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Landslide Susceptibility Mapping Considering
Landslide Local-Global Features Based

on CNN and Transformer
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Abstract—Landslide susceptibility mapping (LSM) is a crucial
step in quantitatively assessing landslide risk, essential for geologic
hazards prevention. With the rapid development of deep learning
models, convolutional neural networks (CNNs), and transformer
architectures have been applied to LSM. However, these models still
face the challenges of suboptimal mapping accuracy and limited
capacity for multilevel landslide features extraction. In this study,
we present a CNN-transformer local-global features extraction
network (CTLGNet) that combines the strengths of both CNN
and transformer models to effectively extract both landslide local
and global features. We apply this model to LSM in two regions:
the Three Gorges Reservoir area and Jiuzhaigou. To begin, nine
landslide conditioning factors are selected and analyzed to con-
struct the landslide dataset for LSM. Subsequently, the dataset is
randomly split into training, validation, and test datasets in a 6:2:2
ratio to attain LSM results. Then, CTLGNet is compared to CNN,
residual neural network, densely connected convolutional network,
vision transformer, and fractional Fourier image transformer using
various evaluation metrics. The results demonstrate that CTLGNet
exhibits exceptional landslide prediction and generalization capa-
bilities, outperforming the other five models across all evaluation
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metrics except Recall, with AUC values of 0.9817 and 0.9693 for the
two regions, respectively. The LSM results indicate that CTLGNet
can effectively extract both landslide local and global features to
achieve landslide localization and detail capture. Overall, our pro-
posed framework excels in extracting multilevel landslide features
and holds great potential for widespread application.

Index Terms—Convolutional neural network (CNN), landslide
local-global features, landslide susceptibility mapping (LSM),
transformer.

I. INTRODUCTION

LANDSLIDES represent one of the most devastating natural
phenomena worldwide, posing a grave threat to human life,

property, and regional sustainable development [1], [2]. Land-
slide susceptibility refers to the spatial likelihood of landslides,
which is determined by considering regional geological and
environmental factors alongside historical landslide occurrences
[3]. As a result, landslide susceptibility mapping (LSM) provides
valuable data for government agencies involved in land planning
and the development of effective disaster mitigation strategies
[4].

With the rapid development of artificial intelligence (AI), nu-
merous researchers have tested various machine learning (ML)
algorithms in LSM tasks in the past two decades [5], [6], [7], [8].
ML algorithms possess the capability to automatically discern
patterns from landslide data, allowing them to model complex,
nonlinear relationships [9]. Nonetheless, ML algorithms also
exhibit certain limitations, such as their reliance on feature en-
gineering and the potential risks of overfitting and underfitting.

Deep learning (DL) algorithms, as a branch of ML algorithms,
have demonstrated outstanding performance in image-related
tasks [10], [11], [12]. By training in large-scale parallel comput-
ing environments, DL models have the capacity to automatically
capture complex relationships between landslides and landslide
conditioning factors (LCFs) and extract high-dimensional land-
slide features. This advantage has encouraged researchers to
apply DL models in LSM studies with notable successes [13],
[14], [15]. However, the two most popular DL models currently:
convolutional neural network (CNN) and transformer, each have
their own distinct advantages and limitations when it comes to
landslide feature extraction, which impacts their accuracy in
LSM and restricts the potential for widespread application [16].

In recent years, CNN and their variants, such as residual neural
network (ResNet) [17] and densely connected convolutional
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network (DenseNet) [18], have achieved remarkable success in
LSM tasks [19], [20]. Due to the spatial translation invariance
and low inductive bias of convolutions, CNN-based models
could extract landslide local features (LLFs) efficiently from
multisource remote sensing images [21]. However, the limited
receptive field of CNN-based models restricts their ability to
process extensive contextual information, resulting in challenges
in capturing landslide global features (LGFs) [22].

Transformer is an encoder-decoder sequence transformation
model that utilizes the self-attention (SA) mechanism to expand
the receptive field to capture global contextual information.
One notable application is vision transformer (ViT), which
successfully employs the pure transformer backbone for image
classification tasks [23], leading to competitive performance in
LSM tasks [24]. The SA mechanism calculates the correlations
and weights between each pixel and all other pixels in the image,
which allows the transformer to better extract LGFs compared to
CNN [25]. However, transformer-based models have relatively
weak LLFs extraction capabilities and typically require training
with extensive large-scale data [26].

In LSM tasks, both LGFs and LLFs play crucial roles. The
LGFs encompass key aspects, including the size, location, and
spatial distribution of landslides. Conversely, the LLFs pertain
to specific characteristics such as the edges, texture, and shape
of the landslides. The strong LGFs and LLFs could enable
the model to better distinguish pixels that exhibit subtle differ-
ences between landslides and nonlandslides, thereby improving
the accuracy of the LSM. It is important to note that CNN
and transformer have complementary advantages in extracting
LGFs and LLFs [16]. Numerous researchers have introduced
the combination of CNN and transformer models into various
tasks, including scene classification [27], semantic segmentation
[28], and change detection [29]. The findings indicate that the
CNN-transformer hybrid framework can effectively extract both
local and global features of an image, which improves the
overall performance and reduces the transformer’s dependence
on large-scale training datasets [29]. However, there are no stud-
ies evaluated the effectiveness of hybrid CNN and transformer
models in LSM tasks.

Taking into account the distinctive strengths of CNN in ex-
tracting LLFs and transformer in modeling LGFs, we introduce
a CNN-transformer local-global features extraction network
(CTLGNet) designed specifically for LSM tasks. By leveraging
the combined advantages of CNN and transformer models, the
network adeptly extracts both LGFs and LLFs to improve the
accuracy of the LSM. The main contributions of this article
are outlined as follows. We utilize the CNN structure to ex-
tract LLFs from the input data, and then use transformer
structure to extract LGFs from the output features of the
CNN. The CTLGNet can comprehensively extract LLFs and
LGFs, improving the spatial prediction of landslides. We con-
duct a comparative analysis of the CTLGNet and individual
models, evaluating their respective capabilities in extracting
LLFs and LGFs from several evaluation perspectives. Further-
more, we compare the computational effort of the different
models.

Fig. 1. Location of Site A. (a) Geographical location of Site A. (b) Distribution
of landslides in Site A. (c) 3-D topography of Site A.

II. STUDY AREA AND DATA

A. Study Area

In order to validate the universality and reliability of the
proposed model, this study opted for two landslide-prone areas
as study areas, namely the Three Gorges Reservoir area and
Jiuzhaigou. These areas boast distinct geological structures and
geographical features, providing ample evidence to showcase
the model’s performance and applicability.

1) Site A: Three Gorges Reservoir Area: Site A is located in
the section from Zigui to Badong in the Three Gorges Reservoir
area in western Hubei Province, China, including parts of Zigui
County of Yichang City and Badong County of Enshi Prefecture
[Fig. 1(a)]. The whole zone is located from 30°1’12” N to
30°55’48” N, 110°18’0” E to 110°52’12” E, with a total area of
about 396 km2. The Yangtze River flows through the site in the
WNW-ESE direction.

The landslides distribution and three-dimensional (3-D) to-
pography of Site A are shown in Fig. 1(b) and (c), respectively.
Site A belongs to the subtropical monsoon climate, characterized
by hot summers and cold winters, with four distinct seasons.
Precipitation mainly concentrates in June to September, with an
average annual rainfall of 1100 mm and prone to heavy rainfall.
In terms of topography and geomorphology, Site A has a rugged
surface which is very favorable to the formation and develop-
ment of landslides. The faults in the area are widely developed
and the lithology is unstable, so landslides have often occurred
historically. As one of the most important water conservancy
projects in China, it is important to assess the probability of
landslide occurrence in Site A.

2) Site B: Jiuzhaigou: Site B is located in Jiuzhaigou County,
Aba Tibetan and Qiang Autonomous Prefecture, Sichuan
Province, China [Fig. 2(a)]. The whole zone is located from
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Fig. 2. Location of Site B. (a) Geographical location of Site B. (b) Distribution
of landslides in Site B. (c) 3-D topography of Site B.

32°54’15” N to 33°24’19” N, 103°38’19” E to 104°04’20” E,
with a total area of about 1367 km2.

Fig. 2(b) and (c) depict the distribution of landslides and
the 3-D topography of Site B, respectively. Site B belongs to
the highland humid climate, which has less precipitation and
is mostly concentrated in July and August. As the transition
zone between the Tibetan Plateau and the Sichuan Basin, Site B
is characterized by high peaks, deep valleys, and steep terrain.
The topography of the area is high in the south and low in the
north, with a relative elevation difference of more than 2000 m.
Site B has complex geological background and strong tectonic
movement, which has facilitated the development of geologi-
cal hazards. On August 8, 2017, a 7.0 magnitude earthquake
occurred in Jiuzhaigou County, Sichuan Province, resulting in
multiple landslide disasters in Site B, posing a significant threat
to local residents and tourists [Fig. 2(b)]. Therefore, accurate
LSM is of great importance to people’s safety in Site B.

B. Landslide Inventory Map

The drawing of landslide inventory map can visually display
the distribution of landslides and create labels to input into the
model for training. The landslide inventory map of Site A was
mainly constructed by referring to the historical landslide data,
combined with remote sensing images and on-site field survey
data. And the landslide inventory data of Site B are mainly
from landslide history documentation and visual interpretation
of Google Earth images. Specifically, there are 202 landslides
in Site A, with a total area of about 23.40 km2, most of which
are reservoir bank landslides, mainly along both sides of the
mainstream of the Yangtze River. In Site B, there are more than

TABLE I
DETAILED VALUES OF LANDSLIDE CONDITIONAL FACTORS

4000 landslides distributed, with a total area of about 9.51 km2.
The landslides are small in area and mainly concentrated in the
west and central part of Site B.

C. Landslide Conditioning Factors

The basic assumption of landslide susceptibility is that land-
slides will occur in areas with similar geological and environ-
mental conditions to historical landslides, so the selection of
LCFs is critical for LSM. LCFs typically contain factors for to-
pography and geomorphology, geology, hydrology, and ground
cover [7]. Taking into account previous studies on the study area
and the availability of data [30], we finally selected nine LCFs:
elevation, aspect, slope, lithology, distance from fault (DTF),
distance from river (DTR), precipitation, land use/land cover
(LULC), and normalized difference vegetation index (NDVI).

The initial three LCFs were derived from the digital ele-
vation model, sourced from http://www.gscloud.cn. Lithology
and fault data were procured through vectorization from the
1:2 00 000 scale geological map database available at the Na-
tional Geological Archive (http://www.ngac.org.cn/Map/List).
River vector data were extracted from the 1:2 50 000 scale
National Basic Geographic Database. Precipitation data for Sites
A and B were sourced from the China Monthly Precipitation
Dataset for July 2010 and August 2017, respectively, accessible
for download from the National Earth System Science Data Cen-
ter (http://www.geodata.cn). LULC data for 2010 and 2017 are
obtained from the CLCD (China Land Cover Dataset) dataset,
retrievable at http://zenodo.org/records/5816591. Furthermore,
NDVI data were acquired using Landsat 5 TM (2010/07) and
Landsat 8 OLI images (2017/02), respectively, which can be
downloaded from https://earthexplorer.usgs.gov/. Table I shows
detailed information of LCFs in Sites A and B, all of which were
processed using ArcGIS 10.2.

III. METHODOLOGY

First, we identify nine geoenvironmental factors as LCFs and
perform multicollinearity and importance analyses on the LCFs.
Next, we generate landslide datasets by generating patch blocks
from pixels. These datasets are then randomly divided into

http://www.gscloud.cn
http://www.ngac.org.cn/Map/List
http://www.geodata.cn
http://zenodo.org/records/5816591
https://earthexplorer.usgs.gov/
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Fig. 3. Flow chart of this study.

training, validation, and test sets using a 6:2:2 ratio. Then, CNN,
ResNet, DenseNet, ViT, fractional Fourier image transformer
(FrIT), and CTLGNet are constructed to generate LSM. Lastly,
we compare and evaluate model accuracy and generalization
abilities. The detailed flowchart is shown in Fig. 3.

A. Data Preprocessing

The data preprocessing in this study involves several key
steps, including coordinate system unification, resampling, and
image standardization. Initially, we standardized the coordinate
systems for all the data. Recognizing the variations in spatial
resolution among different geospatial data types, we utilized
bilinear interpolation for resampling to unify the spatial reso-
lution [31]. This ensured consistency in the number of rows
and columns in LCFs. To eliminate the difference in magnitude
between discrete and continuous factors and accelerate model
convergence, the Z-score method was employed to standardize
the images of LCFs [32].

B. LCFs Selection

During the LSM process, it is critical to ensure the relative in-
dependence and importance of the selected LCFs. The presence
of strong multicollinearity between LCFs or low importance of
LCFs may adversely affect computational efficiency and lead
to unstable and inaccurate models. Therefore, it is necessary to
conduct multicollinearity analysis and importance evaluation on
LCFs before constructing the landslide datasets [33].

1) Multicollinearity Analysis: In order to further evaluate
the correlation among LCFs, we performed a multicollinearity
analysis on the factors. Multicollinearity can be assessed using
the variance inflation factor (VIF) and tolerance (TOL). The
mathematical expression for VIF is as follows:

VIF =
1

1−R2
i

(1)

By utilizing X = {x1, x2, …, xn}, we establish an independent
dataset for variables, where R2

i signifies the coefficient of deter-
mination for the ith independent variable, Xi, when it is regressed
on all other predictor variables within the model. TOL represents
the reciprocal of the VIF value in numerical terms. In general, if
the VIF is less than 10, it suggests a low level of multicollinearity
among the data. If the VIF falls between 10 and 100, it indicates
the presence of strong multicollinearity. A VIF value of 100 or
higher suggests severe multicollinearity.

2) Importance Evaluation: In order to measure the impor-
tance of each LCF for the occurrence of landslides, this study
conducted an importance evaluation of nine LCFs in Sites A and
B by calculating the Gini index in the random forest model [34].
The higher value of the Gini coefficient of an LCF indicates that
the LCF is more important to the model, and the sum of the Gini
index of all LCFs should be equal to 1.

C. Landslide Dataset Construction

After data preprocessing and LCFs selection, the LCFs are
stacked into a 3-D matrix (H, W, and C), where H represents
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height, W represents width, and C indicates the number of LCFs.
In the entire region, a landslide pixel is randomly chosen as
the center of a patch block. The block is then expanded in the
H, W, and C directions, resulting in a landslide patch block
with size of 72 × 72 × 9. A total of 10 000 landslide patch
blocks are generated for both Sites A and B, which constructs a
landslide dataset for LSM. And an equal number of nonlandslide
patch blocks are generated using the same steps for the training,
validation, and test sets. Maintaining a consistent ratio of positive
and negative samples, the landslide dataset is randomly divided
into training, validation, and test sets in a 6:2:2 ratio. Finally,
in order to further enrich sample diversity and enhance model
performance, various techniques such as random horizontal
flipping, random rotation, and local random scaling are applied
to the training set during the data augmentation while keeping
the patch block size unchanged, which were then input into all
LSM models constructed in the following for training.

D. CNN-Based Models

1) CNN: The earliest CNN model, LeNet-5, was introduced
in the 1990s for handwritten digit recognition [35]. CNN net-
works possess characteristics such as local perception, pa-
rameter sharing, and translation invariance, enabling them to
effectively extract and utilize LLFs from input data [36]. As a
result, CNNs have found wide-ranging applications in computer
vision (CV) tasks and have achieved remarkable breakthroughs
in the field of LSM [37], [38].

In this study, we constructed a ten-layer CNN network for
LSM using 2-D convolutional kernels. The architecture com-
prises two convolutional layers with a kernel size of 3 × 3, two
max pooling layers, two ReLU activation functions layers, a
batch normalization (BN) layer, and a fully connected layer. The
CNN structure could extract high-dimensional landslide features
through convolution and pooling layers, obtaining relatively
excellent LSM results.

2) ResNet: ResNet is designed to address the problems
of network degradation and gradient vanishing encountered
during the training of deep networks [17]. ResNet intro-
duces the concept of residual learning, wherein the input
feature maps of each residual module are added to the
feature maps obtained after a series of convolution opera-
tions, creating a residual connection. This innovative design
of skip connections enables the network to directly learn
residuals without relying solely on gradual learning through
multiple layers. ResNet architectures typically consist of
multiple stacked residual modules [33]. Each residual module
comprises two convolutional layers for feature extraction and
a skip connection that adds the input features to the output
features, facilitating the learning process.

In this article, we employed ResNet18 to build the LSM
model, utilizing an architecture consisting of 18 layers within
a deep CNN. ResNet18’s residual blocks could facilitate the
training of deeper networks and ensure that landslide features
are propagated and retained more efficiently.

3) DenseNet: DenseNet is designed to address the chal-
lenges of gradient vanishing and feature reuse during the training

of deep networks [18]. Unlike traditional CNNs, DenseNet
introduces dense connections and skip connections, achieving
superior network performance. DenseNet takes a different ap-
proach by establishing dense connections, where each layer is
connected to all previous layers, forming a dense connection
structure [34]. This architecture ensures that each layer has
direct access to the feature maps of all preceding layers, enabling
more comprehensive and rich information flow throughout the
network. The network structure of DenseNet comprises multiple
dense blocks, with each dense block consisting of multiple
convolutional layers and a feature fusion layer known as the tran-
sition layer. The transition layer plays a vital role in controlling
the dimensionality of feature maps and reducing computational
complexity.

In this study, DenseNet-BC (DenseNet with bottleneck and
compression) was used to obtain LSM results. This variant
incorporates bottleneck and compression operations, effectively
reducing the dimensionality of the landslide feature map and
enhancing the overall performance of DenseNet.

E. Transformer-Based Model

1) ViT: Building upon the success of the transformer in
NLP, Google introduced ViT in 2020, marking the extension
of transformer’s application to the field of CV for the first time
[23]. Unlike traditional models, ViT takes a unique approach by
treating images as 1-D sequences to extract features. To begin
with, ViT divides the input image into a collection of patch
blocks and subsequently flattens each block into a vector. These
vectors serve as the input for the model. An embedding layer then
maps these input vectors to a high-dimensional feature space,
and these transformed vectors undergo processing through mul-
tiple layers of encoders. Within these encoders, the SA layer and
the feed-forward neural network layer work in tandem to extract
the image’s global features. Finally, the output vector from
the last position is taken as the image’s feature representation,
resulting in the classification outcome [39], [40].

We used the original VIT structure to extract landslide features
and implement the LSM task. The configuration includes four
attention heads and eight transformer layers. The VIT model
proves effective in capturing LGFs across the input sequence
while emphasizing key areas within the input image.

2) FrIT: In response to the lack of global contextual informa-
tion in CNN and the loss of local semantic information in VIT,
the FrIT was proposed. FrIT has demonstrated success in cap-
turing both global and local contextual features [41]. Different
from VIT which is based on SA mechanism, FrIT extracts global
contexts based on 2-D fractional Fourier transform layers. Other
than that, the structure of FrIT remaining parts is basically the
same as that of VIT. We migrated the FrIT to the LSM task and
conducted a comparative analysis against the network proposed
in our study.

F. CTLGNet

To address the limitations of feature extraction capabilities in
CNN- and transformer-based models and enhance the landslide
spatial prediction accuracy by simultaneously extracting LGFs
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Fig. 4. Framework of LSM based on CTLGNet.

and LLFs, we propose a hybrid model called CTLGNet for
LSM tasks. Fig. 4 illustrates the specific structure of CTLGNet,
which comprises two key modules: the LLFs extraction module
based on the convolutional architecture and the LGFs extraction
module based on the improved transformer architecture.

1) LLFs Extraction Module: Given the strong local percep-
tion of convolution, we designed an LLFs extraction module
that consists of three blocks to effectively extract LLFs. Each
of the first two blocks is composed of convolution layers with
a kernel size of 3 × 3, a BN layer, and a ReLU activation
function. The first of these convolutional layers is used to capture
the low-level LLFs, while the second one further extracts the
more abstract LLFs. The BN and activation function layers play
crucial roles in normalizing the data and introducing nonlinear-
ities, respectively. The final block in the structure incorporates a
convolutional layer with a 3 × 3 kernel size, a ReLU activation
function, and a max pooling layer, facilitating the extraction of
higher-level LLFs. The LLFs extraction module in our proposed
model imparts sufficient inductive bias, enabling it to adeptly
extract LLFs associated with landslide areas of varying sizes.
Suppose we have an image input represented by X ∈ RH×W×C

Xp = MaxPool (Conv (Conv (Conv (X)))) (2)

X will become the 1-D sequence Xp ∈ R1×(P 2·C), where p
represents the resolution of each image patch block. This module
empowers the model to effectively retain a broader spectrum of
high-dimensional and critical LLFs.

2) LGFs Extraction Module: After patch and position em-
bedding operations, the LGFs extraction module extracts the
LGFs through improved transformer. First, each transformer
encoder consists of traditional components, including multihead
SA (MSA), layer normalization (LN), multilayer perceptron
(MLP), and skip connections.

The MLP comprises a fully connected layer with GELU
activation function. When the encoder input is XL

X ′
L+1 = MLP (LN (XL)) +XL (3)

XL+1 = MSA
(
LN

(
X ′

L+1

))
+X ′

L+1 (4)

where L represents the number of transformer encoder. In models
like ViT and BERT, the class token plays a crucial role in image
classification [23], [42] as a specialized embedding vector. In
CTLGNet, we introduce a replacement for class tokens called
sequence pooling (SeqPool), ensuring that the output sequence
encompasses relevant information from various regions of the
input image [43]. By preserving this information, the model
becomes more adept at leveraging spatially sparse data, ulti-
mately resulting in enhanced LSM performance. SeqPool serves
as an attention-based approach that enables the network to
appropriately balance the sequential embeddings within the
potential space generated by the transformer encoder. If we
get the output Xe ∈ RB×N×D of the last transformer encoder,
seqpool implements RB×N×D �→ RB×D through a series of
transformations. The details are as follows:

x′
L = softmax

(
Linear(xL)

T
)

(5)

z = x′
L xL = softmax

(
Linear(xL)

T
)
× xL. (6)

In the equation, Xe represents the output of the last encoder,
B is the batch size, N is the sequence length, D represents the
total embedding dimension, and z is the output.

The model’s output layer features a fully connected layer,
incorporating a Softmax activation function. This fully con-
nected layer is responsible for generating landslide susceptibility
values, providing a probabilistic of landslide occurrence. The
proposed CTLGNet combines the strengths of CNN and trans-
former architectures, offering an effective solution for extracting
both LLFs and LGFs in LSM tasks.

G. Model Evaluation Metrics

Evaluation metrics play a crucial role in quantitatively validat-
ing and assessing the predictive capability of a model. This study
incorporates a range of model evaluation metrics to thoroughly
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evaluate the performance of the model. These metrics include
overall accuracy (OA), precision rate (Precision), recall rate
(Recall), F1-score, Matthews correlation coefficient (MCC),
Kappa coefficient (Kappa), root mean square error (RMSE),
mean absolute error (MAE), area under the curve (AUC), and
receiver operating characteristic (ROC). The specific formulas
for calculating these metrics are as follows:

OA =
TP + TN

TP + FP + TN + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1− score =
2× Precision × Recall

Precision + Recall
(10)

MCC = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(11)

Kappa =
p0 − pe
1− pe

(12)

pe =
(TP+FN)(TP+FP)+(FP+TN)(FN+TN)

n2 . (13)

Among these, true positive (TP) refers to the number of pixels
correctly classified as landslides, true negative (TN) represents
the number of pixels correctly classified as nonlandslides, false
positive (FP) denotes the number of pixels incorrectly classified
as landslides, and false negative (FN) indicates the number of
pixels incorrectly classified as nonlandslides. The closer the
value of the above-mentioned metrics is to 1, the better the model
performance is. RMSE and MAE are employed to quantify the
deviation between the predicted landslide susceptibility values
by the model and the actual values, thereby assessing the accu-
racy and reliability of the model. The calculation formulas for
both are as follows:

RMSE =

√
1

n

∑n

i=1
(ri − pi)

2 (14)

MAE =
1

n

n∑
i = 1

|ri − pi| . (15)

In the formula, n represents the total number of pixels in the
test set, while ri and pi, respectively, denote the real data and
predicted data. Additionally, the smaller the values of RMSE
and MAE, the more accurate the model is. In addition, the ROC
curve, which illustrates the trade-off between sensitivity and
specificity, is a crucial metric for assessing the reliability of
classification models. The closer the ROC curve is to the upper-
left corner, the more dependable the results are considered to
be.

Landslide density (LD) serves as a quantitative measure of
landslide distribution within the LSM results. The classification
of landslide susceptibility results encompasses five distinct cat-
egories: very low (VL), low (L), moderate (M), high (H), and
very high (VH). LD is defined as the ratio of the proportion
of landslide area to the proportion of zone area within the
susceptibility zones [19], [44]. The formula for calculating the

TABLE II
COMPUTER HARDWARE INFORMATION

LD value is as follows:

LD = PL / PC. (16)

In the given equation, PC represents the proportion of each
susceptibility zone’s area relative to the entire site, while PL rep-
resents the proportion of landslide area within each susceptibility
zone relative to the total landslide area of the entire site. As the
landslide susceptibility class increases, the LD value is expected
to increase from VL to VH. This relationship indicates a higher
concentration of landslides in zones with higher susceptibility
class [45].

H. Experimental Environment and Hyperparameter Settings

Table II provides an overview of the computer hardware uti-
lized in the experiments conducted for this study. The software,
developed within the Python 3.8 environment, was built on the
PyCharm 2021 and Microsoft Visual Studio 2021 software plat-
forms. The experiments were carried out on the Linux-Ubuntu
18.04.05 LTS operating system. The DL network was crafted
using the Keras 2.4.3 AI development framework.

The model accuracy and computational efficiency of the
model depend not only on the structural design of the model,
but also on the hyperparameter settings in the model [41]. We
used trial-and-error method to optimize all model parameters
by limiting the range of hyperparameters, and finally selected
the optimal combination of parameters according to the model
accuracy. The stochastic gradient descent optimizer was selected
for the network, initializing the learning rate at 0.001, and
employing a batch size of 16 for each learning iteration. The
final output layer of all models was set as the fully connected
layer with the activation function “Softmax,” which maps the
output of multiple neurons in the upper layer to a value of 0-1,
i.e., the probability of landslide occurrence. To complement the
Softmax activation, we chose the cross-entropy loss function
with label smoothing as the loss function for all models. The
training process involved 100 epochs, and the accuracy on the
validation set was continuously monitored during training to
identify and select the best-performing model.

IV. RESULTS AND ANALYSIS

A. Analysis of the LCFs

The results of the multicollinearity analysis of LCFs in Sites A
and B are presented in Fig. 5. It can be seen that the LCFs in Sites
A and B have low multicollinearity. In Site A, all LCFs have VIF
values below 2, indicating a low level of multicollinearity among
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Fig. 5. Results of multicollinearity analysis of LCFs. (a) Site A. (b) Site B.

Fig. 6. Results of importance evaluation of LCFs. (a) Site A. (b) Site B.

the data. The highest VIF value is associated with elevation,
which is 1.933, corresponding to a TOL value of 0.517. While
in Site B, all LCFs have VIF values below 5, with elevation and
precipitation having VIF values of 4.560 and 4.649, respectively,
and corresponding TOL values of 0.219 and 0.215.

Fig. 6 shows the results of importance evaluation of LCFs. It
is evident that all LCFs play a role in landslide occurrence, albeit
to varying degrees across different regions. Notably, in both
Sites A and B, DTF exhibits relatively low importance. NDVI
demonstrates lower importance in Site A but holds significant
relevance in Site B. Conversely, the slope is highly significant in
Site A but exhibits less significance in Site B. Given the absence
of strong multicollinearity among the selected LCFs and their
collective importance in influencing landslide occurrences, we
will utilize all LCFs to obtain LSM results.

B. Comparison of LSM Results

Using the six network architectures constructed in the last
section, we obtained LSM results for Sites A and B. The
Jenks natural breakpoint method was employed to classify the
landslide susceptibility into five categories: VL, L, M, H, and
VH [46], [47]. Figs. 7 and 8 illustrate that the LSM results

obtained from each model in the same area exhibit similar-
ities. Specifically, within Sites A and B, the majority of the
area is classified as VL and L susceptibility zones, while the
distribution of H and VH susceptibility zones aligns closely
with the spatial locations and outlines of historical landslides.
Notably, the H and VH susceptibility zones predicted by the
CTLGNet model exhibit a superior alignment with historical
landslides in both global location and local details. In Site A,
VL and L susceptibility zones are mainly concentrated along
the main stem and tributaries of the Yangtze River. In Site B,
they are concentrated in the western and central parts of the
region. Overall, all six models demonstrate a certain level of
spatial probability prediction capability for landslides and point
to areas of nonhistoric landslides with high susceptibility values
that deserve attention.

The PC, PL, and LD values obtained by the six models in
Site A are shown in Table III. In this study, we define areas
with L and VL susceptibility as low landslide-prone areas, and
areas with VH, H, and M susceptibility as landslide-prone areas
[48]. In terms of PL values, CTLGNet successfully identified
97.93% of historical landslides located in landslide-prone zones.
Remarkably, these landslides were confined to only 12.65% of
the total area classified as landslide-prone zones. Further analy-
sis revealed that within the VH susceptibility zones, CTLGNet
accurately matched 90.73% of the historical landslide records,
despite these zones accounting for just 8.78% of the total area
designated as H susceptibility zones. Additionally, the PC, PL,
and LD values obtained by the six models in Site B are displayed
in Table III. CTLGNet predicted that 87.21% of the area is
not prone to landslides, which is marginally lower than ViT’s
prediction of 87.95%. Surprisingly, the overall percentage of
landslide-prone area was only 12.79%. However, the CTLGNet
successfully predicted 97.71% of the historical landslides, with
88.95% of the region’s VH susceptibility area accurately iden-
tified despite occupying only 6.27% of the total area.

Based on the definitions of LD, both values can be used
to quantitatively express the distribution of landslides in the
LSM results by combining the PC and PL values. From the
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Fig. 7. Comparison of LSM results obtained from six models in Site A. (a) CNN. (b) ResNet. (c) DenseNet. (d) ViT. (e) FrIT. (f) CTLGNet.

Fig. 8. Comparison of LSM results obtained from six models in Site B. (a) CNN. (b) ResNet. (c) DenseNet. (d) ViT. (e) FrIT. (f) CTLGNet.
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TABLE III
LD RESULTS OBTAINED FROM EACH MODEL IN SITES A AND B

TABLE IV
MODEL EVALUATION METRICS OF EACH MODEL IN SITES A AND B

distribution of LD, it can be observed that the LD values of all
models increase with the rise of susceptibility levels, and the LD
value in the VH susceptibility area is significantly higher than in
other areas. In conclusion, CTLGNet demonstrated the highest
LD values in landslide-prone areas and exhibited the greatest
disparity in LD values among different susceptibility classes.
These findings indicate that CTLGNet possesses stronger
predictive power compared to both CNN-based and transformer-
based models in accurately predicting landslide-prone
areas.

C. Comparative Evaluation of Model Performance

In this study, the dataset was partitioned into three sub-
sets: training, validation, and test sets. The performance and

predictive ability of six models were thoroughly evaluated using
the test set. The ROC curves and corresponding AUC values of
these six models were generated and presented in Fig. 9 for both
Sites A and B. In terms of AUC values, CTLGNet demonstrated
exceptional performance among all the models, surpassing the
others in terms of AUC values for both Site A (AUC = 0.9817)
and Site B (AUC = 0.9693). These outstanding results indicate
that CTLGNet exhibits superior predictive capabilities, making
it the most promising model for LSM task.

Table IV presents a comprehensive comparison of model
evaluation metrics for the six models in both Sites A and B,
where bold indicates the best. Notably, the proposed CTLGNet
in this study exhibited the highest accuracy across most evalua-
tion metrics, underscoring its effectiveness. In Site A, CTLGNet
achieved an impressive OA of 95.450%, Precision of 93.552%,
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Fig. 9. ROC curves and AUC values on the test set for the six models. (a) Site A, (b) Site B.

F1-score of 95.464%, MCC of 0.910, Kappa of 0.909, RMSE
of 0.213, and MAE of 0.045. It only had a slightly lower Recall
(97.456%) compared with ResNet, DenseNet and FrIT. Moving
on to Site B, CTLGNet maintained its superiority with an OA of
93.475%, Precision of 91.136%, Recall of 96.623%, F1-score of
93.799%, MCC of 0.871, Kappa of 0.869, RMSE of 0.255, and
MAE of 0.065. These exceptional performance results further
validate the efficacy of CTLGNet as the top-performing model
in this study, showcasing its potential for accurate and reliable
LSM in both Sites A and B.

V. DISCUSSION

A. Comparison of the Ability of the Model to Extract LGFs
and LLFs

If the model accurately extracts the spatial probability of
landslide occurrence, the resulting susceptibility values should
correspond to historical landslides, with susceptibility values
within landslide areas approaching 1. In order to test the ability of
the models in landslide localization and detail capture (i.e., LGFs
and LLFs extraction), we extracted the susceptibility values for
historical landslide areas predicted by six models and annotated
the distribution and median line of susceptibility values (as
depicted in Fig. 10). In the violin plot, wider violins indicate
a denser distribution of pixels within that range, while longer
protrusions suggest the presence of more outliers in the land-
slide susceptibility results. The region between 25% and 75%
represents the middle 50% range of the dataset, representing the
median concentration trend of the data.

In Site A, it is evident that CTLGNet outperforms all other
models by achieving the highest mean susceptibility value
among the historical landslide areas, measuring an impressive
0.876. Additionally, it exhibits exceptional performance in terms

of having the lowest standard deviation (SD) and mean abso-
lute deviation (MAD) compared with the other models. The
median line and the 25%–75% percentile range of CTLGNet
also surpass those of the other five models, further indicating its
superior predictive capability. Moving on to Site B, CTLGNet
still delivers a competitive performance with an average sus-
ceptibility value of 0.842, slightly lower than DenseNet’s score
of 0.857. Nevertheless, it maintains its reputation for reliability
with the lowest SD and the lowest MAD in this context. When
considering the combination of mean, SD, and MAD values of
the susceptibility measurements, as well as the clustering of the
distribution of these values, it becomes evident that CTLGNet
consistently outperforms the other models.

In order to further demonstrate the advantages of CTLGNet’s
in extracting LGFs and LLFs, we choose Site A as a repre-
sentative region and compare the spatial details of the LSM
results obtained from the six models in historical landslide areas.
The comparison results are shown in Fig. 11. Benefiting from
LGFs and LLFs extracted by the model, CTLGNet can be very
good for landslide localization and detail capture, and more
accurately predict the location of landslide occurrence. The H
and VH susceptibility zones obtained by the CTLGNet model
can be better matched to historical landslides in terms of global
location and local details. The other five models are more or
less deficient in LGFs or LLFs extraction, which leads to the
complete division of some historical landslide areas into VL, L,
and M susceptibility areas.

B. Comparison of Model Efficiency and Computation

In order to further validate the performance of the proposed
model, this study conducts a comparison focusing on model
efficiency and computation. Given the inherent advantage of
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Fig. 10. Distributional relationships between landslide and landslide susceptibility. (a) Site A. (b) Site B.

Fig. 11. Detailed comparison of LSM results of the six models in Site A.

convolution-based models in this aspect, our analysis is limited
to a comparison with transformer-based models. Specifically,
we computed the number of model parameters and the floating-
point operations (FLOPs) for CTLGNet and compared them
against two transformer-based models utilized in this study
(ViT and FriT), as well as an efficient transformer-based model,
MobileViT [49]. FLOPs can be interpreted as the amount of
computation of the model, which is commonly used to measure
the complexity of the model. MobileViT integrates the strengths
of both CNN and ViT, emerging as a lightweight and general
model that has demonstrated superior performance over CNN
and ViT-based networks across various tasks and datasets. The
number of parameters and FLOPs for each model are summa-
rized in Table V.

TABLE V
COMPARISON OF MODEL PARAMETERS AND FLOPS

The analysis reveals that CTLGNet exhibits the lowest num-
ber of parameters and FLOPs among the compared models,
highlighting its computational efficiency. Conversely, both ViT
and FrIT exhibit higher parameter counts and FLOPs, consistent
with their structural characteristics. While MobileViT has only
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TABLE VI
AUC VALUES FOR THE FIVE-FOLD CROSS-VALIDATION OF THE CTLGNET

MODEL

a higher number of parameters than CTLGNet but the highest
FLOPs, a trend consistent with the findings reported in the
original article.

C. Robustness Analysis of the CTLGNet

To further test the robustness of the proposed model, we
performed a five-fold cross-validation of the CTLGNet. First, the
constructed landslide dataset was randomly and evenly divided
into five parts. Then, based on the training, validation, and test
dataset ratio of 3:1:1 set in this study, one of the parts is taken as
the test dataset each time without repetition, and the CTLGNet
is trained with the other four parts as the training and validation
datasets. Finally, the AUC value of the model on the test set is
calculated, providing a comprehensive measure of the accuracy
of LSM results.

The AUC values obtained from the five-fold cross-validation
of CTLGNet, as presented in Table VI, exhibit minor fluctuations
within narrow ranges. Specifically, the AUC values range from
0.9811 to 0.9817 for Site A and from 0.9688 to 0.9693 for Site B.
Calculating the mean AUC values across the five experiments
yields 0.9814 for Site A and 0.9690 for Site B. These values
outperform those of the comparison models, affirming the ro-
bustness and stability of CTLGNet.

D. Limitations and Future Work

First and foremost, the accuracy and credibility of LSM
heavily depend on the quality of data sources. Given the rapid
progress in remote sensing imaging sensors, multimodal remote
sensing data can offer complementary information [50]. Effec-
tively enhancing data quality and establishing a high-quality
landslide dataset by integrating multimodal data present a sig-
nificant challenge.

Furthermore, the training samples are the basis of construct-
ing the LSM model. While this study applied fundamental
data augmentation techniques, such as flipping and rotation, to
augment the multilevel features of landslides, more advanced
data augmentation methods have already demonstrated success
in image classification tasks [51], [52]. Investigating whether
these sophisticated data augmentation strategies are effective in
highlighting landslides features to improve the accuracy of LSM
models is a worthy goal.

Last but not least, the performance of LSM is notably influ-
enced by the chosen model architecture [48]. Model construc-
tion using different DL models may result in variations in the
extraction and effectiveness of landslide features. While this
research employed a sequential structure to integrate the CNN
and transformer, investigating the potential of utilizing parallel
or hierarchical structures to build LSM models represents a
direction for our future endeavors.

VI. CONCLUSION

In this article, we propose CTLGNet that takes into account
both LLFs and LGFs for LSM. The model is applied in two
regions: Three Gorges Reservoir area and Jiuzhaigou. Historical
landslide inventory and nine LCFs were selected to construct a
landslide dataset for LSM. Subsequently, we employ compre-
hensive evaluation metrics to evaluate the LSM results obtained
by our proposed model and compared with five other models:
CNN, ResNet, DenseNet, ViT, and FrIT.

The experimental results demonstrate that CTLGNet utilized
in this study achieve relatively accurate LSM results and the
regions identified as VH and H susceptibility classes most
closely match the spatial distribution of historical landslides.
Statistical results show that CTLGNet outperforms the other
five models in all evaluation metrics except Recall, with AUC
values of 0.9817 and 0.9693 for the two regions, respectively.
Furthermore, the extraction of landslide susceptibility values
within historical landslide areas demonstrates that CTLGNet
produces results with the highest mean value and the lowest
MAD and SD. This indicates that the CTLGNet captured the
best localization and details of landslides and extracted LLFs and
LGFs most adequately. Besides that, CTLGNet has the lowest
number of parameters and FLOPs among the models related
to transformer, which gives it an advantage in terms of model
computations. In conclusion, our proposed method demonstrates
outstanding capabilities in predicting landslides and exhibits
excellent generalization ability. As a result, it holds promising
potential for a wide range of LSM applications.
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