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Abstract—In recent years, constrained by the challenges asso-
ciated with expensive data annotation and poor generalization
ability in supervised models, domain adaptation has been proposed
to effectively mitigate domain gaps, which has gained significant
attention in the field of remote sensing. However, most existing
methods do not consider the inherent characteristics of remote sens-
ing images when formulating adaptive strategies. In addition, there
has been limited research on addressing class-imbalanced data sit-
uations, leading to undesirable performance in domain adaptation
tasks involving long-tailed datasets. To overcome the aforemen-
tioned limitations, based on the analysis of intraclass diversity and
intradomain style differences of remote sensing images, we propose
a novel prototype contrastive learning framework called general-
specific prototype contrastive learning (GSPCL). Due to the un-
reliability of clustering samples in conventional prototype-based
clustering methods, the bidirectional weighted prototype strategy
is proposed to optimize this loophole. Consequently, more robust
prototypes are constructed in both domains, serving as mediators
to reduce domain discrepancies bidirectionally. Particularly, often
overlooked in most methods, we incorporate low-confidence sample
features into the contrastive learning process alongside these proto-
types to further guide the model to address feature alignment and
long-tail issues effectively. Finally, in order to verify the superiority
of our proposed method, we adhere to two existing experimental
settings and construct an extra optical remote sensing domain
adaptation dataset with class-imbalanced scenarios. In the first
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two experimental settings, GSPCL outperforms the second-ranked
approach by 5.0% and 4.0% in average accuracy. Furthermore, our
approach exhibits highly competitive results in handling long-tailed
data scenarios.

Index Terms—Contrastive learning, cross-scene classification,
domain adaptation, prototype learning, remote sensing image.

I. INTRODUCTION

R EMOTE sensing scene classification, as an essential tool
for interpreting remote sensing images, aims to categorize

images into different scene classes by analyzing the features
of objects in the images. In recent years, the rapid develop-
ment of deep learning techniques, particularly the application
of convolutional neural networks, has significantly advanced
remote sensing scene classification and garnered widespread
attention in the academic community [1], [2], [3], [4], [5].
However, the success of deep learning models relies heavily
on time-consuming and expensive data annotation. Moreover,
these supervised models often exhibit poor generalization when
facing different distributed data [6]. Therefore, domain adapta-
tion has been proposed to address the challenge of improving
model generalization in scenarios where only labeled images
from the source-domain and unlabeled target-domain images
are available, allowing the model to perform more accurately
on various downstream tasks in the target domain, including the
cross-domain classification task addressed in this study. Existing
domain adaptation methods mainly focus on learning domain-
invariant representations, whether applied to conventional im-
ages or remote sensing images, which can be categorized into
metric-based approaches [7], [8], adversarial-based approaches
[9], [10], and reconstruction-based approaches [11], [12].

For optical remote sensing images, the inconsistency in
feature distribution among datasets arises from differences in
conditions, such as illumination, reflectance, and geographical
location, during data collection. Therefore, a model trained on
one dataset often struggles to achieve satisfactory performance
on another dataset. Domain adaptation methods have been in-
troduced to the field of remote sensing, and researchers have
developed various domain adaptation methods for downstream
tasks, such as cross-scene classification in remote sensing im-
ages. However, existing domain adaptation methods [13], [14],
[15] for remote sensing images face several challenges. First,
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Fig. 1. Samples from various optical remote sensing scene classification
datasets. (a) Water bodies from the AID dataset and the RSSCN7 dataset. (b)
Residential areas from the AID dataset and the UCM dataset. The sequence
from left to right comprises sparse residential, medium residential, and dense
residential.

they have not achieved optimal results, indicating insufficient
robustness. Second, many methods have not analyzed the spe-
cific characteristics of optical remote sensing image datasets to
select suitable methods and operations for these images. Instead,
they are generally applicable to both general and remote sensing
images. In addition, the collection of remote sensing image data
is not as straightforward as regular images, often leading to the
issue of imbalanced dataset categories. Research in this spe-
cific domain is noticeably lacking, and most domain adaptation
methods exhibit suboptimal performance in such circumstances.

To address the aforementioned challenges, we first analyze the
features of optical remote sensing images. As shown in Fig. 1(a),
water bodies in the aerial image dataset (AID) [16] dataset
appear as slender stripes, while in the RSSCN7 [17] dataset, most
water bodies cover large irregular areas or are located around
ports, reflecting the inconsistent feature distribution between
datasets caused by differences in image capture locations. Ad-
ditionally, some datasets contain similar or finer categories. As
shown in Fig. 1(b), the UC Merced (UCM) [18] and AID datasets
further subdivide residences into dense residences, medium
residences, and sparse residences, highlighting the intraclass
diversity within a single category. Furthermore, compared with
common optical image-domain adaptation scenarios between
real and virtual scenes or commercial products and clip art,
the domain gap in remote sensing images is less significant.
Considering these factors, we believe prototype learning serves
as an excellent tool to address domain adaptation challenges

in optical remote sensing images, which just utilizes feature
prototypes to determine sample categorization, demonstrating
a low probability of misclassification in remote sensing images.
Meanwhile, the intraclass multiprototype strategy is employed
to address intraclass diversity as one of the fundamental princi-
ples guiding our approach.

In deep neural networks, the shallow layers extract low-level
generic features from images, such as color and texture, while
the deeper layers capture high-level semantic information rel-
evant to classification [19]. In the subsequent discussion, we
refer to these two types of features as category-general fea-
tures and category-specific features, respectively. This fact has
found broad applications in domain adaptation [8] and style
transfer tasks [20], but some approaches only operate directly
on these two types of features. In our method, we construct
prototypes for both types of features in the source domain,
while prototypes for the target domain are generated using
high-confidence target-domain sample features through an im-
proved prototype generation strategy. Regarding the application
of contrastive learning in domain adaptation, most methods opt
for high-confidence samples due to their reliability. However,
inspired by Zhang et al. [21], utilizing high-confidence samples
for contrastive learning often introduces semantic conflicts due
to erroneous negative sample construction. It is highly likely
that samples from the same class are treated as negative samples
without considering the consistency of semantic information.
On the other hand, low-confidence samples exhibit smaller
within-class similarities and larger between-class similarities,
making them suitable for contrastive learning to mitigate seman-
tic conflicts without relying on categories. In general-specific
prototype contrastive learning (GSPCL), we achieve this by
employing category-general prototypes from the source do-
main to construct positive and negative samples for contrastive
learning.

To assess the success and robustness of our model in adaptive
classification, we construct three domain adaptation dataset
settings using seven optical remote sensing datasets, each pro-
gressively increasing in difficulty. The results demonstrate a
significant improvement in GSPCL compared with the existing
approaches. Furthermore, the success of our model highlights
the superiority of prototype learning in addressing domain
adaptation challenges in remote sensing images. The specific
contributions of this study can be outlined as follows.

1) A novel prototype contrastive learning framework is de-
veloped, leading to construct more diverse and robust
prototypes for both the source and target domains, along
with the formulation of new prototype losses. Besides,
we integrate these prototypes with the inherent character-
istics of low-confidence sample features to design novel
contrastive losses, leading to improved performance com-
pared with the utilization of high-confidence samples.

2) A new prototype generation strategy is proposed, named
the bidirectional weighted prototype (BWP) strategy. For
the source domain, we develop category-general proto-
types and category-specific prototypes to better lever-
age self-supervised learning and contrastive learning
methods.



7988 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

3) Besides, a new class-imbalanced remote sensing dataset
setting is designed to investigate the effectiveness of our
approach under such conditions. Furthermore, we judi-
ciously introduce consistency learning and entropy loss,
which, combined with our method, achieved excellent re-
sults in addressing domain adaptation challenges in optical
remote sensing images.

The rest of this article is organized as follows. Section II gives
a brief introduction to related works. The detailed statements of
the proposed method are shown in Section III. In Section IV,
abundant experiments’ results and analysis are shown to
demonstrate the performance of the proposed method. Finally,
Section V concludes this article.

II. RELATED WORKS

A. Domain Adaptation

Domain adaptation focuses on transferring knowledge learned
from one or multiple source domains to one or multiple target do-
mains in order to enhance the model’s generalization capability.
Mainstream domain adaptation methods can be categorized into
three major categories. The first category involves metric-based
methods, which entail selecting or introducing specific layers as
adaptation layers. These methods incorporate metrics, such as
MMD [22], and its enhancements as regularization terms to align
the feature distributions between the source and target domains
[23], [24], [25]. Recent metric-based adaptation approaches,
such as GDCAN [8], take into consideration that the transferabil-
ity of knowledge may vary with changes in convolutional lay-
ers. Consequently, they utilize attention mechanisms to extract
statistical information and determine whether different layers
require adaptation. The second category comprises adversarial-
based methods, which draw inspiration from the principles of
adversarial generative networks [26], [27], [28]. These methods
introduce domain discriminators to distinguish sample features
between two domains. However, the features extracted by the
feature discriminator aim to confound the domain discriminator,
making it indistinguishable whether the features originate from
the source or target domain. The third category of methods
pertains to reconstruction-based approaches. DSN [29] posits
that domain features are composed of both shared and private
components, which can be reconstructed. Loss functions are
employed to encourage similarity between the shared features
of the two domains while promoting dissimilarity between their
respective shared and private components. Furthermore, there
are other methods, such as MCC [30] and Leco [31], which
primarily focus on the label space, while ECACL [32] and
DaC [33] incorporate consistency loss to address the domain
adaptation problem.

In the context of adaptive research pertaining to optical remote
sensing image classification, both attention-based multiscale
residual adaptation network (AMRAN) [13] and ADA-DDA
[14] primarily employ attention mechanisms CBAM [34] and
CMMD [35] loss to tackle classification adaptation. AMRAN
places greater emphasis on addressing the issue of varying target
object scales within images, introducing a multiscale adapta-
tion module to mitigate this concern, while ADA-DDA further

explores the automatic balancing of the relative importance
between marginal distribution and conditional distribution align-
ment. However, these methods have not yet achieved satisfactory
results.

B. Prototype Learning

Prototype learning aims to acquire category-specific feature
prototypes. Given that prototypes can serve as representative
features for classes, they can be employed in similarity or
distance computations with unlabeled data, facilitating the as-
signment of pseudolabels [36]. This aligns well with the self-
training concept, and therefore, prototype learning and self-
training often co-occur. In the context of domain adaptation,
prototype learning can be utilized to supplement missing label
information in the target domain [37]. Chen et al. [38] propose
a stepwise feature alignment network that gradually selects
reliable pseudolabels based on cosine similarity, achieving do-
main alignment by aligning prototypes between the source and
target domains. Similarly, methods, such as [39] and [40], also
utilize averaging of latent features to construct class proto-
types. On the other hand, PCT [41] avoids the computational
cost associated with prototype construction by parameterizing
prototypes using linear classifier weights. Some approaches
rely on clustering methods to construct prototypes, such as
SHOT [42] and SHOT++ [43], which draw inspiration from
the weighted clustering approach in DeepCluster [44] to gen-
erate feature prototypes and assign pseudolabels for the target
domain. BMD [45], however, recognized that directly cluster-
ing pseudolabels assigned to the target-domain by the source-
domain model results in category-biased prototypes. To address
this, it introduced class-balanced sampling strategies and intr-
aclass multicenter prototype strategies to obtain more reliable
prototypes.

C. Contrastive Learning

Contrastive learning focuses on capturing shared characteris-
tics among similar instances and discerning differences among
dissimilar instances, achieving remarkable performance in self-
supervised learning. Wu et al. [46] introduced the concept of
instance discrimination tasks and a memory bank. This method
emphasizes that the images of objects with high visual similarity
tend to receive similar classification results, regardless of their
semantic labels. In contrast to [46], MOCO [47] introduced a
queue as an additional array structure to replace the memory
bank for storing negative samples, thus framing previous con-
trastive learning methods as dictionary lookup problems. On
the other hand, SwAV [48] combined contrastive learning with
clustering and introduced a multicrop strategy to increase the
number of views, thereby enhancing the consistency of cluster
assignments for different views of the same image. However,
Tschannen et al. [49] pointed out that excessively strong instance
discrimination capabilities can negatively impact downstream
tasks, especially when too many negative pairs include semanti-
cally similar samples that should not be pushed apart. Therefore,
PCL [50] introduced a new theoretical framework based on the
expectation-maximization algorithm, improving the common
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Fig. 2. Fundamental architecture of GSPCL. Blue lines represent the forward computation process of the model, while green lines indicate aspects related to
parameters, and gray lines pertain to prototype generation. Three types of features and three types of prototypes are constructed and effectively utilized in the model.

InfoNCE [51] loss in contrastive learning to ProtoNCE. Specifi-
cally for domain adaptation methods that incorporate contrastive
learning, Li et al. [52] considered the deviation between features
and class weights. It proposed a new self-supervised paradigm
for contrastive learning in domain adaptation. MixLRCo dis-
covered that low-confidence samples have significantly lower
intraclass similarity compared with high-confidence samples,
which were contrary to interclass similarity. It explored the pos-
sibility of applying contrastive learning to low-confidence sam-
ples. Our approach similarly does not discard low-confidence
samples, unlike most domain adaptation methods that combine
self-training.

III. PROPOSED METHOD

This section primarily presents the specific methods we pro-
posed for the task of domain adaptive classification in optical
remote sensing images. It mainly includes the application of
techniques, such as prototype learning, contrastive learning, and
consistency learning in this task, along with a summary of the
final losses. To provide a clearer exposition of our work, the
architectural diagram of the method is illustrated in Fig. 2. Our
approach first constructs prototypes through the WBP strat-
egy, and then formulates prototype loss and contrastive loss
based on the prototypes and features, respectively. In addition,
since our method involves consistency learning, the “strong
view” and “weak view” in Fig. 2 represent strong and weak
augmentations applied to the target-domain images, ultimately
promoting model robustness. Below, our proposed approach will
be discussed in detail.

A. Preliminary

In this work, our primary focus is on the problem of unsu-
pervised domain adaptation in optical remote sensing image
classification tasks. In the conventional unsupervised domain
adaptation task setting, we are provided with a source-domain
dataset comprising ns samples and a target-domain dataset
comprising nt samples, denoted as Ds = {(xi

s, y
i
s)}ns

i=1 and
Dt = {(xi

t, y
i
t)}nt

i=1, respectively. Here, yi represents the label
for the corresponding image sample xi. While the label spaces
for the source and target domains are the same, their data spaces
differ. During training, we can only predict labels for the target
domain using labeled data from the source domain and unlabeled
data from the target domain. Access to target-domain labels
is unavailable while training and is only used for evaluation
during the testing phase. In our approach, we commence by
training a source-domain model using the source-domain data.
This model comprises two main components: a feature extractor
fs = Xs → Rd and a classifier gs = Rd → Rc. The model’s
output is represented ashs (x

i) = gs (fs(x
i)), where the feature

extractor consists of commonly used classification backbone
networks ResNet [53] and a domain adaptation-specific compo-
nent, often referred to as an adaptation layer, which is commonly
used for dimensionality reduction. Here, d represents the dimen-
sionality of the extracted features, while c denotes the number
of classes. Therefore, the objective of unsupervised domain
adaptation is to learn a model ht = Xt → Yt that enhances the
model’s generalization capability in the target domain, achieving
good classification results.

It is worth noting that inspired by the success of consistency
learning in semi-supervised learning and domain adaptation,
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we also introduce consistency learning to address the domain
adaptation classification challenge in optical remote sensing
images. For any given sample xi

s in the target domain, we
apply both weak augmentation and strong augmentation. Hence,
in fact, for target-domain images, two distinct views of each
sample are employed for training: Tw(x

i
t) and Ts(x

i
t), where

Tw and Ts represent the weak transform and strong transform,
respectively. Tw includes common operations, such as random
cropping and random horizontal flipping, while Ts is executed
using RandAugment.

B. Prototype Generation for Source Domain

As mentioned earlier, in our approach, we consider shallow-
level features and deep-level features in deep neural networks
as category-general features and category-specific features, re-
spectively. Since GSPCL employs ResNet as the backbone, here,
the shallow level refers to the first stage of ResNet, while the
deep level refers to the fourth stage of ResNet or the dimension
reduction layer within the entire feature extractor. Through
experimentation, we ultimately select the dimension reduction
layer, which not only facilitates dimensionality reduction but
also extracts deeper and more relevant classification-related
features, resulting in improved performance.

To obtain optimal category-general prototypes and category-
specific prototypes, we adapt a two-step training approach.
Initially, we pretrain a classification model on the source domain.
During the adaptation phase on the target domain, we lever-
age the pretrained source-domain model to generate prototypes
using source-domain images, which will later serve for the
contrastive learning task. Similar to SHOT and BMD, we start
by employing label smoothing and the following cross-entropy
loss to train the source-domain model

Ls (fs;Xs, Ys) = − E(xs,ys)∈Xs×Ys

×
K∑

k=1

qk log δk (hs (xs)) (1)

where δk(·) denotes the kth element in the softmax output, and
qk is “1” for the correct class, otherwise “0.”

Taking into consideration that shallow features to some extent
represent the stylistic characteristics within the source domain,
and individual classes in the data still exhibit differences in
fine-grained category features in order to avoid the inadequacy of
coarse-grained single-source-domain prototypes in effectively
representing the diversity and ambiguity present in the domain,
for each class in the source domain, we only construct a single-
source-domain prototype for the category-general features of the
source domain, with the number of category-specific prototypes
set to m for each class. More specifically, given the label in-
formation available in the source domain, we obtain prototypes
for each class through k-means clustering. We formalize the
category-general prototypes and category-specific prototypes
as Pa and Ps, respectively. Their computational formulae are
given as follows:

P ai = Kmeans
n=i

(
f1
s (xn

s )
)

(2)

{
Psji

}m

j=1
= Kmeans

n=i
(fs (x

n
s )) (3)

where Pai is the category-general feature prototype of class i,
Psji is the jth category-specific prototype of class i, and f1

s is
the first stage of ResNet.

C. Prototype Generation for Target Domain

Our BWP strategy for the target domain is derived from a
comprehensive analysis of various methods related to proto-
type construction through clustering. The prototype acquisition
strategy in SHOT and SHOT++ [43] is inspired by DeepClus-
ter, in essence, it involves obtaining softmax probabilities for
target-domain instances xt belonging to class i through the
source-domain model and, subsequently, performing weighted
k-means clustering to obtain prototype c0i for each class in the
target domain

c0i =

∑
xt∈Xt

δi

(
ĥt (xt) f̂t (xt)

)
∑

xt∈Xt
δi

(
ĥt (xt)

) (4)

where ĥt = f̂t ◦ ĝt denotes the previously learned target model.
Considering prototypes as classifiers, we compute the cosine

distances Df (·) between a specific sample feature in the target
domain and various prototypes, thereby reassigning pseudolabel
ŷt to that sample

ŷt = arg min
i

Df

(
f̂t (xt) , c

0
i

)
. (5)

This process can be iteratively continued, meaning that new
pseudolabel ŷ′t can be obtained by weighted clustering based on
the newly acquired prototype c1i , as illustrated in the following
equation:

c1i =

∑
xt∈Xt

1 (ŷt = i) f̂t (xt)∑
xt∈Xt

1 (ŷt = i)
(6)

ŷ′t = argmin
i

Df

(
f̂t (xt) , c

1
i

)
(7)

where 1(·) is an indicator function.
However, we find that only one iteration is sufficient to obtain

sufficiently good prototypes in these methods. Therefore, in
the subsequent sections, we only describe the case of a single
iteration and avoid unnecessary redundancy.

The class-balanced prototype (BP) strategy in BMD argues
that the horizontal argmax approach used in SHOT tends to favor
classes that are easily transferable to the extent that, in extreme
cases, the number of target-domain samples used to construct
clustering prototypes for a particular class is reduced to 0, as
shown in Fig. 3(a). The class-balanced sampling strategy can
be considered as a vertical sampling approach, as illustrated in
Fig. 3(b). It involves considering the softmax values for all sam-
ples in the target domain. Consequently, the top-N δi(ht(xt))
scores for all instances in class i on the target domainDt are used
for weighted clustering. The formula for assigning pseudolabels
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Fig. 3. Example of prototype generation strategies in remote sensing scene classification. From left to right, the strategies include the class-biased strategy (left),
the BMD class-balanced strategy (middle), and the BWP strategy proposed by us (right).

ŷt in BMDs prototype clustering is given as follows:

Mi = argmax
xt∈Xt

|Mi|=N

(
ĥt (xt)

)

ci =
1

N

∑
i∈Mi

f̂t
(
xi
t

)

ŷt = argmin
i

Df

(
f̂t (xt) , ci

)
(8)

whereMi represents the set of samples used to create prototypes
for the ith class.

Our strategy further addresses potential issues in the class-
balanced sampling strategy. As shown in Fig. 3(b), while BMD
strategy ensures that residential, forest, and agriculture classes
all have samples available for prototype clustering, the reliability
of the samples used for clustering remains questionable. Specif-
ically, for the agriculture class, it utilizes samples 3 and 4 for
clustering. However, based on the softmax outputs in Fig. 3(b),
samples 3 and 4 are more likely to belong to the residential and
forest classes, respectively. If the ground truth corresponds to
residential and forest, then clustering for the agriculture class
introduces incorrect samples, while the residential and forest
class lose their originally assigned clustering samples, leading
to prototype biases.

Therefore, our BWP strategy builds upon the horizontal
argmax strategy by introducing a threshold and combining it
with the BP strategy. As shown in Fig. 3(c), we extract sam-
ple index sets corresponding to both strategies and perform
clustering. Since both strategies select samples that are most
likely to belong to a particular class, there is an overlap in
the sample indices. Thus, we take the union of the two index
sets. To avoid potential issues where the introduction of the
horizontal argmax strategy leads to significant differences in
the number of clustering samples for each class, we impose a
limit on the clustering quantity. Specifically, when the size of
the union exceeds α times that of the BP strategy, we restrict the
total number of clusters to α times that of the BP strategy. In a
formal context, we represent the feature sets under the argmax
strategy with introduced thresholds as Sh, the feature sets under
the BP strategy as Sv, and the feature sets under the strategy we

propose as S ′
bi

Sh =
{
f
(
xi
t

) ∣∣argmaxδk
(
ht

(
xi
t

))〉
σ
}

Sv =
{
f
(
xi
t

) |top Nδk (ht (xt)) )
}

Sbi = Sh ∪ Sν (9)

S′bi =
{

top α · |Sv| in Sbi if |Sbi| ≥ α · |Sv|
Sbi else

(10)

where | · | represents the cardinality of the feature set, and σ is
the threshold used to divide high- and low-confidence levels.

Simultaneously, since intraclass data in the target domain also
exhibits fine-grained category differences, similar to the specific
class prototypes in the source domain, we also set the number of
intraclass prototypes in the target domain to m. This is done to
obtain more robust and diverse target-domain prototypes, which
subsequently aid in assigning pseudolabels to the samples. The
formula for constructing prototypes in the target domain is given
as follows:{

Ptji

}m

j=1
= K means

n=i
(ft (x

n
t )) , x

i
t ∈ S′bi (11)

where Ptji is the jth prototype of class i in the target domain.

D. Prototype Contrastive Learning Strategy

The fundamental task of domain adaptation is to reduce the
distribution discrepancy between the source and target domains
or to bring the feature mappings of the source and target domains
closer together in high-dimensional space. Prototype learning,
characterized by its interpretability and generalization capa-
bilities, leverages class representatives. Therefore, after con-
structing category-specific prototypes in the source domain and
target domain, we utilize prototypes as intermediaries to bidi-
rectionally align the source- and target-domain features, rather
than solely employing prototype learning for pseudolabeling the
target domain. The losses related to this part are shown in Fig. 4.

On the one hand, we bring the source-domain features closer
to the target-domain prototypes. Given input features obtained
from the feature extractor for both the source and target domains
as Fs = f(xi

s) and Ft = f(Tw(x
i
t)), where a minibatch of

source- and target-domain features has dimensions of b× d, and
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Fig. 4. Primary losses in GSPCL. Proto_loss1 utilizes classification-specific prototypes in the source domain and features of high-confidence target-domain
samples for calculation, while proto_loss2 calculates based on source-domain features and target-domain prototypes; their sum aims to reduce the domain gap.
Positive and negative samples are constructed using source-domain category-agnostic prototypes and features of low-confidence samples to compute the contrastive
loss (cont_loss).

the dimensions of source-domain prototypes and target-domain
prototypes are c×m× d. Here, b, d, c, and k represent the mini-
batch size, feature dimension of feature extractor, the number of
classes, and the number of intraclass prototypes, respectively.
It is worth noting that our collection of category-general fea-
tures and category-specific features is performed at different
stages: the first stage of ResNet and the dimension reduction
layer bottleneck in the feature extractor. Therefore, in terms of
dimensions, the prototype features are identical to the image
features during the forward computation process. Given that
we have access to the labels of source-domain samples, it is
straightforward to identify the prototypes corresponding to each
class and compute the loss accordingly in the target domain.

On the other hand, we bring the features of high-confidence
target-domain samples closer to the source-domain prototypes.
Using high-confidence samples is crucial due to their high
reliability, preventing negative transfer. The prototype loss is
given as follows:

Lossproto =
c∑

i=0

m∑
j=1

∥∥∥f (
xi
s

)− Ptji

∥∥∥
2

+

c∑
i=0

m∑
j=1

∥∥∥f (
xi
t

)− Psji

∥∥∥
2
· 1 (δi (ht (xt)) ≥ σ)

(12)

where 1(·) is an indicator function, only samples with high-
confidence levels are eligible for computation.

Contrastive learning, similar to prototype learning, can en-
hance the generalization capability of models, especially when
combined with data augmentation techniques [54]. An important
and diverse aspect of contrastive learning is the construction of

positive and negative samples. Due to the presence of pseudola-
bels with a certain degree of reliability for high-confidence sam-
ples in the target domain, the majority of methods incorporate
these high-confidence sample features as anchors, introducing
contrastive learning, while neglecting the utilization of features
from low-confidence samples. For instance, in our experiments,
we can perturb sample features based on the pseudolabels of
high-confidence samples in the target domain, utilizing proto-
types that are unrelated to target-domain classification as well
as specific classification prototypes from the source domain,
thereby constructing positive and negative samples. However,
employing this approach causes the learned feature representa-
tions to be biased toward samples in the target domain that are
similar to the source domain, and in certain transfer tasks, it may
introduce negative transfer compared with contrastive learning
methods that do not involve high-confidence samples, leading
to a less optimistic overall performance.

Inspired by MixLRCo, we also make use of low-confidence
samples. However, unlike MixLRCo and similar to the con-
trastive learning applied to high-confidence samples from the
target domain, the positive and negative samples for low-
confidence samples are constructed using source-domain pro-
totypes. As shown in Fig. 5, for the feature of a low-confidence
sample from the target domain during the training process, we
disturb it by using category-general source-domain prototypes
of a certain class as an anchor, and we disturb it by using
category-general source-domain prototypes of other classes as
positive samples. We employ feature weighting as a form of
perturbation, assigning higher weights to target-domain features
to ensure their dominant influence. We set all pseudolabels with
a confidence lower than the threshold to−1. To store the features
of low-confidence samples, we introduce a memory bank while
limiting its size to avoid excessive computational overhead.
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Fig. 5. Construction of anchor, positive samples, and negative samples re-
quired by contrastive learning in GSPCL. A memory bank is introduced to store
a fixed number of features with low similarity to a low-confidence sample.

In addition, considering that the excessive construction of
negative samples, as proposed in PCL, may include semantically
similar samples, when constructing negative samples for low-
confidence anchors, we first compute the distance between the
anchor and low-confidence samples, and then store the features
of the top memory size samples in the memory bank

z ∼ U (0.9, 1)

rim = zf
(
xi
t

)
+ (1− z)Pai

r+ = zf
(
xi
t

)
+ (1− z)Paj

r− = top M d
(
f
(
xi
t

)
, r
)

(13)

where rim, r+, r−, and r denote the anchor, positive sample,
negative sample, and all target samples, respectively. The vari-
able j represents the classes without i, M signifies the size of the
memory bank, and we use Euclidean distance as d(·).

In summarizing Section II-C, we construct positive and nega-
tive samples for low-confidence anchor samples. We formulate
the contrastive loss as follows based on similarity measured
using inner product metrics:

Losscont = −log

∑
r+∈Nh

(
rim, r+

)
∑

r+∈Nh (rim, r+) +
∑

r−∈Mh (rim, r−)
(14)

where N is the number of categories minus one.

E. Loss Functions

Within the overarching framework of unsupervised domain
adaptation, given that both the samples from the source do-
main and their corresponding labels are available, even though
GSPCL directly utilizes a pretrained source-domain model, we
still employ the cross-entropy loss in (1) for the source domain
to prevent a decrease in classification performance during the
domain adaptation process.

On the other hand, solely applying a classification loss to
the source-domain data would lead to the model making overly
confident predictions in the source domain, thereby reducing
its generalization capability in the target domain. To encourage
confident outputs and output diversity in the target domain, we

introduce the Shannon entropy

Le = − EBT

[∑
c

hi
w [c] log

(
hi
w [c]

)]

+

C∑
c=1

KL(EBT

[
hi
w [c]

] || 1
C
) (15)

where hw and hs, respectively, denote the classification proba-
bilities of Tw(x

i
t) and Ts(x

i
t), and BT is a batch of data.

Moreover, as mentioned in our preliminary discussions, we
employ a consistency loss to further make the model robust to
image perturbations and enhance its generalization capability.
Since low-confidence samples may be assigned incorrect pseu-
dolabels, applying consistency learning to them might result in
a negative transfer. Therefore, this loss is exclusively applied to
high-confidence samples. In simple terms, we use the pseudola-
bels from the weakly augmented view as labels for the strongly
augmented view, thereby constructing a cross-entropy loss

Lcons =
∑

xi∼Xt

[
1 (max (hw) ≥ σ)H

(
h̃w, hs

)]
(16)

where h̃w = argmax(hw) is the one-hot vector of prediction,
and 1(·) is an indicator function signifying that this term of loss
is also exclusively applicable to high-confidence samples. H(·)
is the cross-entropy loss function.

Combining (1) and (11)–(15), the loss function in GSPCL can
be summarized as follows:

Ltotal = Ls + λ1Lproto + λ2Lcont + Le + Lcons (17)

where λ1 and λ2 are the weights of the two losses.

IV. EXPERIMENTS

In this section, we thoroughly evaluate the proposed method-
ology based on three remote sensing domain adaptation dataset
settings. Simultaneously, we compare our approach with com-
petitive domain adaptation methods. The datasets utilized in the
experiments encompass the AID, the UCM land use dataset,
the Wuhan University (WHU) RS dataset, the RSD46-WHU
dataset, the RSSCN7 dataset, the NWPU-RESISC45 dataset,
and the PatternNet dataset.

A. Cross-Domain Optical Remote Sensing Datasets

Due to the absence of dedicated domain adaptation datasets
tailored for remote sensing classification tasks, to evaluate the
effectiveness of domain adaptation methods in the context of
optical remote sensing datasets, similar to [13], [14], and [55],
we extract common class images from multiple optical remote
sensing image classification datasets to serve as the source
domain in the transfer tasks. The categories of samples involved
in each dataset in the aforementioned experimental settings are
illustrated in Fig. 6. Prior to training, the images are resampled
to a uniform size of 224 × 224. The differences between these
datasets are briefly described as follows.

The AID dataset encompasses scene categories with pixel
resolutions ranging from approximately 8 to about 0.2 m. Each
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Fig. 6. Exhibition of dataset samples. (a) Contains image examples in dataset setting 1 and (b) shows image examples in dataset settings 2 and 3.

category comprises 220–420 images sized at 600 × 600 pixels.
The UCM dataset consists of 100 images per category, each
measuring 256 × 256 pixels at a resolution of one foot. While in
the WHU dataset, there are around 50 images per category, with
a resolution of 0.5 m and a size of 600 × 600 pixels [56]. The
RSSCN7 dataset comprises 400 images per category collected
at four different scales, with each scale containing 100 images.
And the PatternNet dataset includes 800 images per category,
each measuring 256× 256 pixels [57]. Both the NWPU [58] and
RSD46 [59] datasets are extensive datasets, the former consists
of 700 images per category ranging in resolution from 20 cm/px
to over 30 m/px, the latter comprises image data varying from
500 to 3000 per category, with resolutions ranging from 0.5 to
2 m. Each image in both datasets is sized at 256 × 256 pixels.

In order to enhance the evaluation of GSPCL and facilitate
comparisons with the existing methods, we established three
distinct dataset settings for the aforementioned datasets. The
first two settings adhere to the principles outlined in [13] and
[55], and the specific details are provided as follows.

1) Dataset Setting 1: We select six common or similar cat-
egories of images from the seven datasets mentioned above,
including residential, farmland, forest, industrial, parking lot,
and river. It is worth noting that, in the UCM dataset, dense
residential and medium residential areas are merged into the
residential category, while the other datasets classify dense
residential areas as residential. The details are shown in
Table I.

2) Dataset Setting 2: Considering the limited sample size in
each domain and the insufficient variation among domains in
Setting 1, to further validate the effectiveness of the proposed
method, we follow the settings outlined in [55] to construct a
dataset with higher transfer difficulty. Specifically, we select
ten common or similar classes from UCM, AID, PatternNet,

TABLE I
NUMBER OF SAMPLES IN DATASET SETTING 1

NWPU, and RSD46. These classes encompass agriculture, for-
est, water, residential, parking lot, sports field, airport, flyover,
port, and storage tank, serving as the domains for the transfer
task. Fine-grained or similar categories from the original datasets
are merged; for instance, dense residential, medium residen-
tial, and sparse residential are consolidated into the residential
category, and aircraft and airports are merged into the airport
category. Table II presents the specific details.

3) Dataset Setting 3: Although the datasets in Setting 2
inherently exhibit class imbalance, to verify the robustness of
GSPCL in domain adaptive tasks on long-tailed datasets, we
follow the reversely unbalanced source and unbalanced target
protocol to subsample the datasets in Setting 2. Our objective
is to create unbalanced label distributions in both the source
and target domains, with the source-domain’s label distribution
being the reverse of the target-domain’s label distribution. Since
each domain in Setting 2 comprises ten classes with inher-
ent class imbalances, we first calculate the minimum number
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TABLE II
NUMBER OF SAMPLES IN DATASET SETTING 2

TABLE III
NUMBER OF SAMPLES IN DATASET SETTING 3

(CMN) of samples in all classes in the domain. Then, with an
interval of 0.1, subsampling of samples with 0.1–1 times and
1–0.1 times the number of CMN is performed for 0–9 classes of
source domain and target domain, respectively. Table III displays
the scenario where the number of categories increases one by
one. The situation where the number decreases one by one is the
reverse, with the quantities flipped.

B. Experimental Settings

For dataset Setting 1, we designate the UCM dataset, WHU-
RS dataset, AID dataset, and RSSCN7 dataset as domains U, W,
A, and R, respectively. This results in 12 cross-scene classifica-
tion tasks: U→W, U→A, U→R, W→U, W→A, W→R, A→U,
A→W, A→R, R→U, R→W, and R→A. In this experimental
setup, we select ResNet, DDC [60], DAN, joint adaptation

network (JAN), RevGrad [61], and multirepresentation adap-
tation network (MRAN) [35] alongside the multiscale residual
adaptation network (AMRAN) [13] as methods for comparison.

For dataset Setting 2, we designate the AID dataset, NWPU
dataset, PatternNet dataset, RSD46 dataset, and UCM dataset as
domains A, N, P, R, and U, respectively. Pairwise-domain trans-
fer experiments are conducted between these domains, resulting
in a total of 20 tasks. In addition, in order to better compare with
the TSAN that proposed the dataset settings, individual domains
are considered as source domains, while the other four domains
are combined to form the target domain, without knowledge of
the specific origin of the samples. This design introduced five
additional tasks: A→{N, P, R, U}, N→{A, P, R, U}, P→{A,
N, R, U}, R→{A, N, P, U}, and U→{A, N, P, R}. In this
experimental setup, apart from the majority of methods proposed
in Setting 1, we also select CDAN, TSAN, GDCAN, and PCT
for comparison.

For dataset Setting 3, we designate domains with in-
creasing class numbers from 0 to 9 as “+” domains and
those with decreasing class numbers as “−” domains. Con-
sequently, there are ten domains labeled as A+, A−, N+,
N−, P+, P−, R+, R−, U+, and U−. It is important to
note that not all ten domains are involved in pairwise transfer
tasks. Specifically, transfers occur only from domains with
“+” to “−” labels, and intradomain transfers between “+”
and “−” within the same domain are not considered. For
instance, transfers include A+→N−, but not N−→A+ or
A+→A−. Hence, there are a total of 20 transfer tasks. In
this experimental setup, we employ ResNet50 direct transfer,
CDAN [27] and PCT [41], as comparative methods to vali-
date the effectiveness of the proposed approach on long-tailed
datasets.

Our proposed method and the compared methods are all based
on the ResNet50 backbone and trained using the PyTorch-1.9
framework and RTX 3090 GPU. As discussed in Section III, we
extract class-general prototypes and class-specific prototypes
based on the first stage and the dimension reduction layer of
ResNet50, ensuring that the dimensions of the prototypes and
features are both 256. Similar to most domain adaptation exper-
imental setups, we set the learning rates of the newly introduced
layers, apart from the pretrained model, to be ten times higher
than the other layers. We employ SGD with a momentum of
0.9 and weight decay of 1e-3, and the learning rate adjust-
ment followed the formula, μp = μ0 /((1 + αp)β), where p =
epoch/total_epoch, μ0 = 0.001, α = 10, and β = 10. The ini-
tial learning rate for all experiments is set to 1e-3, and the batch
size is set to 16. In dataset Setting 1, the number of epochs is set to
20. For most tasks in Setting 3, the number of epochs is set to 10.
Due to the large number of samples in the combined multitarget
domain, often achieving satisfactory results within a single
epoch, the single-source domain combined with multiple target
domains in Setting 2 is set to 1 epoch. For the remaining transfer
tasks in Setting 2, the number of epochs is adjusted based on the
size of the target-domain samples, set to 8, 8, 8, 1, and 10 for tasks
transferring to AID, NWPU, PatternNet, RSD46, and UCM,
respectively.
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TABLE IV
ACCURACY (%) ON CROSS-SCENE DATASET SETTING 1 FOR UNSUPERVISED DOMAIN ADAPTATION (RESNET-50)

Furthermore, the size of the memory bank used in contrastive
learning is set to 1024 for all transfer tasks except for the single-
source domain combined with multiple target domains, where it
is set to 256. In the weighting process, features of low-confidence
samples in the target domain are assigned weights ranging from
0.9 to 1, preventing the loss of specific classification information
from the target-domain features during perturbation. In our
proposed WBP strategy, α is typically set to 1.1. The confidence
threshold setting for all experiments is set to 0.9. In the overall
loss, the weights (λ1 and λ2) assigned to the contrastive loss and
prototype loss were consistently set to 0.5 across all experiments.
We update the source domain, pseudolabels, and stored sample
features in the memory bank at each epoch.

C. Comparison and Analysis

The tasks involved in dataset Setting 1 are generally consid-
ered the most easily transferable among the three settings. The
comparative results of GSPCL with other contrastive algorithms
are presented in Table IV. Upon examining the average accuracy
across all classification tasks within this dataset setting, our
approach demonstrates significant improvements over other
algorithms. Specifically, compared with ResNet, DDC, DAN,
JAN, RevGrad, MRAN, and AMRAN, GSPCL achieves
higher accuracy rates by 14.33%, 13.96%, 12.48%, 12.54%,
11.61%, 7.89%, and 5.00%, respectively. In this experimental
setup, reference is made to AMRAN, establishing it as the
primary comparative method. Our approach exhibits only
minor discrepancies from AMRAN in the A→W transfer task,
where the majority of methods achieve close to 100% accuracy.
However, in other transfer tasks, GSPCL outperforms AMRAN
significantly. Particularly in the U→A and U→R transfer tasks,
our approach surpasses AMRAN by more than ten percentage
points. This indicates that our method performs remarkably well
in the majority of relatively straightforward domain adaptation
tasks involving optical remote sensing images.

Due to the larger number of categories and images in the
classification scenarios of dataset Setting 2 compared with
Setting 1, the intraclass diversity and interclass similarity are
substantially greater, rendering the transfer tasks considerably
more challenging. The experimental results are presented in

Table V. In the task of single-source-domain adaptation to a
single-target domain, GSPCL exhibits an average accuracy that
surpasses DAN, DANN [62], JAN, CDAN, GDCAN, and PCT
by 15%, 7.4%, 9.2%, 4%, 11.8%, and 5.2%, respectively. Among
the 20 transfer tasks, GSPCL achieves the best results in 13
tasks. Particularly noteworthy is the remarkable improvement
in accuracy from 81.2% to 99.9% in the R→P task. It is worth
mentioning that GDCAN and PCT, both employed as compar-
ative methods, are relatively new techniques. While both our
method and PCT utilize prototype learning, PCT achieves an
average accuracy superior to GDCAN by 6.6% across all tasks,
providing substantial evidence for the effectiveness of prototype
learning in domain adaptation tasks involving optical remote
sensing images. For the five tasks involving single-source-
domain adaptation to a combination of multiple target domains,
our method outperforms all other comparative methods, except
for the R→{A, N, P, U} task. Particularly noteworthy is the
exceptional performance of GSPCL in the U→{A, N, P, R} task,
surpassing the most effective method, CDAN, by 12%. When
considering the average accuracy across these five tasks, our
approach exhibits superior performance compared with DAN,
DANN, JAN, CDAN, and TSAN by 13.3%, 8.9%, 6.6%, 4.2%,
and 6.5%, respectively. This observation underscores GSPCLs
enhanced classification capabilities and robustness, even in the
face of more challenging domain adaptation tasks. Upon com-
prehensive analysis of dataset Settings 1 and 2, it is evident that
the integration of various modules and operations in our method
has facilitated a closer alignment of feature mappings between
the source and target domains within the feature extractor. In
addition, these components have significantly enhanced the
model’s generalization abilities.

Dataset Setting 3 is specifically designed to assess the perfor-
mance of methods when facing domain adaptation tasks in long-
tail datasets, which are more challenging due to the contrasting
distributions of labels in the source and target domains. As shown
in Table VI, GSPCL achieves an average accuracy that surpasses
ResNet50 directly transferred to the target domain, CDAN, and
PCT by 15.2%, 12.3%, and 0.3%, respectively, across the 20
tasks. Moreover, GSPCL outperforms other methods in 12 tasks,
demonstrating its capability to handle domain adaptation tasks
in long-tail datasets. Here, we introduce CDAN as a comparison
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TABLE V
ACCURACY (%) ON CROSS-SCENE DATASET SETTING 2 FOR UNSUPERVISED DOMAIN ADAPTATION (RESNET-50)

TABLE VI
ACCURACY (%) ON CROSS-SCENE DATASET SETTING 3 FOR UNSUPERVISED DOMAIN ADAPTATION (RESNET-50)

method because it performs better on the first two settings
than other classical methods. Surprisingly, CDAN does not
yield satisfactory results and, in some tasks, introduces negative
transfer. For instance, in the A+→P− task, CDANs accuracy
drop from 59.6% achieved by ResNet50 to 38.5%, illustrat-
ing its inability to handle domain adaptation tasks in long-tail
datasets. In contrast, PCT, due to the incorporation of prototype
learning, achieves highly competitive results comparable with
GSPCL, especially outperforming our approach in certain tasks.
However, PCT differs from our approach both in the aspect of
prototype learning itself and in the additional operations and
methods apart from prototype learning. This discrepancy might
be a reason for the variations in tasks where our method and
PCT perform best.

To present a clearer demonstration of the alignment and dis-
criminative capabilities of our method, we employ t-SNE [63] to
visualize the features extracted by different methods in the R→P
task within dataset Setting 2; the data are randomly sampled
from ten classes in the PatternNet domain, comprising 5000
samples. As shown in Fig. 7(a)–(f), in comparison with other
methods, our approach exhibits remarkable intraclass cohesion
and clearer boundaries between classes in the target domain.
Particularly noteworthy is the fact that features extracted by
other methods form two clusters for the “Sports court” class,

whereas GSPCL yields only one cluster. In addition, we intro-
duce gradient-weighted class activation mapping (GradCAM)
[64] to generate attention maps. These maps utilize the specific
class gradients from the last convolutional layer to provide an
approximate localization of important regions in the images. We
employ GradCAM to highlight the successful classification of
our domain adaptation method in the target domain, as illustrated
in Fig. 8(a)–(c); GSPCL accurately localizes the position of the
oil tank and airplane in the image.

In Table VII, parameter numbers of comparing methods
and the proposed GSPCL are given. The parameter number
of the proposed GSPCL is relatively less than most methods,
which demonstrates that the complexity of the designed net-
work is not too high. During different training strategies and
experimental details, the real computation costs of the above
methods have some differences. In the proposed method, the
additional computation cost of training processing is mainly
caused by the design of the WBP prototype strategy and the
construction of multiple losses, but the difference in this partial
computation cost is slight to other methods that also involve
exceptional strategies to improve the domain adaptation per-
formance. However, when large-scale datasets are involved in
the training process, the computation cost of domain adaptation
methods increases seriously. In the following research, finding
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Fig. 7. t-SNE of representations on target domain for task R→P. (a) DANN. (b) JAN. (c) CDAN. (d) GDCAN. (e) PCT. (f) GSPCL.

Fig. 8. Attention visualizations of the last convolutional layer learned by
(a) GDCAN, (b) PCT, and (c) GSPCL.

TABLE VII
PARAMETER NUMBERS OF DIFFERENT METHODS

an appropriate learning strategy for domain adaptation to re-
duce the computation cost on large-scale datasets is worthy of
note.

D. Ablation Study

As mentioned earlier, the essence of our proposed method
lies in the integration of prototype learning and contrastive
learning, as well as the utilization of pseudolabel generation
based on BWPs. To investigate the effectiveness of each com-
ponent in GSPCL, we conduct ablation studies using dataset
Setting 2. In addition, to validate the potential negative impact
of applying contrastive learning to high-confidence samples in
the target domain, we specifically design a contrastive learning
loss for high-confidence sample features. In this approach, high-
confidence sample features are used as anchors. Positive sam-
ples are generated by perturbing anchors with source-domain
category-general features from a randomly chosen class. Nega-
tive samples are constructed by perturbing high-confidence sam-
ple features with source-domain-specific class prototypes corre-
sponding to the pseudolabels of other classes. To achieve optimal
performance for this part of the loss, we conduct experiments
and ultimately choose a multilinear mapping method inspired
by CDAN as the interference technique. The formulation for
constructing positive and negative samples is given as follows:

r′+ = T	 (r, Psi) = (Rfr)	 (RgPsi)

r′− = T	 (r, P sj) = (Rfr)	 (RgPsj) (18)

where Psi and Psj represent the source-domain-specific proto-
types corresponding to the same class and other classes as anchor
point r, and Rf and Rg are the random matrices sampled only
once and fixed in training.
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TABLE VIII
ABLATION EXPERIMENTS ON DATASET SETTING 2

The contrastive loss constructed from high-confidence sample
features is given as follows:

Loss′cont = −log

∑
r+∈C− h

(
r, r′+

)
∑

r+∈C− h
(
r, r′+

)
+
∑

r−∈M h (r, r′−)
(19)

where C− = (c− 1) × k, c is the number of classes, and m is
the number of prototypes in each class.

We set the baseline method as consisting solely of classifi-
cation loss, consistency loss, and entropy loss. A summary of
the ablation experimental results regarding prototype loss, low-
confidence contrastive loss, BWP strategy, and high-confidence
contrastive loss is presented in Table VIII. Here, c1, c2, p1,
and p2 represent the high-confidence contrastive loss, low-
confidence contrastive loss, and two prototype losses, respec-
tively. p represents the sum of p1 and p2. w c1+ c2+ p indicates
the addition of these three losses to the baseline method. Our
proposed method is denoted as w c2+p, while w BMD signifies
the replacement of the BWP strategy proposed by us with the
BMD strategy.

1) Prototype Loss and Contrastive Loss: As shown in Ta-
ble VIII, the baseline method we construct demonstrates im-
pressive performance. This achievement can be attributed to the
consistency loss enforced on two levels of transformation in
the target domain, namely, Tw(x

i
t) and Ts(x

i
t), which enhances

the robustness of the adaptive model. In addition, the entropy
loss ensures that the model’s classification outputs in the target
domain do not exhibit excessively high-confidence scores for
any particular class, thus enhancing the model’s generaliza-
tion abilities. Building upon this foundation, our introduced
prototype loss significantly improves classification accuracy,
elevating the average accuracy across the 20 adaptive tasks from
84.5% to 87.5%. This improvement indicates the success of our
construction of classification prototypes in both the source and
target domains. The prototype loss encourages the features of
source-domain samples to converge toward the target-domain
prototype features, while the features of high-confidence sam-
ples in the target domain converge toward the source-domain
class prototype features. Consequently, the data from both do-
mains exhibit similar feature mappings on the feature extractor.
Indeed, optical remote sensing image datasets exhibit a certain

degree of intraclass diversity and interclass similarity. However,
this degree is not as substantial as the differences observed in
conventional datasets, such as the significant distinction between
the clipart domain and product domain in OfficeHome dataset.
Optical remote sensing images share inherent similarities due to
their common nature, making them suitable for problem solving
through prototype learning. The incorporation of contrastive
loss further improves the overall average accuracy by 0.4%.
It is noteworthy that the contrastive loss specifically utilizes
low-confidence samples, which are characterized by their low
similarity with other samples within the same class, especially
those from the target domain that resemble the source-domain
samples. These samples tend to exhibit low confidence because
of their dissimilarity with other samples within the same class
and their resemblance to source-domain samples. The con-
struction of positive and negative samples for low-confidence
samples, along with the design of the contrastive loss, directs
the model’s attention toward cross-class samples in the target
domain, mitigating the ambiguity associated with classifying
cross-class samples.

2) Low-Confidence and High-Confidence Contrastive Loss:
From Table VIII, it is evident that, even though incorporating
high-confidence contrastive loss in addition to GSPCL leads
to improved results in certain individual tasks, the average
accuracy decreases by 1.7%. Particularly, significant drops in
accuracy are observed in the N→P, N→R, and R→P tasks,
namely, 6.4%, 8.5%, and 16.1%, respectively. When we ex-
clude low-confidence contrastive loss and instead replace it with
high-confidence contrastive loss, the average accuracy decreases
by 0.5% compared with the baseline method and by 3.9%
compared with our proposed approach. Overall, incorporating
high-confidence samples for contrastive learning harms the
adaptability performance. Comparing the lines w c1 + p, w c2
+ p, and w c1 + c2 + p, it is evident that w c2 + p achieves
the best or comparable results in 12 out of 20 tasks. Thus, solely
incorporating low-confidence contrastive loss proves to be the
optimal choice. In addition, it can be observed that GSPCLs
performance is not as competitive as w c1 + c2 + p when
transferring from the source domain U to other domains. We
hypothesize that this outcome is attributed to the fact that domain
U has the smallest sample size among the five domains and
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exhibits substantial dissimilarity compared with other domains.
In situations where the target-domain data are abundant, relying
solely on low-confidence contrastive loss may leave a significant
portion of high-confidence sample features unaddressed. At
such times, incorporating high-confidence contrastive loss can
enhance the model’s generalization abilities.

3) BMD and BWP Strategy: It can be observed that when the
loss functions remain constant and only our prototype strategy is
replaced by the BWP strategy to the BMD strategy, the average
accuracy decreases by 0.9%. This indicates the superiority of
our strategy. Our prototype generation strategy is designed to
facilitate pseudolabel assignment for the target domain and
contrastive learning. It addresses potential shortcomings in the
BMD strategy, generating more robust prototypes. Across the
20 tasks, our strategy achieves superior or comparable results to
the BMD strategy in 16 tasks. However, due to the necessity of
limiting the number of clustered samples to prevent prototype
dominance, a constraint dictated by parameters, the final adap-
tation performance is influenced by these parameters. Conse-
quently, our method might not achieve optimal results across all
tasks.

V. CONCLUSION

In this work, our primary focus lies in the intrinsic character-
istics of datasets and the mitigation of performance degradation
issues often overlooked by most domain adaptation methods,
particularly in the context of long-tailed datasets. The proposed
GSPCL is a novel prototype contrastive learning framework,
employed for addressing cross-scene classification challenges in
optical remote sensing images. Through the proposed prototype
generation strategy and prototype loss function, the feature
mappings between the source and target domains within the
feature extractor are brought closer, facilitating the learning
of domain-invariant features. Besides, based on the conducting
experiments and analysis on utilizing high- and low-confidence
samples for contrastive learning, a novel contrastive loss is
proposed by integrating features from low-confidence samples
with prototypes, aiming to further mitigate the bias issues in-
troduced by long-tail distributions. However, there are some
imperfections, such as an excessive number of parameters should
be determined before training and the construction of prototypes
could be more adaptive and robust. In the future, we will explore
more novel strategies for remote sensing domain adaptation
problem.
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