
characteristic signal exceeds the corresponding threshold will be
identified. The calculation formula is shown in Formulas (5)—(9)
as follows. The validity of PW1, PW2, PW3, and images in 2020
are depicted in Fig. 5. According to the statistics shown in Figs. 3
and 4, the following specific phenological characteristic signal
rules were determined:

1) Strong plant signal (SPS), NDVI > 0.75, LSWI > 0.3,

NDVI > LSWIL

2) Weak plant signal (WPS),0.3 <NDVI<0.75,0.2 < LSWI

< 0.3, NDVI > LSWIL.

3) Flooding signal (FS), LSWI > NDVI, VH < —24.

4) Rapeseed flowering signal (RFS), VH > —15.
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5) Vegetable signal (VS),RVI < 3,0.2 <NDVI < 0.5,NDVI

> LSWI
Nsps in PW
SPSFPWn — oM Wn 3)
Niotal in PW,,
Nwps in PW
WPSFpy, = ——— " (6)
Ntotal in PW,,
NFlooding in PW
FSFPW” _ ooding in n (7)
Ntotal in PW,,
Nviegetation in PW
VSFPW” — ege ation 1n n (8)
Ntotal in PW,,
NRFS in PW
RFSFpy, = —1r8in PW, 9)
Niotal in PW,,
where  Nsps in Pw,> IVWPS in PW,»  VFlooding in PW,, »

Nvegetation in PW,, » IVRFS in Pw,, are the effective observation
times of strong vegetation signal, weak vegetation signal,
flooding signal, vegetable signal, and rapeseed flowering signal
in PW,,, respectively. Niotal in Pw,, 1S the number of effective
observations of images in PW,,.

In order to ensure the accuracy of cropping patterns mapping,
it is crucial to determine the threshold for the frequency of
occurrence of different characteristic signals, which can avoid
misclassification caused by the same characteristic signals that
may briefly appear in different crops during the same season.
Therefore, in this study, the frequency of the characteristic
signals of the sample of different cropping patterns was counted
in intervals with a step frequency of 0.05. The threshold value
of the interval in which more than 95% of the sample points
were located was selected, and this value was used as the
threshold value to distinguish a certain cropping pattern within
this phenological window. If there were relatively few outliers
in the frequency distribution of the characteristic signal of the
sample, the threshold was determined based on the critical value
for the interval where the outliers were located.
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D. RF Model

RF model, a popular machine learning model in recent years,
has demonstrated exceptional performance in addressing classi-
fication and regression problems, making it a widely adopted ap-
proach in the field of remote sensing research [34], [35], [36]. RF
model conducts classification through an ensemble of decision
trees. This approach offers several advantages, including fast
training speed, robust generalization ability, and model stability,
making it a preferred choice in many applications [37]. Indeed,
RF is generally more effective than other machine learning mod-
els in processing multisource remote sensing data and datasets
with multidimensional variable features [38], [39]. Thus, we
employed the RF model to map the cropping patterns. To ensure
consistency with the variables used in the two methods, the
RF classification was also executed in the GEE environment.
The input data for the classification included optical images
from three phenological windows (PW1, PW2, and PW3), radar
images from two phenological windows (PW1 and PW2), and
corresponding features such as NDVI, EVI, LSWI, RVI, and VH.
The features inputted into the RF model include each vegetation
index feature from each phenological window, as well as the
maximum, minimum, and median values of the backscatter co-
efficient VH, totaling 42 features. The number of decision trees
and feature sets are two important parameters of RF. In this study,
we employed a random search strategy to determine the optimal
number of decision trees and utilized the recursive feature elim-
ination (RFE) algorithm [40] to refine the optimal feature set.

E. Accuracy Evaluation and Inter-Comparison

In this study, the training data and verification data were
divided in a ratio of 6:4, and the classification results of the
two different methods were evaluated using confusion matrix.
Four evaluation metrics were calculated: overall accuracy (OA),
kappa coefficient, producers’ accuracy (PA), and users’ accuracy
(UA). Then, the method with higher classification accuracy was
used for mapping cropping patterns in the study area.

IV. RESULTS
A. Threshold of RTM

The interval distribution of the characteristic signal frequen-
cies of the main cropping patterns in the study area calculated
based on sample points is illustrated in Fig. 6. Based on the
threshold determination method described above, the threshold
of SPSFpw, and SPSFpy, for mapping wheat-rice was 0.25 and
0.4, FSFpw, and SPSFpw,for mapping crayfish-rice was 0.6
and 0.4, VSFpw, and SPSFpyw,for mapping vegetable-rice was
0.6 and 0.4, RFSFpw,and SPSFpw, for mapping rapeseed-
rice was 0.6 and 0.4, RFSFpw,and WPSFpy,for mapping
rapeseed-vegetable was 0.6 and 0.4, VSF pyw, and WPSFpyy, for
mapping year-round vegetables was 0.6 and 0.4.

B. Feature Selection of RF

In this study, the step size was set 5, and the classification
accuracy was evaluated for different numbers of decision trees

7453

] @) — )

2
‘”‘!Ii‘“
RIRRX .

xi“:?'

SPSFpys

(@)

“‘Hil
i

W/(©)

'i:iilli

i

RESFpy, WPSF

1 5%,95% ©

VSFpw
Median

WPSFpyy

Fig. 6. Characteristic signal frequency distribution of main cropping pat-
terns. (a) Wheat-rice. (b) Crayfish-rice. (c) Vegetable-rice. (d) Rice-rapeseed.
(e) Rapeseed-vegetable. (f) Year-round vegetables.

Feature importance
e
>

2

T T T T T T T T
0 H 1015 20 25 30 35 40

Number of feature combinations

Features

(@ (b)

Fig. 7. Number of features and importance of each feature in the optimal
feature set. (a) Relationship between classification accuracy and number of
feature combinations. (b) Optimal features and their importance.

ranging from 1 to 1000. The highest accuracy was achieved at 45,
100, and 195 decision trees. To reduce training time, a decision
tree number of 45 was chosen. In addition, too many features
can lead to information redundancy and reduce classification
accuracy [35]. Therefore, we used the RFE algorithm to filter
the optimal feature set. First, seven feature indices with zero
feature weights were eliminated using the Loss L1-regularized
linear regression method, and then the relationship between the
optimal number of feature sets and overall accuracy was plotted
by RFE based on the remaining variables [see Fig. 7(a)]. The OA
of the RF classification reached its maximum when the number
of feature variables was 20, and the classification accuracy tends
to stabilize as the number of features increases. Finally, the
variables in the top 20 order of importance were renormalized
[see Fig. 7(b)]. The top six scores were PWINDVI, PWI1EVI,
PW3LSWI, PW2VH, PW1LSWImax, and PW1RVI. Combined
with the phenology window, the importance of features in PW1
was generally greater than that in PW3 and PW2. This may
be due to the relative complexity of crop types within PW1
and the fact that NDVI and EVI can significantly differentiate
crop growth conditions, resulting in generally high importance
scores. In addition, the importance of the median of the features
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Fig. 8. Comparison of accuracy of different cropping patterns. (a), (b) show
the PA and UA of different cropping patterns, respectively.

in the phenology window was generally greater than the max-
imum and minimum of the features within the window. This
suggests that using multidimensional feature variables can be
more effective in mapping cropping patterns.

C. Accuracy Evaluation and Intercomparison

The accuracy of the RTM and the RF training results were
verified using the confusion matrix. The OA of the RTM was
85.91%, with a Kappa coefficient of 0.831. The OA of the RF
model was 89.50%, with a Kappa coefficient of 0.872. In terms
of OA, the RF classification effect was slightly better than the
RTM.

Comparing the accuracy of the two methods in different crop-
ping patterns (see Fig. 8), it can be observed that the difference
between the PA and the UA of the RTM and RF in wheat-rice
and vegetable-rice mapping is small and they both perform well.
The difference of PA between the two methods in crayfish-rice
mapping was also small, but the UA of the RTM was 11.76%
higher than that of RF. The PA and UA of RF in rapeseed-rice
and rapeseed-vegetable were higher than those of the RTM
by 12.36% and 13% and 14.76% and 3.04%, respectively. In
addition, due to the diversity and fragmented distribution of
vegetable types, both methods exhibited noticeable omissions
and misclassifications in the mapping of year-round vegetables.
We selected three typical regions to compare the classification
results (see Fig. 9). It was observed that the RTM missed a
portion of the vegetable-rice [see Fig. 9(a3)], while both methods
mapped the crayfish-rice well [see Fig. 9(b3) and (b4)], with the
RTM showing more completeness. However, the RF misclassi-
fied a portion of the rapeseed-vegetable pattern as year-round
vegetables [see Fig. 9(c3) and (c4)]. Based on the classification
accuracy of different cropping patterns, it could be observed
that the RF performed better than the RTM in most cropping
patterns, except for the crayfish-rice where the RTM showed
higher accuracy.

D. Spatial Distribution of Cropping Patterns in Xinghua
County

Comparing the classification effects of the two models, the RF
method with higher accuracy was chosen to map the cropping
patterns of the study area (see Fig. 10). Through the analysis of
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Fig. 9. Classification details of RTM and RF. (al)—(c1) True-color image of
Sentinel in April 2020. (a2)—(c2) True color image of Sentinel in September
2020. (a3)—(c3) Classification results of RTM. (a4)-(c4) Classification results
of RE.
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Fig. 10.  Spatial distribution map of cropping patterns.

the spatial distribution trends of several major crops, the distri-
bution of cropping patterns in the study area and its influencing
factors can be summarized into the following aspects:

1) Rice is the predominant crop in the study area, with
its cultivation concentrated in the southern and north-
eastern regions. The rice fields are primarily utilized for
wheat-rice rotation. In addition, the crayfish-rice, a newer
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ecological breeding approach, is predominantly concen-
trated in the northwestern part of the study area. Vegetable-
rice and rapeseed-rice are relatively scattered and spread
all over the whole area.

2) Rapeseed is the primary oil crop in the study area, typically
grown in rapeseed-vegetable rotations. Its distribution is
scattered, with concentrations near Centipede Lake and
surrounding areas near the water system.

3) According to the research results and field survey, veg-
etables in the study area show a pattern of mainly aquatic
vegetables in the northwest and mainly facility vegetables
in the south.

V. DISCUSSION

A. Availability of PWF in Cropping Patterns Mapping

The division of phenological windows and the selection of
features are crucial steps in constructing PWF. Therefore, this
study separately analyzed the time-series curves of different
cropping patterns within the phenological window to validate the
reasonableness of using PWF (see Fig. 11). In PW1, the NDVI
of wheat showed a significant increase compared to other winter
crops. This is because after the overwintering period, wheat
entered the greening stage, and its NDVI started to increase
rapidly, reaching its maximum at the booting and heading stages.
Due to the winter season, the growth of vegetables was relatively
slow compared to other crops, and many vegetables, such as
shallots and taro, were covered with plastic film or placed in
greenhouses, resulting in a slow change in their NDVI values
[41]. RVI is commonly utilized for detecting and estimating
plant biomass owing to its sensitivity to the near-infrared band
[42]. However, the presence of mulch film and greenhouses
can weaken the vegetation signal of crops, resulting in spectral
characteristics that resemble both soil covered with a small
amount of vegetation and artificial ground surface [43]. This
can lead to lower values of near-infrared band compared to crops
such as wheat and rapeseed. The phenomenon also explains why
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the RVI values for winter vegetables in PW 1 remained relatively
unchanged and at a low level. In addition, during the PW1, the
crayfish-rice was typically in the stage of flooding and soaking
fields, which can be easily identified by leveraging the sensitivity
of SAR and LSWI to surface water [44]. In PW2, rapeseed
entered flowering stage, and the VH value can distinguish well
between rapeseed and other crops at this time. Some studies
found rapeseed exhibits unique spectral and color differences
during flowering [45]. And in similar studies, this period is
frequently used as an entry point to map the spatial distribution
of rapeseed by analyzing the photosynthetic parameters of the
canopy [46], [47]. The NDVI of rice was much higher than
that of vegetables during PW3. This is due to the fact that rice
at this stage entered the booting and heading stages, and its
chlorophyll content reached the peak, which is much higher than
that of vegetables. Studies have shown that vegetation indices
such as NDVI, EVI, and chlorophyll have a strong correlation,
so that rice and vegetables can be distinguished by NDVI or EVI
at this time. These indicated that the selection of PWF in this
study aligned with crop growth trends and possessed a scientific
foundation.

B. Advantages of PWF in Cropping Patterns Mapping

We applied the PWF to the data of 2022 and conducted
a comparative analysis with the conventional RF method to
assess the applicability of PWF. The maps obtained by the two
methods are displayed in Fig. 12. Fig. 13 reveals that the method
using PWF exhibited relatively higher accuracy. Additionally,
PWF demonstrated consistent performance in other years, in-
dicating its applicability. In Fig. 12(al)—(d1), it is evident that
traditional methods led to misclassifications in complex region,
particularly in crops like vegetables. The main manifestations
were that rapeseed-rice was mistakenly classified as rapeseed-
vegetable and year-round vegetables were mistakenly identified
as vegetable-rice and rapeseed-vegetable. This phenomenon
may be attributed to the diversity of types of vegetables, un-
dergoing substantial changes throughout their entire growth
period, which poses a challenge in identifying them based on
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Fig. 13.  Comparison of different methods based on the PWF mapping accu-
racy.

Fig. 14. RF Classification details of only SAR and Optical variable charac-
teristics. (al)—(c1) True-color image of Sentinel in April 2020. (a2)—(c2) Clas-
sification results of only SAR variable characteristics. (a3)—(c3) Classification
results of only optical variable characteristics. (a4)—(c4) Classification results of
all variable characteristics.

a unified feature. Alternatively, the misclassification might be
due to the classifier inputting characteristic variable information
throughout the year, and the high similarity of certain crops
at a specific growth stage overshadowing other classification
information. The method with PWF effectively addressed this
issue, relatively. By capturing the unique stages of crop growth
and leveraging multidimensional feature information, it maxi-
mized the distinction between different cropping patterns and
successfully reduced misclassification.

In addition, we also verified contribution of cooperative radar
and optical images in cropping patterns mapping. This study
used the RF method, which showed better classification re-
sults, as an example, and inputted separately the characteristic
variables of SAR and optical images in the three phenological
windows, while keeping the rest of the environment parameters
unchanged. It was found that compared with inputting SAR
alone and optical image features alone, the classification accu-
racy of collaborative SAR and optical image features increased
by 13.66% and 3.62%, respectively. To emphasize the contrast,
we selected the same typical area as shown in Fig. 9 to compare
the classification results using single input SAR, optical image,
and collaborative SAR and optical image features (see Fig. 14).
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It is easy to find that the approach of combining SAR and
optical image features collaboratively yields better results in RF
classification. This also showed from the side that appropriate
feature selection is conducive to improving mapping accuracy.

In summary, the PWF maximize the differences between
different crops, and such differences are in accordance with the
growth characteristics of the crop’s critical fertility period and
have a stronger physical interpretation in identifying different
cropping patterns. In cases where the same cropping pattern
exhibits significant temporal-spectral variability across different
regions or years, it becomes necessary to reconstruct the time-
spectrum curve of the typical cropping pattern. Subsequently,
determining the number and window period of phenological
windows based on the specific stages in the crop growth cycle
enables more accurate mapping of cropping patterns. In their
work, Han et al. [48] and Ibrahim et al. [49] successfully
accomplished crop type mapping in expansive regions and over
extended time scales through the appropriate time windows. This
also demonstrates the feasibility of extracting cropping patterns
in complex areas by choosing appropriate PWF. However, it
should be acknowledged that the selection of PWF cannot be
straightforwardly applied to other regions, and appropriate ad-
justments may be needed based on the environmental conditions
of the study area.

C. Applicability of RTM and RF and Uncertainty Analysis of
Cropping Patterns Mapping Result

This study utilized threshold methods and RF algorithms,
which are widely used in current research, to construct different
models, all of which yielded favorable classification results.
Among these methods, the RTM demonstrates robust general-
ization ability, and the selected key features possess a strong
physical interpretation. In addition, this method exhibits low
dependency on sample size, making it suitable for generalization
and application on larger spatial and temporal scales. However,
the RTM requires strong prior knowledge and may need different
rule sets to be determined for different regions based on factors
such as climate and crop type. As a machine learning model,
the RF has the advantage of fast training speed. Moreover, when
the same set of phenological characteristic variables is input, the
RF tends to yield slightly better classification results compared
to the RTM. But it also requires an accurate and sufficient
sample sets to support the training model. In addition, the study
area is characterized by low relief and flat terrain. To ensure
the consistency of the two methods, texture and topographic
features were not taken into account in this study. It has been
shown that incorporating suitable texture and terrain features
can improve the classification results to some extent [S0]. At the
same time, different models may perform differently in different
environmental conditions. Therefore, it is crucial to carefully
select an appropriate classification model based on the specific
local conditions for optimal results in the areas with complex
cropping patterns.

Despite the good classification results, this study still has
some shortcomings to be improved. First, in order to mitigate
the influence of factors such as forest land, this study was



YANG et al.: INTEGRATING MULTIDIMENSIONAL FEATURE INDICES AND PHENOLOGICAL WINDOWS FOR MAPPING CROPPING PATTERNS

conducted on the basis of the cropland layer. To accurately
delineate cultivated land, this study employed the RF method to
classify the land cover type into five categories: cultivated land,
forest, water, building, and others. The OA of the classification
was 91.84%, with the PA of 93.12% and the UA of 92.34%
specifically for cultivated land. Although the range of cultivated
land was mapped more accurately, the results of cropping pattern
mapping will inevitably be affected by the accuracy of cultivated
land mapping. In addition, pixel-based research is susceptible to
“salt and pepper noise” interference [18], and the classification
details may be relatively fragmented. In this article, it was mainly
observed in the relatively fragmented vegetable land. When
counting the specific area of different cropping patterns, the
result may be too large. In the future, object-oriented approaches
or studies at the plot scale can be considered for follow-up.

VI. CONCLUSION

The development of satellites with high spatial and temporal
resolution has made it possible to create fine-scale cropping
pattern maps in agriculturally intensive areas with fragmented
agriculture fields. In this study, a novel feature was proposed
that combines SAR and optical images with PWF for the suc-
cessful mapping of the spatial distribution of cropping patterns
in Xinghua County. The main steps include the following:

1) Compositing half-moon images to construct VIs and VH
standard time-series curves of different cropping patterns.

2) Determining the phenological window.

3) Using the RTM and RF to map the cropping patterns.

The results of the study showed that the phenological windows
extracted from the cropping patterns in the study area were
30-120, 90-135, and 200-270 days, respectively. The OA of
RTM and RF, based on phenological window features, were
85.91% and 89.50%, respectively. The kappa coefficients for
RTM and RF were 0.831 and 0.872, respectively. In terms of
classification performance, RF slightly outperformed RTM. The
PWEF proposed in this study can effectively identify cropping
patterns in agriculturally intensive areas, which can provide
valuable data for ecosystem service assessment and regional
landscape planning.
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