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Generating Fuzzy Membership Functions for
Modeling Wetland Ecosystems From Multispectral

Remote Sensing Images
Jifa Guo and Shihong Du

Abstract—The inherent fuzziness of wetland ecosystems largely
accounts for the spectral variability of wetland ecosystems in
remote sensing images. In addition, a limited spatial resolution
leads to the presence of many mixed pixels in middle-resolution
multispectral remote sensing images. The existing methods that use
a single center or a limited number of endmembers to represent
land cover types cannot fully account for the spectral variability
of land cover types; moreover, these methods use these limited
representations to calculate the membership function (MF), leading
to limited classification and mapping performance. To address
spectral variability and mixed pixels, this study proposes a novel
MF generation method, in which mixed pixels are treated as an
auxiliary type, and the clustering and spectral characteristics are
integrated to detect the cores of land cover types in spectral space.
Then, the spectral diversity can be fully expressed by the core
components of the land cover types. The membership values of
mixed pixels are calculated from the core components via the sparse
reconstruction method. The experiment shows that the proposed
method has a substantial increase in classification accuracy over
the existing methods.

Index Terms—Fuzziness, fuzzy set, membership function (MF)
generation, spectral variability.

ABBREVIATIONS

MF Membership function.
FCM Fuzzy C-means clustering method.
FKNN Fuzzy k-nearest neighbors method.
FSSC Fuzzy semisupervised clustering method.
IT2FCM Interval type-2 FCM clustering method.
NDVI Normalized difference vegetation index.
MNDWI Modified normalized difference water index.
C+1 FMG C+1 fuzzy membership generation method.
UG Unlabeled granule.
PG Pure granule.
SG Sparse granule.
IG Impure granule.
BG Boundary granule.
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CG Core granule.
IGC Internal granule of core.
FGC Fringe granule of core.
NPG New pure granule.
ISk k-influence space.
NN Natural neighbor.
RNN Reverse nearest neighbor.
NaNE Natural neighbor eigenvalue.
LPP Locality preserving projections.
SAM Spectral angle metric.
SID Spectral information divergence.
SAM-SID SAM-SID mixed measure.
JM-SAM Jeffries–Matusita-spectral angle mapper.
CFDT C-fuzzy decision tree.
SIIT2-FCM Semisupervised interval type-2 FCM using spa-

tial information.
SS-AIT2FCM Semisupervised adaptive interval type-2 fuzzy

C-means algorithm.
OA Overall accuracy.
Fractional SU Fractional-based sparse unmixing method.

I. INTRODUCTION

W ETLANDS are multifunctional and biodiverse ecosys-
tems on Earth and play key roles in food production,

water purification and control, air purification, climate regula-
tion, nutrient cycling, flood reduction, and biodiversity conser-
vation [1], [2]; however, they also exhibit intrinsic fuzziness.
That is, some locations may partially belong to some wetland
components, and there is no clear boundary line between them.
For instance, the boundary of a lake often involves a gradual
transition zone from shrubs to aquatic plants and then to shallow
water, which means that it is difficult to draw a crisp line
between water and nonwater areas. For several decades, remote
sensing technologies have been widely used for monitoring,
managing, and analyzing wetland environments [3], [4], [5], [6],
and some studies have focused on the intrinsic fuzziness [7], [8]
of wetlands, especially the spectral variability [9] of wetland
components. Two types of spectral variability are commonly
considered: variability within one class (within-class variability)
and similarity among endmember spectra of different classes
(interclass variability) [10]. Middle-resolution multispectral re-
mote sensing images, i.e., Sentinel-2 and Landsat 8 images,
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are more suitable for mapping wetlands than very high resolu-
tion remote sensing images because of their appropriate spatial
resolution and low cost. However, due to their limited spatial
resolution, mixed pixels are mixtures of different pure materials
in these types of images [9]. The presence of spectral variability
and mixed pixels has been recognized as two major problems in
the remote sensing community. From the wetland classification
point of view, some wetland components may be less than
the spatial resolution of the middle-resolution image, and the
interlaced distribution of small patches will subsequently form
many mixed pixels in middle-resolution images. This approach
makes boundaries between different land cover types fuzzier.
In addition, preprocessing methods, such as geometric correc-
tion and image fusion, may introduce uncertainties into remote
sensing images, and these methods may also cause blurring
of middle-resolution remote sensing images. These phenomena
lead to difficulty in wetland classification.

Fuzzy sets provide a more appropriate way to map and analyze
the fuzziness of wetlands than traditional Boolean methods [8],
[11]. MFs, which express the probabilities of elements partially
belonging to fuzzy sets, are used to describe the fuzzy boundaries
of wetland components [7] and are the basis of wetland fuzzy
classification. Fuzzy clustering and classification methods, such
as FCM clustering [12], [13], FKNN [14], fuzzy semisupervised
clustering [15], and interval type-2 FCM clustering [16], are
often used to classify remote sensing images. MFs should be
generated first in these methods, and then the remote sensing
images are classified according to the maximum membership
principle. In addition, MFs can be used for image processing and
understanding [17], land cover classification and subpixel land
cover mapping [18], [19], [20], fuzzy geographic object model-
ing and analysis [21], [22], [23], etc. However, due to the spectral
variability and large mixed pixels in middle-resolution remote
sensing images, land cover types may have multiple clusters in
spectral space, and these clusters may have different shapes and
sizes. In addition, mixed pixels also form clusters of different
shapes and sizes, and in our experiments, the clusters of mixed
pixels may sometimes be larger than those of pure pixel clusters.
Since pure pixels are clustered as regions in spectral space and
because spectrum mixed pixels may be a combination of spectra
of pure pixels of different land cover types of any proportion,
the mixed pixels may be located in clusters of land cover types.
To our knowledge, this phenomenon has often been ignored
in the existing studies. Thus, using clustering characteristics to
determine pure pixels may lead to overestimation of pure pixels.

The above-mentioned fuzzy methods often have poor per-
formance in dealing with spectral variability and mixed pixels.
Current fuzzy clustering and classification methods focus on
the clustering characteristics of land cover types, ignore the
clustering characteristics of mixed pixels, and apply a single
point (a single or interval-valued point) to represent the centers
of land cover types. However, intraclass variability cannot be
represented by a single signature [24]. First, from the perspective
of spectral diversity, the clusters of land cover types should be
regions in spectral space due to the spectral diversity of remote
sensing data. Taking a body of water as an example, the internal
areas of water may be different in depth and composition,

resulting in different spectra at these locations. These areas
are entirely bodies of water, so these locations are expected to
belong to the core of bodies of water. Second, the membership
degree of each pixel is calculated by the distance between it
and these centers in current clustering-based methods. From the
perspective of spectral mixing, this means that other pixels are
mixed by these center points in different proportions, which is
unreasonable; for example, a pixel in the core of a water body
should not be mixed with the centers of water and centers of
other land cover types. In reality, the spectral characteristics of
mixed pixels should be a mixture of those of any pixel in clusters
of land cover types. For example, a mixed pixel along a water
body may be a mixture of grasslands and deep waters or a mix-
ture of grasslands and shallow waters. Therefore, determining
enough pure pixels for land cover types and establishing mixing
relationships between these pure pixels and mixed pixels are
the two keys for establishing MFs. Currently, many algorithms
have been developed for estimating endmembers or endmember
bundles as pure pixels [25], which is itself a very difficult and
ill-posed problem [9], [24], [26]; alternatively, spectral indices
are adopted to capture the full variability in vegetation spectra
[10], i.e., pixels with an NDVI>0.7 are selected as pure pixels
of vegetation. This method requires the selection of a strict
threshold to ensure that the selected pixels are pure. Therefore,
some pure pixels may be lost, for example, a pixel with an
NDVI = 0.69. Another unavoidable fact is that there are many
spectral indices for some land cover types, such as water and veg-
etation, and the performance of these indices varies greatly. In
addition, it is difficult for us to establish spectral indices for some
land cover types. In other words, it is difficult to apply suitable
spectral indices and corresponding thresholds to capture the full
variability of each land cover type. For the second key issue,
many methods are available for estimating the proportions of
different endmembers in a mixed pixel. However, most of these
methods use a limited number of endmembers or endmember
bundles [10], [26] for this task. Fuzzy unmixing methods [27]
estimate the membership degrees or abundance fractions by
calculating the closeness between synthetically mixed spectra
with all possible endmember combinations and the observed
pixel spectra; however, their computational complexity does
not scale well with the number of endmembers [26]. In other
words, these faults result in limited classification performance
in wetland mapping. In summary, the intrinsic fuzziness of wet-
lands, spectral variability, and mixed-pixel problems together
make it very difficult to generate MFs for land cover types in
wetlands, which remains a challenge in wetland classification
and mapping.

This study introduced a novel MF generation method that
comprehensively considers the intrinsic fuzziness of wetlands,
spectral variability, and mixed pixels. To capture the full spectral
variability of the land cover types, the cores of the land cover
types in spectral space were detected by combining the clustering
characteristics and spectral indices. As mentioned earlier, it is
difficult to draw a clear boundary line between fuzzy wetland
components, but we can determine some areas as transition
zones between these fuzzy wetland components. Therefore,
transition zones were used as an auxiliary land cover type in
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this study. Second, the remote sensing images were divided into
small granules in spectral space, and a training set was used to
classify these granules into four types: pure labeled granules,
impure labeled granules, SGs, and UGs. Labeled and IGs were
used to determine the core components; that is, pure labeled
granules completely belonged to a land cover type, while IGs
were between two land cover types. Third, the clustering charac-
teristics combined with spectral indices were combined to detect
the core components for each land cover type via a self-learning
process; that is, some constraints with spectral indices were
designed for the land cover types. Then, all the granules in the
core components and satisfying spectral index constraints were
treated as PGs, and the other granules were treated as BGs.
Thus, pixels in PGs of C land cover types were regarded as pure
pixels of C land cover types, and other pixels were boundary
pixels between these C types. Fourth, considering that the spectra
of mixed pixels may be a combination of the spectra of pure
pixels of different land cover types and that the number of pure
pixels is very large, the membership degrees of these boundary
pixels were calculated by the sparse reconstruction method [28],
[29]. Therefore, the proposed method was named the C+1 FMG
method in this study, and the contributions of this study included
the following.

1) Mixed pixels were treated as an auxiliary type for gener-
ating MFs.

2) Full spectral variability was expressed by combining clus-
tering and spectral characteristics.

3) A method for calculating the membership degrees of
boundary pixels based on core components was derived.

4) The C+1 FMG was found to have better performance
than the MFs generated from the existing MF generation
methods.

The rest of this article is organized as follows. In Section II, the
main idea for the C+1 FMG is described. In Sections III and IV,
the Beidagang wetland natural reserve was used as an example
to test the performance of the proposed method. Section V is the
discussion. Finally, Section VI concludes this article.

II. METHODOLOGY

First, existing clustering-based fuzzy classification methods
only consider the clustering characteristics of land cover types
but ignore the clustering characteristics of mixed pixels; Fig. 1(a)
illustrates this problem. In this figure, two types of pixels were
assumed: water and vegetation. Due to the atmospheric effects,
illumination and topographic changes, and intrinsic variations in
the spectral signatures of materials [9], the spectral signatures
of all pixels of each type are variable, and these two types of
pixels exhibit two clusters with different shapes in spectral space.
Because of the large number of mixed pixels, these mixed pixels
may also exhibit clustering characteristics.

Second, in the existing clustering-based fuzzy classification
methods, one spectrum is used to represent the center of a land
cover type, and the membership degree of an unknown type
pixel is determined by the distance between the pixel and two
centers. Obviously, the spectral variability was ignored. For
example, in Fig. 1(a), pixels 1, 2, and 3 were assumed to be

Fig. 1. Illustration of the spectral variability and spectral mixing between
water and vegetation. It was assumed that pixels 1, 2, and 3 were pure pixels of
water, and pixels 4, 5, and 6 were pure pixels of vegetation. Pixels 7 and 8 were
mixed pixels, and pixels 9, 10, and 11 were unknown type pixels.

water samples and represented shallow, moderate, and deep
water, respectively, while pixels 4, 5, and 6 were assumed to
be vegetation samples and represented reeds, grassland, and the
transition zone between them, respectively. The center could be
calculated for these samples, the variation between pure samples
was ignored, and the membership value of the mixed pixels could
not be correctly calculated. For example, mixed pixel 7 was a
mixture of shallow water and grassland; thus, the membership
degree of pixel 7 should be determined by pure pixels 1 and
4. Similarly, mixed pixel 8 was a combination of deep water,
shallow water, reeds, and grassland; thus, its membership degree
should be calculated by pure pixels 1, 3, 4, and 6.

Third, a mixed pixel could be a mixture of any pure pixels of
different types. For example, the unknown type pixel 10 may be a
mix of pure pixels of water and vegetation that were not selected
as training samples, such as pixel 9. Furthermore, a mixed pixel
may be in the core of a land cover type when spectral diversity
must be considered. In Fig. 1, a mixed pixel can be at any location
on the green dotted line [27]; thus, the unknown type pixel 11
may be a mixed pixel. This means that it is not sufficient to
select pure pixels only by using clustering characteristics, as
this approach may lead to the overestimation of pure pixels.

To consider the above three issues when constructing fuzzy
MFs, we built MFs for C land cover types; then, C types of pure
pixels were selected as training samples. In addition to these C
types of training samples, some samples in the transition zones
were selected as training samples for the auxiliary type in this
study. It is well known that pixel-level classification methods
require considerable computational and memory resources. We
segmented an image into small granules by the weighted FCM,
and each granule contained several pixels with high spectral
similarity. These granules were considered the basic processing
units in this study and were classified into four types—purely
labeled, impurely labeled, and SG and UGs—based on the
number and types of training pixels in these granules. The C+1
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Fig. 2. Diagram of the proposed method.

types of PGs (PGs of the C target class and one type of complete
BG) and impure labeled granules were used to determine the
core components of the land cover types and the transition zones
between different types, and some spectral index constraints
were integrated to purify these PGs. Finally, the membership
values of the BGs were determined via the sparse reconstruction
method. A diagram of the proposed method is shown in Fig. 2.

A. Spectral Segmentation of Remote Sensing Images

It is well known that classification at the pixel level is time
consuming. Alternatively, clustering-based methods are useful
for reducing the running time of classification [10], [30] and
expressing spectral diversity [31], which segment a remote
sensing image into small clusters or granules in spectral space.
These granules can then be used as units for classification and
other image analysis tasks. In this study, the hierarchical clus-
tering process based on the FCM algorithm with the weighted
Euclidean distance was adopted, and the full dataset X was
clustered into T leaves by the FCM algorithm. The weighted
Euclidean distance was determined as follows:

dik =

M∑
j=1

(xij − vkj)
2

σ2
j

(1)

where dik is the weighted Euclidean distance between sample
xi and center vk and σj is the standard deviation of dimension
j of the dataset. The number of samples NG in a node was
used as the termination criterion in this study. If a node does not
reach the termination condition, it is split repeatedly; otherwise,
it cannot be split and is treated as a leaf. The hierarchical tree
is shown in Fig. 3, and the dotted and solid circles represent the
intermediate and leaf nodes, respectively. In this study, all the
leaves were named granules.

For the parameters of the weighted FCM algorithm, the num-
ber of children at a node had little effect on the classification
accuracy, while the maximum number of iterations and the
termination error had large effects; thus, the values of these two
parameters were selected according to the literature.

Fig. 3. Hierarchical cluster tree [20].

Fig. 4. Illustration of the four types of granules in spectral space.

B. Classification of Granules Into Four Types

As discussed in Section I, there are large mixed pixels in
middle-resolution remote sensing data, especially when the
study area is complex, such as a wetland environment. It is
difficult to select enough high-quality samples for target land
cover types via supervised fuzzy classification methods. There-
fore, in this study, a limited number of pure and mixed pixels
were selected as a training dataset; i.e., the training dataset
included C land cover types, and mixed pixels were treated as an
auxiliary type and were used to mask these granules. Then, we
found that some granules contain no training pixels, while others
contain some labeled pixels. Therefore, a granule can be ex-
pressed as G = {lpi} ∪ {upj}, where {lpi}(0 ≤ i ≤ Nlp) and
{upj }(0 ≤ j ≤ Nup) refer to the labeled and unlabeled pixels
in each granule, respectively. Fig. 4 illustrates the distribution
of labeled and UGs; land cover type 1 contained clusters A and
B with different shapes; type 2 contained cluster C; granules
4, 5, 6, 7, 8, 10, 12, 14, 17, 20, 22, 29, 30, 31, 33, and 38 were
labeled; and the others were unlabeled. For granules with labeled
pixels, some granules may contain only one type of labeled pixel;
however, due to spectral uncertainties, some labeled granules
may contain several types of labeled pixels. Obviously, a granule
with many labeled pixels of a single type was most likely to be
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inside a land cover type, and a granule with multiple types of
labeled pixels must be in the transition zone between different
types.

To distinguish the PGs from the others, the number and type
of labeled pixels in a granule were used to classify the granules
into four types:

1) UGs, which contained no labeled pixels, i.e., Nlp = 0;
2) PGs, which had only one type of labeled pixel and were

larger than a certain threshold;
3) SGs, which contained only one type of labeled pixel, but

the number of labeled pixels was greater than 0 and less
than the threshold;

4) IGs, which had more than one type of labeled pixel.
It is clear that Gs = UGs ∪ PGs ∪ SGs ∪ IGs. In this study,

the threshold for distinguishing between SG and PG was de-
termined by the inflection point method. First, we counted the
number of labeled pixels in granules that had only one type
of labeled pixel, calculated the frequency of these numbers
and constructed a line graph. The threshold was subsequently
determined by the inflection point of this graph. In Fig. 4, PGs
4, 5, 7, 8, and 14 are PGs of type 1; granules 17, 20, and 22 are
PGs of type 2; granules 30, 31, and 36 are PGs of the transition
zone; granules 29, 33, and 35 are IGs; granules 6, 10, 12, and
18 are SGs; and the others are UGs.

It was assumed that PGs and IGs were at the core of land cover
types and in the transition zones between types, respectively,
meaning that the PGs certainly belonged to a land cover type
and could be treated as CGs and that a CG of a land cover type
contained pixels in the cores of geographical objects of the same
type. The BGs were located between clusters of different land
cover types, so a BG contained pixels in the fuzzy boundaries
of geographical objects.

Notably, Fig. 4 illustrates the distribution of the four types
of granules in spectral space. Obviously, all PGs cannot reflect
the distributions of the two types or the transition zone between
them. Therefore, as detailed in the Section II.C, a self-learning
process was designed to detect other PGs of two land cover types
and transition zones. The centers of these granules can be used
to represent them because of the high similarity of pixels in each
granule.

C. Determination of the Core and Boundary Components of
Land Cover Types With Clustering Characteristics and
Spectral Indices

Fig. 4 illustrates that the spectral diversity or variability of
each land cover type cannot be described by these initial PGs.
In contrast, if all PGs of each land cover type could be detected,
the spectral diversity could be fully expressed by these PGs. As
discussed above, it was not sufficient to detect all PGs by using
only clustering characteristics. In this section, the clustering
characteristics and spectral indices of the land cover types were
combined to determine all PGs. To capture the full spectral vari-
ability, the initial PGs were used as seeds, topological analysis
of the granules in spectral space was introduced to generate can-
didate PGs, and the spectral characteristics were subsequently
incorporated into this process to restrict these candidates.

First, all centers of PGs and IGs were used for this task
and managed by the cover tree [34] to improve the efficiency
of the neighbor query. The definitions of the CG and fringe
granules were first introduced by the notion of the k-nearest
neighborhood.

Definition 1 (IGC): If all the k-nearest neighbors of a PG
are also PGs and have the same land cover type, then this PG
represents an IGC.

Definition 2 (FGC): If a PG and its k-nearest neighbors have
different land cover types, or its k-nearest neighbors contain an
IG, then it is an FGC.

The UGs and IGs could be determined by checking whether
they were CGs according to Definition 3.

Definition 3 (NPG): For a UG or SG, if its k nearest neigh-
bors are IGCs with the same land cover type and satisfy the
corresponding spectral index constraints, then it is an NPG of
the corresponding land cover type.

For example, in Fig. 4, where k = 3, granule 20 was a PG, and
its neighbors were PGs (granules 18, 21, and 38 are PGs); thus,
according to Definition 1, granule 20 was an IGC. However, the
neighbors of granule 38 were granules 18, 20, and 36; granules
18 and 20 were PGs of type 2; and granule 36 was a PG of
the boundary; thus, according to Definition 2, granule 38 was an
FGC. Granule 21 was a UG, and all of its neighbors (granules 17,
20, and 22) were IGCs; thus, it was an NPG of type 2 according
to Definition 3.

Notably, the concepts of the core and boundary of a land cover
type in a given place are different from those of a cluster. For
example, in Fig. 4, granule 6 was a BG of cluster A, but it was a
CG of type 1. On the other hand, if spectral index constraints are
not considered in Definition 3, the PGs of some land cover types
may be overestimated due to the multidimensionality of remote
sensing data. The spectral characteristics were incorporated
into Definition 3 to restrict these candidates in this study. Due
to the complexity and vagueness of the wetland environment,
it was difficult to define strict spectral index constraints for
each land cover type, and threshold selection was also difficult.
Alternatively, relatively loose constraints were adopted in this
study. For example, the NDVI of vegetation had to be less than
0.3, the MNDWI [35] of vegetation could not be larger than 0,
and the threshold for these constraints could not necessarily be
too strict.

Currently, three strategies can be used to find the optimal k
for Definition 1, Definition 2, and Definition 3: First, to find the
optimal k for all testing samples, manually adjusting the k value
is a common method. Lall and Sharma [36] suggested that the
fixed optimal k-value should be k =

√
n (where n > 100 is

the number of training samples); second, the optimal k for each
class [37], [38] can be found using the following equation:

kcm = min

(
α+

[
k ∗N (cm)

max {N (cj)} |j = 1, 2, . . . , C

])
, m

= 1, 2, . . . , C (2)

where N(cm) denotes the size of class cm in the training set,
max{N(cj)} is the size of the largest class, α is a nonnegative
integer used for maintaining a reasonable minimum value of
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kcm , C is the number of classes, and k is the original input
integer for defining the nearest neighbors. Third, the optimal k
value was found for each testing sample [39] or each training
sample [29], [40] based on the reconstruction framework or
other methods. The literature has shown that the reconstruction
framework has better accuracy than the other two methods in
most cases, but this method is too complex and time consuming.
When the dataset is highly sparse and has uncertain attributes, the
classification accuracy is worse than that of FKNN classification
[41]. The k-influence space (ISk) method [42] can be used to
automatically find the optimal k value for each sample; another
advantage of this method is that it needs no parameters, which
saves the trouble of parameter tuning. Zhu et al. [43] redefined
the space based on NNs and RNNs. The concept of an NN can
be simply described as follows. Let xi and xj be two samples
of a dataset. If xi is a neighbor of xj and xj is a neighbor
of xi at the same time, then xi and xj are NNs of each other
[44]. The NNs of each sample can be found by the NN search
algorithm, and the NaNE is equal to the search round r in which
the algorithm reaches a stable searching state; the NN of sample
xi is expressed as NN(xi), while the number of NN(xi)s is
expressed as NaN(xi). The maximum neighborhood graph is
constructed by connecting each point xi to its Max(NaN(xi))
nearest neighbors. For detailed information about the NN, we
refer the reader to [43] and [44]. The RNNs of object xi are the
points that have xi as one of their k-nearest neighbors, expressed
as RNN(xi). Then, the k-influence space of xi was expressed as
follows:

ISk (xi) = NNk(xi ) ∪ RNNk(xi) (3)

where k is determined by the NN search algorithm; that is, k =
Max(NaN(xi )). The ISk neighbors may be different for each
sample in the graph, which is suitable for automatically finding
optimal neighbors for samples with complex data structures. In
addition, this method does not need to set or tune any parameters
during application.

An iterative process is designed to detect enough PGs. First,
all centers of UGs, PGs, SGs, and IGs are calculated, as shown
in Fig. 4, while the centers of PGs and IGs are used as seeds to
construct a cover tree. Then, the IGC and FGG sets can be found
for each type in terms of Definition 1 and Definition 2, and the
NPGs in UGs and SGs can be found according to Definition 3.
All the found centers of these NPGs are added to the cover tree,
and the IGC and FGC sets are also updated. This process is
repeated until the number of PGs is unchanged; that is, all the
CGs of each land cover type are detected. During this process,
the number of C+1 PGs may increase, and the presence of BGs
limits the increase in the number of target granules, while the
number of granules increases. Finally, all the pure pixels of the
target classes and boundary pixels are detected, as shown in
Fig. 1(b). Finally, the BGs can be expressed as follows:

BGs = Gs−
⋃
c

PGs′ = UGs′ ∪ PGsM ∪ SGs′ ∪ IGs′ (4)

where PGs′ are the final pure granules of C target land cover
classes, PGsM is the final pure granule of the auxiliary land cover

Algorithm 1: Determine the PG and BG.
Input: UGs, SGs, SGs, IGs
Output: final PGs, BGs
Repeat:
Find the optimal k with one of the three strategies.
Determine IGC and FGC by Definition 1 and
Definition 2;

Determine the candidate NPG by Definition 3;
Purification of candidate NPGs by spectral index
constraints

Until the number of PGs is unchanged
Set the final PGs;
The BGs are set by (4).

type, and UGs′, SGs′, and IGs′ are the remaining unlabeled,
sparse, and impure granules, respectively.

Fig. 1(b) illustrates the results of this process. Although the
clusters of the two types have different shapes, all the internal
granules of the two types could be detected, and the transi-
tion zones between the two types could be clearly described.
Therefore, the spectral diversity of land cover types could be
fully expressed. The performance of the three strategies for
determining neighborhoods was investigated in the experiment.
The specific algorithm flow is described in Algorithm 1.

D. Determination of the MFs and Remote Sensing Image
Classification

In the Section II.C, PGs of C land cover types and BGs of
these types were detected. The pixels in PGs′ are treated as pure
pixels, and the membership degrees are set to 1; the membership
degrees of other types are set to 0. The other pixels in PGsM ,
UGs′, SGs′, and IGs′ are the boundary pixels.

In this section, the sparse reconstruction method [28], [29]
based on LPPs [45] is adopted to calculate the membership
degree of pixels in these mixed pixels. The centers of the PGs
are X ∈ Rd×n = [x1, . . . , xn] , and the centers of the BGs
are Y ∈ Rd×n = [y1, . . . , ym] , where n, m, and d represent
the numbers of PGs, BGs, and bands, respectively. These PGs
are used to reconstruct each BG with the goal that the distance
between Xwi (where wi ∈ Rn denotes the reconstruction co-
efficient matrix) and yj is as small as possible. For the linear
sparse mixing model, each BG can be decomposed into a linear
combination of PGs as follows:

yj = WX + ε (5)

where W ∈ Rn is the reconstruction coefficient or the correla-
tion between the center of PGs and the center of a BG and ε is the
noise value. To generate a sparse reconstruction coefficient for
yj , the objective function of the sparse reconstruction method
[27], [28] is expressed as follows:

min
W

‖XW−X‖2F +ρ1‖W‖1+ρ2Tr
(
WTXLXTW

)
, W ≥ 0

(6)
where ‖W‖1 is an �1-norm regularization term and W ≥ 0
means that each element of W is nonnegative. L = D − S is
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the Laplacian matrix that measures the relational information be-
tween bands, and S refers to the similarity matrix between bands

calculated by the radial basis function f (a, b) = exp(−‖a−b‖22
2σ2 )

(where σ denotes the kernel width). D is a diagonal matrix, i.e.,
the ith diagonal element in D, where Dii =

∑d
k=1 Sik . ρ1 and

ρ2 are two tuning parameters. The larger the value of ρ1 is, the
sparser the W ; ρ2 is used to control the order of magnitude of
the LPPs [28]. The optimization algorithm of (6) is introduced
in [28] and [29]. After optimizing (6), the weight matrix W can
be obtained, which indicates the correlations between PGs and
BGs yj . Specifically, a positive weight (i.e., wi,j > 0) indicates
that the ith PG and yj are positively correlated, while a negative
weight (i.e., wi,j < 0) means that their correlation is negative.
In particular, a zero weight (i.e., wi,j = 0) means that there is
no correlation between them.

The sparse reconstruction algorithm is time consuming, i.e.,
at least O(n2∗d) for predicting each BG, where n is the number
of PGs. Sometimes the number of detected PGs may be large;
thus, it is necessary to speed up this algorithm. However, the
spectra of each BG could be a combination of those of any
PG; thus, it is necessary to select PGs that are strongly related
to a BG by similarity measures. We tested the performance
of several similarity measures, such as the Euclidean distance,
the weighted Euclidean distance, the SAM, the SID, the SAM-
SID mixed measure, and the JM-SAM [47], [48], which is a
combination of the deterministic spectral angle mapper and the
stochastic Jeffries–Matusita measure by the tangent [47]. That
is, the JM-SAM is used to calculate the distances between yj and
PGs of each land cover type and sort these distances; then, K top
strongly related PGs from PGs′ for each land cover type can be
selected and used to reconstruct yj by (6), where X contains K∗C
centers of PGs and K∗C is much smaller than the total number
of PGs. The weight matrix W is calculated by optimizing (6).
The JM-SAM was selected for this study because it has a higher
classification accuracy than other measures.

The membership degree of BG yj belonging to land cover
type c can be calculated by

μjc =

∑K∗C
t=1,PGtεPG′

c
wjt∑K∗C

t=1 wjt

, (wjt > 0) (7)

where PG′
c is the pure granule of land cover type c and PGt is

the tth pure granule.
Like in other fuzzy clustering methods, the principle of

the maximum membership degree is used to determine the
types of unlabeled samples, which can be expressed as uih >

max
h 
= j

j = 1,2, . . . ,C

uij . Although salt-and-pepper noise could be

observed in the results, some small fuzzy objects could be
detected. That is, nonsmoothed results are beneficial for the
extraction of small objects, such as drains, puddles, and dirt
roads.

E. Computational Complexity Analysis

The computational complexity of the proposed method is
the sum of two contributions. The complexity of step 1 is

Fig. 5. (a) Suaeda salsa and (b) withered plants.

analyzed in [30] as L×O(CNd), where C is the number
of clusters, N is the number of pixels, d is the number of
attributes, and L is the maximum number of levels estimated
by L = Int(logCN/ NG + 1). The complexity of step 2 is
O(NGs), where NGs is the number of granules. For step 3, each
iteration needs to construct a cover tree, and the computational
complexity of constructing the cover tree is O(δ6NPG lnNPG)
[27], where NPG is the number of centers for constructing the
cover trees and δ is a bounded expansion constant. Suppose
that T iterations are needed; then, the computational complexity
of this step should be T ×O(δ6NPG lnNPG). For step 4, the
computational complexity is O((KC)2NBGd), where K ∗ C is
the number of PGs used to reconstruct a BG and NBG is the
number of boundary granules. Because the number of granules is
far less than the number of pixels, the computational complexity
of steps 2, 3, and 4 should be less than that of step 1. Therefore,
the computational complexity of the proposed method should be
L×O(CNd), and the running time analysis in the experiment
will reflect this.

III. STUDY AREA AND DATASET

The Beidagang wetland is south of Tianjin Municipality and
covers approximately 230 km2; this wetland is an important
station on the East Asian–Australian Flyway, one of the nine
important migratory routes in the world [49]. This region con-
tains two zones: the Beidagang wetland natural reserve and the
Beidagang reservoir. This study focused on natural reserves,
which include river wetlands, constructed wetlands, and swamp
wetlands. Its main land cover types include grassland, lakes,
rivers, narrow ditches, marshes, and bare soil. The main plant
types include Phragmites communis, Scripus planiculmis, Typha
angustifolia, and Suaeda salsa [49]. As a halophyte, Suaeda
salsa plays an active role in soil restoration after being planted
in saline soil and can increase soil nutrient content and improve
soil fertility. After the autumn rainy season, the water content
in the soil decreases, while the salt content in the soil increases.
When the soil salt content reaches 1%–1.6%, the plant stems and
leaves turn red, which can distinguish Suaeda salsa from other
green vegetation, as shown in Fig. 5(a). In addition, this reserve
contains a large area of withered aquatic and terrestrial vegeta-
tion. These withered plants strongly affect the water quality of
the wetland, as shown in Fig. 5(b).

In this study, two cloud-free multispectral high-resolution
images from the Sentinel-2 satellite were used. The data were
acquired on 30 September 2020 and 21 September 2021, and the
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TABLE I
NUMBERS OF TRAINING AND TEST SAMPLES

Fig. 6. False-color composite images of the sentinel-2 dataset using bands 8,
4, and 3 in the study area. (a) 2020. (b) 2021.

Level 2C products were downloaded from the website.1 Four
bands with a resolution of 10 m and six bands with a resolution
of 20 m were selected (for more details, refer to the official
website [50]). Then, the six bands with a 20 m resolution were
super-resolved to 10 m by DSen2 [51], while these selected
bands were masked by a crisp boundary. The natural color
composite image with bands 4, 3, and 2 is shown in Fig. 6.
In 2020, we observed a large area of Suaeda salsa; therefore,
the reserve was classified into five types: water, green land, bare
soil, and impervious surface, Suaeda salsa and withered plants.
Region A in Fig. 6(a) was mainly covered with green vegetation
and withered plants, as well as many small water bodies, such
as small ditches and puddles. Regions B and D were mainly
marshlands and artificial fishponds. Region C was the riverbank
and was mainly composed of green vegetation, bare land, and
Suaeda salsa. In 2021, the area of the water body increased
significantly, and many areas where Suaeda salsa grew in 2020
were submerged, as shown in Fig. 6(b). This made it difficult
for us to discover contiguous areas of Suaeda salsa in the study
area. Therefore, in this year, Suaeda salsa and withered plants
were combined into one land cover type.

The training and test samples were collected by visual in-
terpretation using Worldview-2 images from the same period.
As discussed before, the Sentinel-2 images have many mixed
pixels; thus, in addition to selecting pure pixels for the target
land cover types, this study also selected some transition zones
as an auxiliary type. The training and testing samples in 2020 are
shown in Fig. 7(a) and (b), respectively. The numbers of training

Fig. 7. Training and test samples of the two datasets. (a) Training samples in
2021. (b) Testing samples in 2021. (c) Training samples in 2021. (d) Testing
samples in 2021.

and test samples are listed in Table I. The training and testing
samples from 2021 are shown in Fig. 7(c) and (d), respectively,
and cover approximately 6.03% and 53.85% of the study area.

IV. RESULTS AND DISCUSSION

In this section, the results of the proposed method were
reported to verify its performance and were compared with
those of the CFDT [52], the SIIT2-FCM [53], the SS-AIT2FCM
algorithm [54], and adaptive FKNN classification, which finds
the optimal k value for each class [37], [38], from the perspective
of classification accuracy, i.e., overall accuracy (OA) and kappa
coefficient. Due to the imbalance of target types in the study area,
the macro F1-score was adopted to measure the classification
accuracy. In addition to these methods, the fractional SU method
[24], which has been proven to have good performance [9], was
also compared.

1[Online]. Available: https://scihub.copernicus.eu/dhus

https://scihub.copernicus.eu/dhus


7648 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 8. Classification results in 2020. (a) Fixed optimal k = 40. (b) Optimal k for each class. (c) IS. (d) FKNN. (e) SIIT2-FCM. (f) SS-AIT2FCM. (g) CFDT.
(h) Fractional SU.

The number of samples in a node was used as the threshold in
this study and initialized to 150. For the parameters of weighted
FCM during hierarchical tree building, the number of children
in a node was set to 3, the maximum number of iterations was
100, and the termination error was 0.001.

For the first image, 12 917 granules were obtained. The
training dataset was used to classify these granules into four
types, and the numbers of UGs, PGs, IGs, and SGs were 8187,
1969, 147, and 2614, respectively. Among the PGs, water, bare
soil, green lands, Suaeda salsa, and withered plants represented
1076, 219, 178, 72, and 365, respectively. For the second image,
10 956 granules were obtained, and the numbers of UGs, PGs,
IGs, and SGs were 6135, 2188, 296, and 2337, respectively.

A. Classification Results

To detect the core part of each type, a KNN with a fixed
option k value, a KNN with the optimal k for each class, and
the k-influence space (ISk) method were investigated in this step
individually. The spectral index constraints used in Definition 3
for identifying candidates in this study included the following.

1) Water: IF MNDWI <0, THEN RETURN FALSE.
2) Bare soil: IF NDVI>0.3 OR MNDWI>0 THEN RETURN

FALSE.
3) Green land: IF NDVI<0.3 OR Band (red) > Band (green)

OR MNDWI>0 THEN RETURN FALSE.
4) Suaeda salsa: IF NDVI<0.3 OR Band (red) < Band

(green) OR MNDWI>0 THEN RETURN FALSE.
Notably, the green and red bands in the Sentinel-2 image are

shown in green and red, respectively. Suaeda salsa is a type of
vegetation, and its distribution is very similar to that of green
land. The significant difference in its spectrum is that when
Suaeda salsa leaves turn red, the reflectivity in the green band
is lower than that in the red band; at this time, the reflectance of
green vegetation in the green band is greater than that in the red
band. Notably, there was no obvious regularity in the spectrum

of the withered plants, and currently, there is no spectral index
for this type; thus, in this study, we did not define spectral index
constraints for this type.

The fixed optimal k value was selected manually; that is, the
band number (Nb) of the image was set as the step size, and the
other parameters were fixed. We let kf = t×Nb(2 ≤ t ≤ 10)
and increase t from 2 to 10 to determine the inner part; then, the
membership degrees of the pixels in the transition zones were
determined by using the sparse reconstruction algorithm. In this
experiment, the OA was highest when t was equal to 4. To find
the optimal k for each class, we letα = 2×Nb and the original
k equalkfb ; then, the optimal kcm could be calculated for each
class with (2). The process of calculating the ISk neighbors of
each center requires no parameters. The parameters ρ1 and ρ2
in step 4 can be set to 10 according to the suggestions in [27]
and [28], and the sparse reconstruction algorithm had the same
weights for sparseness and the order of magnitude of the LPP
part.

For 2020, the classification results of the proposed method
are shown in Fig. 8(a)–(c). Small water bodies in region A
could be detected by all three strategies. Region B contained
some swamps, and in addition to water bodies, there were
many submerged plants and emergent plants. Three strategies
misclassified some of the patches as bare soils, and the mis-
classification of the third one was the most serious. In region
C, the three strategies could distinguish red Suaeda salsa from
green vegetation and bare soil. In region D, ridges between
fishponds could be identified, and the vegetation types were
classified as green lands or bare soil, which is similar to what was
observed in our field investigation. The OA, kappa coefficient,
and macro F1 measure of the proposed method are listed in
Table II. The OAs of the first two strategies were 93.10%, while
their macro F1 measures were 0.8736 and 0.8717; thus, the first
two strategies exhibited similar performances. The third strategy
was less accurate than the first two. The three strategies had
similar computational complexities, while the computational
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TABLE II
PERFORMANCE OF FIVE METHODS

Fig. 9. Classification results in 2021. (a) Fixed optimal k = 40. (b) Optimal k for each class. (c) IS. (d) FKNN. (e) SIIT2-FCM. (f) SS-AIT2FCM. (g) CFDT.
(h) Fractional SU.

complexity of the third strategy was slightly greater than that
of the first two strategies.

The classification results of the proposed method in 2021
are shown in Fig. 9(a)–(c). Small water bodies in region A
could be detected by the proposed method. The water area
in region B increased significantly. In region C, the area of
red Suaeda salsa decreased significantly. In region D, ridges
between fishponds could also be identified. The three strategies
had similar accuracies, as high as 94%.

B. Comparison With Other Methods

To evaluate the performance of the proposed method, the
FKNN, SIIT2-FCM, SS-AIT2FCM, and CFDT methods were
compared, and the training samples of five target land cover
types were used. For FKNN, the optimal k for each class was
found by (1), while the original k value was set to 2

√
N (N is the

number of training pixels) and α = 2
√
N /4. For SIIT2-FCM,

the two fuzzifier values were set to 2 and 5. For SS-AIT2FCM,
the fuzzifier value and the adaptive factors for each type were

calculated automatically according to the authors’ suggestions.
For the CFDT, the number of children for each node was set to
3, the node size was set to 5, and the other parameters were the
same as those in the proposed method in step 1.

For the fractional SU, the automated endmember extraction
method [55] adopted in [24] cannot be used to distinguish
endmembers of different land cover types with high spectral
similarity, which has been described previously [55]. Therefore,
the local density peak clustering method [56] was adopted to
extract endmember bundles in this study. We first calculated the
local density of each granule by NNs, and two representative
transfer rules [56] were used to find local density peaks and
clusters. Then, PGs were used to label these local clusters. If a
local cluster contained one type of PG, its corresponding local
density peak was an endmember of this type. In this way, 41, 8,
8, 3, and 3 endmembers of five land cover types were extracted
from the first image, and 60, 9, 13, and 2 endmembers of four
types were extracted from the second image.

For 2020, the results for the FKNN, SIIT2-FCM, SS-
AIT2FCM, CFDT, and fractional SU datasets are shown in
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Fig. 8(d)–(h). Many land cover types were misclassified as red
Suaeda salsa by the FKNN, SIIT2-FCM, and SS-AIT2FCM
methods. For example, in regions A and C, this land cover type
was obviously overestimated. Moreover, these three methods
misclassified withered plants as bare soil in region A. These three
methods had poor ability to detect small objects. For example,
a few small water bodies could be detected in region A. The
CFDT and fractional SU had similarly high performances as did
the FKNN, SIIT2-FCM, and SS-AIT2FCM; however, the CFDT
misclassified withered plants as green vegetation or Suaeda salsa
in region A, and in region B, it seriously misclassified water
as Suaeda salsa. The fractional SUs had poor classification
accuracy for bare soil, and some roads and ridges between
fishponds were not clear. The OA, kappa coefficient, macro F1
measure, and running time of these methods are listed in Table II.
The classification accuracy of the C+1 FMG was significantly
greater than that of the FKNN, SIIT2-FCM, SS-AIT2FCM,
CFDT, and fractional SU methods, especially for the macro
F1 measure. SIIT2-FCM and SS-AIT2FCM use a single curve
to represent the spectrum of a land cover type, implying that
these two methods cannot express the spectral diversity of land
cover types and leading to the macro F1 measures of these two
methods being far less common than those of other methods.
The CFDT could take spectral diversity into account to a certain
extent (different training samples of a land cover type can exist
on different leaves in the CFDT), and the overall accuracies of
the CFDT and the fractional SU were greater than those of the
FKNN, SIIT2-FCM, and SS-AIT2FCM but were still obviously
less than those of the proposed method.

For 2021, the OA of FKNN was the highest among the
compared methods, but FKNN exhibited poor performance in
detecting small water bodies. SIIT2-FCM and SS-AIT2FCM
had the lowest classification accuracy, and the areas of the land
cover types Suaeda salsa and withered plants were seriously
overestimated. The results of the fractional SU seriously over-
estimate the area of bare soil. Therefore, the proposed method
can fully consider spectral diversity and mixed pixels, and its
classification performance is significantly better than that of the
other methods.

V. DISCUSSION

To analyze the performance of the proposed method, several
aspects are discussed in this section. To simplify the discussion,
only the first image was discussed.

A. Analyzing the Effect of the Auxiliary Type

As discussed before, there were many mixed pixels in the
boundary between land cover types, and this study treated the
mixed pixels as an auxiliary type. To analyze the roles of
this auxiliary type in this section, the boundary samples were
removed, which means that the training samples only contained
samples of five target types. The settings of the parameters were
consistent with the settings in the first section. The OA, kappa
coefficient, and macro F1 measure of the classification results of
the first image are listed in Table III. The OA, kappa coefficient,
and macro F1 measure of these results were lower than those in

TABLE III
CLASSIFICATION ACCURACY OF THE PROPOSED METHOD WITH TRAINING

SAMPLES OF FIVE TARGET TYPES

TABLE IV
CLASSIFICATION ACCURACY OF THE PROPOSED METHOD WITH THE DISTANCE

METRIC

Section IV-A but still larger than that of the other methods. This
means that using boundary simples as an auxiliary type can help
determine CG and BGs and improve the classification accuracy.

B. Analyzing the Effect of Sparse Reconstruction

In this study, we assumed that the spectrum of a mixed pixel
is composed of the spectra of pure pixels of the target types.
To verify this hypothesis, the Euclidean distance was used to
replace the sparse reconstruction in step 4. First, the centers of
all the CGs of the five target types detected in step 3 were used
to construct a cover tree and find the k nearest neighbors of each
unknown type of pixel. We suppose that these neighbors had
H types and that the membership degrees of the pixels in these
types of granules were determined by

uij =
1∑H

k=1 (d
′
ij/d′ik)

2/(m−1)
(8)

where uij is the membership degree of sample i belonging to
class j, d′ij is the shortest distance from sample i to type j, and
d′ik (1 ≤ k ≤ H) is the shortest distance from sample i to the
H types.

The settings of the other parameters were consistent with the
settings in the first section. The OA, kappa coefficient, and macro
F1 measure of the classification results are listed in Table IV.
The OA, kappa coefficient, and macro F1 measure of the three
strategies were very similar and lower than those in Section IV-A
but also larger than those of the other methods. This showed that
the membership degrees of some BGs cannot be determined by
their nearest PGs. Moreover, the sparse reconstruction algorithm
can be used to effectively find some PGs for IGs, and the spectra
of these IGs were mixed with the spectra of these PGs; thus,
using these PGs to determine the membership degree of this BG
should be more reasonable than using its nearest PGs.
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TABLE V
CLASSIFICATION ACCURACY OF THE PROPOSED METHOD WITH NO SPECTRAL INDEX CONSTRAINTS OR STRICT SPECTRAL INDEX CONSTRAINTS

C. Analyzing the Influence of Spectral Index Constraints

As discussed before, spectral index constraints were used
to eliminate mixed pixels from clusters of land cover types.
Therefore, in this section, we focused on the effects of spectral
index constraints under three strategies. First, the constraints
were removed, and the other parameters were the same as those
in Section IV-A. Second, the loose constraints were replaced
by a group of strict constraints according to the literature. For
example, the NDVI threshold for green land is greater than 0.7.
These constraints were as follows.

1) Water: IF MNDWI >0 THEN RETURN TRUE.
2) Bare soil: IF NDVI>−0.2 && NDVI<0.4 AND

MNDWI<0 THEN RETURN TRUE.
3) Green land: IF NDVI>0.7 AND Band (red) < Band

(green) AND MNDWI<0 THEN RETURN TRUE.
4) Suaeda salsa: IF NDVI>0.5 AND Band (red) > Band

(green) AND MNDWI<0 THEN RETURN TRUE.
By comparing Tables I and V, we can see that when the

spectral constraints were removed, the classification accuracies
under the three strategies decreased because of the spectral
index constraints, as listed in Section IV-A, were beneficial
for determining the PGs and improving the performance of the
proposed method. However, when these loose constraints were
replaced by strict constraints, the performance of the proposed
method decreased and was even worse than that of no spectral
index constraints. These constraints were too strict to filter out
some PGs; that is, some PGs were mistakenly regarded as BGs,
and the spectral diversity could not be fully expressed by these
generated PGs. As a result, in step 4, some BGs could be
reconstructed from the appropriate PGs. Therefore, the relatively
loose spectral constraints adopted in this study are beneficial for
expressing spectral diversity and improving the performance of
the proposed method.

D. Effect of Parameters in the Sparse Reconstruction

The parameters in four steps could affect the performance
of the proposed method. Zhang et al. [29] recommended that
the node number in the weighted FCM has a modest effect on
performance, while an increase in the granule size threshold
reduces the accuracy of classification. In step 2, the threshold
for determining PGs also affected the accuracy, and the empirical
value was adopted in this study [31], [32]. In step 3, the optional
k in strategies 1 and 2 affects the performance of the proposed
method, and this optional k should be selected manually, as

mentioned in Section IV-A. For strategy 3, no parameter should
be selected. Therefore, in this section, we focused only on the
influence of parameters in the sparse reconstruction process.

We analyzed the influences of parameters ρ1 and ρ2 in step 4.
Let ρ1, ρ2 ∈ {0.1, 1, 5, 10, 20, 50} and the parameters in steps
1–3 be the same as those in Section IV-A. Then, the combinations
of ρ1 and ρ2 were used to test the classification performance,
and the results are listed in Table VI. The values of ρ1 and ρ2
can significantly affect the classification performance. The best
performance was obtained using the combination of 1 and 20,
and the corresponding OA, kappa, and macro F1 measures were
93.30%, 0.8910, and 0.8787, respectively. The worst perfor-
mance was obtained with the combination of 50 and 0.1, and the
corresponding OA, kappa, and macro F1 measures were 92.28%,
0.8749, and 0.8532, respectively. The element values on the
diagonals in Table VI are marked in bold, and the element values
below the diagonal were less than the values above the diagonal.
Since parameters ρ1 and ρ2 were used to control the sparsity and
the order of magnitude of the LPP, the increase in the sparsity
of the selected PGs reduced the classification accuracy, which
means that using more PGs to reconstruct the unknown granules
improved the classification performance. This illustrated the
assumption that a mixed pixel could be a mixture of any pure
pixel of different types.

Because the intrinsic fuzziness, spectral variability, and mixed
pixels were considered at the same time in middle-resolution
multispectral image classification, the solution should be so-
phisticated. First, in middle-resolution remote sensing images,
the proportions of mixed pixels are relatively high, and these
mixed pixels form the clusters of different sizes and shapes.
These clusters can be detected by the local density peak clus-
tering method [55]. This means that the clustering character-
istic of mixed pixels cannot be ignored, which was proven in
Section V-A, and using mixed pixels as an auxiliary type can
substantially improve the classification accuracy. Second, the
shapes of clusters cannot be ignored when spectral variability
is considered. In the existing studies, a single center or end-
member cannot express spectral variability, which was also
proven in Section IV-B. The classification accuracy of the
proposed method was substantially greater than that of these
single-center methods and the fractional SU. However, express-
ing the full spectral variability is still an open problem in the
existing studies. In this study, we used the cores of clusters
to express the full spectral variability and used the relatively
loose spectral index constraints to eliminate mixed pixels in
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TABLE VI
CLASSIFICATION ACCURACY OF THE PROPOSED METHOD WITH DIFFERENT COMBINATIONS OF ρ1 AND ρ2

cores; Sections IV-B and V-C proved the effectiveness of this
method. Third, to achieve the membership values of mixed pixels
or boundary pixels, we used the sparse reconstruction method
to replace the shortest distance or highest similarity between
boundary pixels and cores. In Section V-B, this approach ef-
fectively improved the classification results, and Section V-D
illustrated the effects of two parameters of the sparse recon-
struction method. This section also proved that it is necessary
to consider these factors comprehensively. To our knowledge,
existing methods only consider some of these factors, so our
method showed substantial improvement in classification accu-
racy compared with the existing fuzzy classification methods.

Importantly, in this study, no smoothing operation was
adopted (in fact, using the Gaussian convolution function in our
experiment can improve the overall accuracy by approximately
0.5%), and nonsmoothed results were beneficial for the extrac-
tion of small objects, such as drains, puddles, and dirt roads. On
the other hand, because spatial correlation and heterogeneity
coexist in geographic areas, four types of mixed pixels exist in
remote sensing images [57]. In complex wetland ecosystems, the
four types of mixed pixels widely exist at the same time; thus,
spatial correlation and heterogeneity should be fully considered,
while addressing these four types of mixed pixels is beyond the
scope of this study and will be discussed in the future.

Although the performance of the proposed method was bet-
ter than those of the other methods, several limitations still
exist. The first is that the proposed method seems complex.
We simplify the complexity of the operations of the proposed

method in several ways. For example, we used the inflection
point method to automatically select the threshold to distinguish
between sparse granules and PGs in the granule classification
step. In the CG and BG determination step, we provided three
strategies for this task: the first two strategies were easy to
implement, and the third strategy seemed complex; however,
users did not need to manually set the parameters in this strategy.
Therefore, readers can choose their preferred strategy in this
step. The second disadvantage was that readers should manually
set spectral index constraints because these constraints vary
across different applications. The values of parameters ρ1 and
ρ2 should also be set manually; to our knowledge, there is no
automated way to determine these two parameters.

VI. CONCLUSION

Spectral diversity and mixed pixels are two important aspects
that affect the performance of remote sensing classification
and mapping. This study proposed a comprehensive method
at the pixel level to generate MFs that simultaneously address
spectral diversity and mixed pixels. First, the mixed pixels were
treated as an auxiliary type due to the large number of mixed
pixels in middle-resolution remote sensing images. Second, the
clustering and spectral characteristics of the land cover types
were integrated to obtain pure and mixed pixels of land cover
types, and these pure and mixed pixels constructed the core and
boundary components of the land cover types, respectively. This
approach ensured the comprehensiveness and reliability of the
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expression of spectral diversity. Because mixed pixels could
be a mixture of any pure pixels of different types, the sparse
reconstruction method was used to determine their membership
degrees. The experiments showed that the proposed method can
improve the classification accuracy compared with the existing
MF generation methods.

Due to the complexity of wetland systems, it is difficult to
map some small landscape units, such as ditches and puddles,
at the pixel level from Sentinel-2 images by using existing
MF generation methods. The experiment showed that the pro-
posed method performed better at expressing small wetland
components than the other methods. However, the ability to
express small landscape units is scale dependent, and the MF
downscaling method [58] could improve this ability; the small
components could then be expressed at the subpixel level with
this method.
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