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Abstract—Globally, pests and plant diseases severely threaten
forestry and agriculture. Plant protection could be substantially
enhanced by using noncontact, extremely effective, and reasonably
priced techniques for identifying and tracking pests and plant
diseases across large geographic areas. Precision agriculture is the
study of using other technologies, such as hyperspectral remote
sensing, to increase cultivation instead of traditional agricultural
methods with less negative environmental effects. In this article,
we proposed a novel deep-learning architecture and optimization
algorithm for crop leaf disease recognition. In the initial step, a
multilevel contrast enhancement technique is proposed for a better
visual of the disease on the leaves of cotton and wheat. After that,
we proposed three novel residual block and self-attention mecha-
nisms, named 3-residual block-deep convolutional neural network
(RBNet) Self, 5-RBNet Self, and 9-RBNet Self. After that, the pro-
posed models are trained on enhanced images and later extracted
deep features from the self-attention layer. The S-RBNET Self and
9-RBNET Self performed well in terms of accuracy and precision
rate; therefore, we did not consider the 3-RBNET Self for the next
process. The dragonfly optimization algorithm is proposed for the
best feature selection and applied to the self-attention features of
S5-RBNET Self and 9-RBNET Self models to improve the classi-
fication performance further and reduce the computational cost.
The proposed method is evaluated on two publically available crop
disease images, such as the cotton, wheat, and EuroSAT datasets.
For both crops, the proposed method obtained a maximum accu-
racy of 98.60 % and 93.90 %, respectively, whereas for the EuroSAT,
the proposed method obtained an accuracy of 83.10%. Compared
to the results with recent techniques, the proposed method shows
improved accuracy and precision rate.
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I. INTRODUCTION

HE yield of any crop in reasonable quantity and quality is
T essential for any country to become economically stable
[1], [2]. Food is a necessity of human life, so there must be
no gap between the supply and demand of food, which is only
possible by growing sufficient amounts of crops, especially those
that are used abundantly, directly or indirectly, like wheat, rice,
corn, cotton, and vegetables because they are needed daily [3].
Food shortage is observed due to the attack of different pests
and diseases on crops, bad weather conditions, and the timely
detection and eradication of disease in plants [4], [5]. In contrast,
pests and disease management systems have increased the yield
of food production for the last 40 years [6]. Global estimations
show an annual loss of about 50% in wheat crop yield and up
to 80% in cotton worldwide [7]. By looking into these facts,
it is clear that there is a need to stop these pests and disease
attacks that are destroying crops. It is done mainly by using
manual or traditional methods that involve the observation of
visual symptoms or are based on crop knowledge, identifying
the disease, using a proper pesticide, or taking precautions [8].
But these methods need a lot of time and proper as well as
precise knowledge, which in most cases is trivial, so this system
must be automated to make it less laborious and economically
feasible for the farmers [9], [10]. Since manual classification
is dependent on human knowledge, it can add biasness in the
results and leads to the problem of misclassification [11].

Two of the most common cash crops worldwide are wheat
and cotton, which are also very vulnerable to pests and disease
attacks due to their abundance. Common diseases found are pow-
dery mildew, tan spot, leaf rust, stripe rust, stagonospora leaves,
fusarium, bacterial leaf streak, wheat streak, mosaic virus and
many more [12]. Similarly, common diseases found in cotton are
leaf spots, bacterial blight, wilts, fusarium wilt, leaf curl virus,
angular leaf spot, and others [13]. It shows that many diseases
attack these two important crops, and acquiring the data of their
leaves is also very challenging, which causes noise, occlusion,
background environment effects, and weather conditions that
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Fig. 1.

Sample crop images collected from satellite.

make the acquired dataset less visible and suitable for the process
of computer vision (CV) and machine learning (ML) [14].

After the implementation of these CV-based automated early
disease detection systems, the growth of crops is greatly affected
[15]. Automated disease classification is beneficial for early
diagnosis and precisely suggests the methodology to tackle the
respective disease [16]. Basic computer vision-based techniques
involve dataset acquisition [17], preprocessing to enhance the
quality of sample images, extraction of feature vectors [18],
feature optimization for the extraction of useful features [19],
and classification using several classifiers [19].

The leaf of any crop is the most prominent and visible part,
which can be acquired and analyzed easily, other than the stem
and root [20]. Alongside CV-based methods, the entrance of
deep learning (DL) shows much success in disease detection
and recognition using digital and remote sensing (RS) images
[21], [22], [23]. A few sample images are shown in Fig. 1. Deep
convolutional neural networks (DCNN) are used to get better
results than traditional techniques such as handcrafted features,
feature reduction, and classifiers (SVM [24], KNN [25]). In the
area of DL, several pretrained models have been available for
the classification of crop diseases, such as DarkNet-19 [26],
DarkNet-56 [26], EfficientNet-BO [27], EfficientNet-B7 [27],
AlexNet [28], ResNet [29], and many more. These DCNNs
extract deep features from the activation layers [30]. The addi-
tion of convolutional neural networks (CNN) based classifiers,
namely wide neural networks, medium neural networks, nar-
row neural networks, bilayered neural networks, and trilayered
neural network has also added much improvement in DCNN’s
architecture for classification accuracy [31].

In CV tasks, the improvement of sample images is an impor-
tant step, and several works in the literature missed this approach.
The addition of this step improved the accuracy and precision
rate. However, there is a drawback to this step that is extra
computational time [32], [33]. The main advantage of this step
is that it extracts the important image features instead of noisy
regions [34], [35]. Features extraction is an important step in any
CV technique. In the DL models, features are extracted from
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the flattened layers, such as an average pool or fully connected.
A flattened layer is used to convert a multidimensional array
or matrix in the case of an image to a one-dimensional (1-D)
matrix. In image processing, it is applied after convolution layer
to transform the extracted information from spatial domain to
one, which is suitable for fully connected layer as an input [36].
A fully connected layer, also known as a dense layer, is very
important and purposeful in a CNN. This layer is mapped at the
end of a CNN network to adjust the extracted features obtained
through convolution and pooling layers according to their prob-
abilities. Spatial information obtained through preceding layers
is aggregated into an output feature vector, which is used for
class prediction [37]. The extracted features are in the form of
edges, shape, texture, color intensities, and other distinguishing
properties [38].

In recent studies, several researchers used optimization tech-
niques for the selection of the best features. The main purpose
of this step was to consider only important information, such
as image features that can accurately recognize the image label
[39]. Optimization algorithms are playing a vital role in ML for
various tasks which include selection of useful features [40],
tuning of parameters [41] and training of ML models [42].
The important one, i.e., feature selection, involves the selection
of the most relevant feature from the available data, which
helps overcome the problem of overfitting [43] and building an
optimized lightweight ML model [44]. There are several feature
optimization techniques, such as PSO [45], WOA [46], Crow
search [46], Lion optimization [47], and a few more. The selected
features are finally classified using neural network classifiers.

Shafietal. [48] presented an architecture of wheat crop disease
classification that involved the use of RS devices and ML models
and trained the concept of the Internet of Things. It was pro-
posed that data acquisition be done manually through hand-held
devices and also by using satellite and unmanned aerial vehicle
imagery. In the next step, the data are cleaned, transformed, and
normalized according to the required standards, and later on, an
ML-based algorithm is used to train and test the proposed archi-
tecture. In the stage of image preprocessing, the following func-
tions were performed: noise removal sharpening of the edges to
do so, low-pass filters were used for noise removal, and high-pass
filters were used for sharpening of the edges. Different DCNNs
were evaluated on the acquired and preprocessed data, namely,
VGG-16 [49], VGG-19 [50], AlexNet [51], DenseNet [52], and
GoogleNet [53]. After experimentation, it was concluded that
the performance of the aforementioned models depends upon
many factors such as the quality of the dataset, acquired, devices
used for capturing images, methodology, and size of the dataset.
Omia et al. [54] presented a brief study on data analyses and
recent advancements in filed crop monitoring using RS data.
The authors highlighted the strengths and limitations of each
technology for collecting and analyzing the crop data from RS.
Xu et al. [55] suggested an integrated DL framework with a
residual channel attention block, a feedback block, an elliptic
metric learning (EML), and a CNN model. The authors used
two CNN models in parallel to extract the basic features which
separate healthy and diseased wheat leaves. The residual block
was utilized to optimize the extracted features. Feedback block
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was used in the next phase to train on the previously extracted
features. Finally, the optimized extracted features were fed into
EML and CNN models for classification. The overall accuracy
obtained after experimentation was 98.83%, which was better
than other state-of-the-art models. Wang et al. [56] presented a
DL framework based on enhanced status replay network for the
classification of multisource RS data. The authors used three
publically available dataset for the experiments and the aug-
mentation is applied on the dataset and semantic segmentation
is employed to reduce the impact of representation bias. The
authors achieved highest outcomes on proposed RSRNet as
compared to the SOTA techniques. According to Magsi et al.
[57], in today’s world of revolution and technical advancements,
ML is playing a vital role in disease detection in crops like cotton.
The growth of cotton crops impacted any country’s economy,
so cotton diseases which lower the yield of crops cannot be
ignored. A common disease named Cotton Leaf Curl Disease is
addressed in this research work. An architecture is proposed that
teaches the concepts of image preprocessing and ML techniques
to classify the severity level of a disease. For decision-making,
features like texture and color are extracted. A dataset comprised
of 1600 images is used for evaluation. After training and test-
ing the proposed architecture, an accuracy rate of 89.40% is
achieved. For preprocessing the images, different functions are
performed, such as image resizing, noise reduction, and removal
of background. Roy et al. [58] suggested a framework based
on multimodal fusion transformer for the classification of land
use. In this experiments, the authors suggested a multimodal
transformer with multihead cross patch attention for HSI land
cover. They achieved highest accuracy on suggest model that was
92.6%. Kahsay [59] states that food security is a must, especially
in underdeveloped countries. To do so, diseases in crops must
be detected well on time and eradicated, which is positively
affecting the yield of crop. Farmers and agriculturists visualize
the crops and fields manually, which is a time consuming and a
less accurate approach. Image preprocessing and ML techniques
are doing wonders in the field of disease detection and classifi-
cation in crops. In this research work, preprocessing is applied
to digitally acquired images by using color-based segmentation
to extract region of interest (Rol). Feature extraction is done by
using gray level co-occurrence matrix and classification is per-
formed at the end. For classification supervised learning-based
algorithms are used such as Naive Bayes, random forest, support
vector machine, and K-nearest neighbor. After evaluating the
proposed methodology, an accuracy rate of 98.70% is achieved
with random forest. Eunice et al. [60] described the importance
of the agriculture sector in the financial growth of any country.

Diseases in crops are causing low yields and play a vital
role in the eradication of crop species diversity. So, an early
and accurate disease detection system can save from such a
large loss and can also maintain the quality of agricultural
products. A CNN-based pretrained model is deployed to iden-
tify the plant diseases accurately. Models used after finetuning
the hyperparameters are DenseNet-121, Inception-V4, ResNet-
50, and VGG-16. For experimentation, a publically available
PlantVillage dataset containing 54 305 sample images with 38
different classes is used. After evaluating the proposed model,
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DenseNet-121 yields the highest accuracy rate of 99.81%. To
overcome the problem of overfitting, augmentation techniques
like clockwise and anticlockwise rotation, flipping of images
horizontally and vertically, and rescaling are used.

There are still some gaps in the improvement in accuracy and
precision rate that motivate us to propose a new methodology.
Some challenges exist in recent studies, including low contrast of
original images; feature extraction using traditional methods or
pretrained models, and manual feature reduction. The pretrained
models do not extract important information when we have a
complex imaging dataset like wheat and cotton crops (see sample
images in Fig. 1). In addition, these datasets are not in high
dimension; therefore, it is essential to design a custom model.
Moreover, a feature selection technique is always required to get
the most prominent features for improved classification accuracy
and less computational time.

Collecting suitable spatial and spectral clarity of RS data is
essential for identifying various crop varieties and evaluating
their health. However, it may be challenging and costly to
get high-resolution imaging while covering huge agricultural
regions. Different soil backgrounds, and various types of crops
in the growing cycle, make it challenging to precisely identify
and classify crops using RS data.

In this article, we proposed a novel deep-learning architecture
for the classification of crop diseases using digital and RS
images. a brightness preserving bi-histogram equalization [61]
and dualistic subimage histogram equalization [62] techniques
concepts have been considered and fused local adjustment filter
with top-bottom transformation for the contrast enhancement.
The fused technique is applied to both training and testing
images. After that, self-attention DL models were proposed, and
the extracted features were further optimized using the binary
dragonfly algorithm for feature selection. In addition, Bayesian
optimization is employed for finetuning hyperparameters of
selected neural network classifiers. Hence, the core objective
of this research is to build a lightweight CNN-based model that
can be utilized for the training of crops as well as remotely
acquired datasets. In addition, to overcome the problems faced
by using the existing CNN architectures, i.e., by focusing on
hybrid preprocessing techniques and building lightweight CNN
models for deep features extraction so that nonredundant and
useful features could be extracted without losing the actual
information present in the sample images. The main contribution
is briefly given as follows.

1) A multilevel contrast enhancement technique is proposed
based on the fusion of local adjustment and top-bottom
filtering for a better visual of the disease on the leaves of
cotton and wheat crops.

2) Three models are proposed based on residual block and
self-attention mechanism. The models are named by 3-
residual block-deep convolutional neural network (RB-
Net) Self, 5-RBNet Self, and 9-RBNet Self. The deep
features are extracted from the self-attention layer for the
classification process.

3) A binary dragonfly optimization is implemented for the
best feature selection from the extracted features to reduce
the testing time.
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4) Optimize the hyperparameters of selected neural network
classifiers using Bayesian Optimization for improved ac-
curacy and precision rate.

The rest of this article is organized into four sections.
Section II describes the proposed methodology that consists
of fused contrast enhancement techniques, deep self-attention
models, optimization algorithms, and classifiers. Section III
describes the proposed method results. Finally, Section IV con-
cludes this article.

II. PROPOSED METHODOLOGY

The proposed methodology for the classification of cotton
and wheat leaf disease is presented in this section. In the pro-
posed methodology, the wheat and cotton leaves datasets are
collected from Kaggle. Both datasets are publicly available for
research purposes. A multilevel contrast enhancement technique
is proposed based on the fusion of local and top-bottom filtering
mathematical formulation for better visual information of an
image. Following that, three deep self-attention architectures
have been proposed and trained on contrast-enhanced images.
The features are extracted from the self-attention layer, and clas-
sification is performed using neural network classifiers. After
that, an optimization algorithm named binary dragonfly was
implemented, and the best features were selected. The selected
features are again passed to neural networks and performed
classification. To further improve the accuracy and precision
rate, a Bayesian optimization algorithm is applied to neural
network classifiers, and the hyperparameters are optimized. The
complete framework is shown in Fig. 2.

A. Data Collection and Preprocessing

1) Dataset Collection: In this work, four publically avail-
able datasets have been utilized, namely wheat leaves,! wheat

![Online]. Available: https://www.kaggle.com/datasets/olyadgetch/wheat-
leaf-dataset/data

Proposed framework for the classification of crops leaf diseases using deep learning and optimization.

(a) ' ) _(© ()

Fig.3. Sample images of wheat dataset (a) brown rust, (b) healthy, (c) septoria,
(d) stripe rust, (e) yellow rust.

disease,? cotton leaf disease,> and cotton plant disease.* Two
datasets are used for validation purposes, one belonging to wheat
leave disease containing 4086 sample images and the other
two datasets belonging to cotton leave disease comprising 4107
sample images; both the datasets contain RGB sample images.
The wheat leaf dataset consists of three classes, namely healthy,
septoria, and stripe rust. The wheat disease dataset contains three
classes as well, namely, brown rust, healthy, and yellow rust
classes. A few sample images of the dataset are shown in Fig. 3.
Both datasets are combined for the experimental process, as
described in Table 1.

The cotton plant disease contains six different classes, namely
aphids, army word, bacterial blight, healthy, powdery mildew,
and target spot, and the cotton leaf disease dataset has four
different classes. The names of the classes are a bacterial blight,
curl virus, fusarium, wilt, and healthy. The datasets on wheat
diseases are combined, and the data on cotton diseases are
also combined to collect different diseases and samples for the
experimental process. The complete description is provided in
Table I, and samples of cotton disease are shown in Fig. 4.

2) Proposed Contrast Enhancement: Contrast enhancement
is one of the most vital objectives considered for image

2[Online]. Available: https://www.kaggle.com/datasets/sinadunk23/behzad-
safari-jalal

3[Online]. Available: https://www.kaggle.com/datasets/seroshkarim/cotton-
leaf-disease-dataset/

4[Online]. Available:
plant-disease

https://www.kaggle.com/datasets/dhamur/cotton-
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TABLE I
DESCRIPTION OF SELECTED WHEAT AND COTTON LEFT DISEASE DATASETS
Datasets ~ Name of class No. of images

Wheat dataset

1 Brown rust 1128

2 Healthy 1497

3 Septoria 97

4 Stripe rust 208

5 Yellow rust 1156
Cotton dataset

1 Aphids 400

2 Army worm 400

3 Bacterial blight 847

4 Curl virus 417

5 Fusarium wilt 418

6 Healthy 825

7 Powdery mildew 400

8 Target spot 400

o

(g

Fig. 4. Sample images of the cotton dataset (a) Alphids, (b) army worm,
(c) bacterial blight, (d) curl virus, (e) fusarium wilt, (f) healthy, (g) powdery
mildew, and (h) target spot.

preprocessing before making it suitable for model training [63].
During contrast enhancement, the Rol or the overall contrast
of the sample image is enhanced so that disease parts become
prominent [64]. In this research work, the datasets acquired
have low image resolution and contrast qualities, so a good
technique is required to enhance the images. A multilevel con-
trast filtering technique, which is a fusion of multiple filters
mathematical formulation, is proposed. Initially, the top and
bottom hat contrast enhancement filters are implemented and
then fused their formulation to adjust the variance in colors by
employing statistical parameters [65]. Suppose D is the selected
dataset having N number of images represented as D € RN,
individual images is represented by T" (p, v), where (p, v) € R
and every sample image is resized as A x B = 224. Assume
that kernel denoted by b is initialized with a value 13. The top-hat
filtration is based on (-) opening operation and bottom hat filter
is based on (-) closing operation. The top hat and bottom hat
contrast enhancement is mathematically defined as follows:

Teop(,v) = T"(p,v) = (T"(0,v) . b) (1)
Thottom (@, v) = (N"(p,v) B p) — T"(p,v) ()

R ®v) = T"0,0) + Teop @, 1) = Trottom @) (3)
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Contrast Enhanced

Contrast Enhanced
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Fig.5 .Multilevel contrast enhancement for both wheat and cotton left disease.
where h/(p, v) denoted the resultant image of top-hat and
bottom-hat methods. Following that, an adjustment filter is
applied to enhance the lightening of an image by transforming
the pixel values of input intensity values accordingly by setting
the mean values of low and high intensities to about 1.5%.
Mathematically, it is defined as follows:

ad"(p,v) = (2) ¢~ ) + ¢ @
F'(p,v) = h'(p,v) + adj"(p,v) 5)

where F™(p,v) is the final image and gamma () represents
the correlation between coordinating coefficients like (I, h)
and (s, t),P denote the pixel intensity values in an image, and
F"(p, v) is the resultant output-enhanced image. The impact of
this technique is shown in Fig. 5.

B. Proposed Residual Networks

A residual block is an architectural block that has a skip con-
nection alongside the regular feed-forward technique. Allowing
the network to take absorbed, residual functions is the basic tenet
of a residual block. Rather than being engaged with the direct
mapping [66], [67]. The equation of the residual block can be
formulated as follows:

Poutput = Dot (¢Conv (7/) + 7/) (6)

where ¢cony(7) denotes the output of convolutional operation
applied on the input of ¢ and @, denotes the activation function.
In this work, we proposed three customized CNNS based on
multiple residual blocks. The information about the proposed
networks is described in Table II.

1) Proposed 3-RBNet: 3-RBNet is comprised of three resid-
ual blocks having a total of 78 layers with a total number of 89
connections and 11.9 million parameters. Each residual block
contains four parallel sets of layers connected at the end with
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TABLE I
DESCRIPTION OF THE PROPOSED RESIDUAL BLOCK-BASED SELF-ATTENTION
NETWORKS
Proposed No of No of Total
model layers connections parameters
3-RBNet 78 89 11.9 million
5-RBNet 123 142 12.3 million
9-RBNet 214 249 23.8 million
TABLE III

DESCRIPTION OF EACH RESIDUAL BLOCK OF DEPTH AND FILTER SIZE OF THE
PROPOSED 3-RBNET

Residual block ~ Number of filters Filter size
Ist 64 3x3
2nd 256 3x3
3rd 512 3x3

an additional layer. The input layer of the model accepts an
input of size 224 x224x3 which is followed by a convolution
layer containing 64 numbers of filters with size 3x3 and a step
size of 2x2. Then, a residual block containing four parallel sets
of layers is added, in which the first convolutional layer has
64 filters of size 2x2 and a stride of 1x1. Following that, a
batch normalization layer is attached to improve the convergence
of the proposed model as well as enhance the stability of the
model during training. Another convolution layer containing
64 filters with a size of 2x2 and a stride of 1x1 is added
with rectified linear unit (RELU) activation, which acts as an
activation function to add nonlinearity in the proposed model.
Moreover, another batch normalization layer is added in the
same way as all four parallel sets of layers. Moreover, the other
three residual blocks follow the same strategy as the first residual
block, with different values of depth and filter sizes, which are
illustrated in Table III. The last residual block is a convolution
layer containing 512 filters with a filter size of 2 x 2 and a step size
or stride of 1x1 with RELU layer. In addition, global average
pooling is inserted, and a flattened layer is added to convert the
multidimensional feature vector map obtained after pooling into
an array of one dimension to implement the self-attention layer.
In the end, a fully connected Softmax and classification layer
is added to classify the disease. The created model was trained
on selected datasets, and self-attention activation was utilized
to extract the deep features. The sizes of extracted features
were N x 512. The architecture of 3-RBNet is shown in Fig. 6.

2) Proposed 5-RBNet: The proposed 5-RBNet contains five
residual blocks with a total of 123 numbers of layers with 142
total connections and 12.3 million parameters. Each residual
block contains four parallel sets of layers connected to the addi-
tion layer. The network starts with the input layer, which takes a
224 x 224 x 3 size image. The first convolution layer contains
64 numbers of filters with a filter size of 2x2 and a stride of 2x 2.
The first residual block is added, which contains 4 parallel sets
of layers starting from a convolution layer containing 64 total
numbers of filters of filter size 2x2 and a stride of 1x 1. After
that, another convolution layer containing 64 filters of size 2x2
and a step size of 1 x 1 is used, which is followed by a RELU and
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TABLE IV
INFORMATION OF ALL RESIDUAL BLOCKS OF THE PROPOSED 5-RBNET

Residual block ~ Number of filters Filter size
1st 64 2x2
2nd 128 3x3
3rd 256 3x3
4th 512 2x2
5th 1024 3x3

batch normalization layers. All other remaining parallel layers
follow the same phenomena as followed by the first one. After
that, the max pool layer is attached, which is used to obtain a
feature map of maximum values; in this way, the dimensionality
of the available data is reduced. Similarly, the remaining four
residual blocks follow the same strategy as followed by the first
residual block but with different depths, stride and filter sizes,
which are described in Table IV.

The last residual block contains a convolution layer of 1024
filters with a filter size of 2x2 and stride of 1x1. After that,
RELU activation is added. In the last, a GAP, flatten, self-
attention, FC, Softmax, and classification layers have been
added in order to complete the network. The 5-RBNet was
trained on selected datasets, and prominent features are extracted
from the self-attention activation. The size of extracted features
was N x 1024. The architecture is visually presented in Fig. 7.

3) Proposed 9-RBNet: The proposed 9-RBNet contains nine
residual blocks, having a total of 214 layers, 249 connections,
and 23.8 million parameters. Each residual block contains four
parallel structure layers connected to the addition layer. A self-
attention layer is added after a series of residual blocks. The
proposed model input size is 224 x 224 x 3. The first convolu-
tion layer applied with filter size 2x2, stride of 2x2, and with
32 number of filters. Then comes the first residual block which
contains 4 sets of parallel layers, the first convolution layer of
residual block is of filter size 2x2, stride of 1x 1, and contains
32 numbers of filters. The second layer used in residual block
is the batch normalization layer, and the third layer is again the
convolution layer in the residual block containing 32 number of
filters of size 22 and a stride of 1x 1, then later on RELU and
BN are used at the end of the residual block. RELU layer is added
to the residual block which will act like an activation function
to introduce nonlinearity in the model; in this way, the proposed
model will be able to learn complex features and patterns from
the data more efficiently. BN is added to the residual block to
improve the models stability, increase the convergence speed,
and enhance the performance of the proposed model during the
process of training. The other three parallel sets of layers which
create the residual block have the same parameters as the first
set of layers as discussed above. To connect the four parallel
sets of residual block layers, an addition layer has been added.
After that, a max pooling layer is added with pool size 5x5
and a stride of 1x1. The purpose of max pooling layer is to
reduce the dimension of the input data by convolving the filter
or kernel of window size according to the pool size of the input
feature vector map and selecting the maximum value from every
window. In this way, only the maximum value feature vector
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TABLE V
DESCRIPTION OF BLOCK WISE DEPTH IN THE PROPOSED 9-RBNET

Residual block  Number of filters  Filter size

Ist 32 2x2
2nd 64 3x3
3rd 64 3x3
4th 128 2x2
Sth 256 3x3
6th 512 2x2
7th 512 2x2
8th 1024 3x3
9th 1280 2x2

map is obtained; hence, the dimensionality is reduced. The next
convolution layer added contains 64 numbers of filters of size
3x3 and a stride of 2x2. All eight other residual blocks use the
same mechanism and number of layers as the first residual block
with different depth sizes. The depth and sizes of each residual
block are illustrated in Table V.

After the last residual block, a convolution layer containing
1280 number of filters with a filter size of 2x2 and a stride
of 1x1 has been selected. After that, a RELU layer is added. A
global average pooling layer is attached to condense all obtained
feature vector maps into one feature map containing the average
values from all other feature vectors. Moreover, a flattened layer
is connected to convert the 2-D feature map into 1-D and pass this
feature map to the self-attention layer. Following that, FC layer,
Softmax, and a classification layers have been added to complete
the network. The created network was trained on both selected
datasets and the features are extracted from the self-attention
activation. The dimensions of extracted features are N x 1280.
The complete architecture is shown in Fig. 8.

C. Proposed Models Learning and Features Extraction

The training process of the proposed DL models has been
added under this section. In the training process, the enhanced
images dataset has been divided into a ratio 50, 50. This means
that the total 50% of the images have been employed for train-
ing and remaining used for the testing and validation. Several
hyperparameters have been employed for the training of the
models such as learning rate value of 0.00023, momentum value
of 0.722, epochs are 50, mini-batch size of 64, and stochastic
gradient descent (SGD) is employed as an optimizer. After
the training, the obtained models have been employed for the
features extraction. The features are extracted from the self-
attention layers of all three models and performed classification
using neural networks. The obtained results are compared with
each other and the best accuracy model is selected for the further
process such as optimization. In the optimization process, a
binary dragon fly optimization algorithm has been implemented
and applied on two feature vectors: 1) best model accuracy of
wheat crop, and 2) best model accuracy of cotton crop.

D. Binary Dragonfly Optimization for Features Selection

Feature selection refers to the process of selecting the most
suitable, relevant, and informative maps from a given dataset in
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order to achieve better classification results. Selection of features
is a careful task because noisy, redundant, or useless features
increase the complexity of the model, which increases the mis-
classification. In this research work, a swarm intelligence-based
optimization is used, called dragonfly algorithm [68]. The mo-
tion behavior of dragonflies inspires this algorithm. Two main
stages of this optimization technique are exploration of target,
i.e., food or prey, and exploitation. The two main behaviors of
a swarm are attraction toward food and running away from the
enemy, which depend on given factors for the positioning of
an individual in a swarm. Mathematically, the behavior of the
swarm is computed by using the following equations.

The separation between two individuals is given by the
following:

Z
Ei=-) Y=Y (7)
b=1
where Y denotes the location of the current individual, Y;
denotes the position of the bth neighbor, and Z is the number of
dragonflies. Alignment of the individuals in a swarm is given by
the following:

_ szzl Gy
Z

where GG}, denotes the bth neighboring individual. The cohesion
between individuals of a swarm is given by the following:

C; ®)

z
Y,
0b=Z¥?—f—y ©9)
To calculate the movement toward food, the target is formu-
lated as follows:

Vi=Yt —Y (10)

where Y denotes the current position of the individual and Y
presented the position of food. Diversion from the enemy of any
individual is mathematically defined as follows:

D; =Y -Y Y

where Y the position of the individual is fly and Y ~ represents
the position of the enemy. These above five parameters are
considered the behavior-building factors of dragonfly behavior.
There is also a need to improve the performance parameters of
a dragonfly, like randomness, stochastic behaviors, and explo-
ration capabilities, because the individuals in a swarm follow
a random walk (Levy flight) behavior so there is no particular
solution for neighboring fliers. To tackle this randomness prob-
lem, the position of dragonflies is updated using the following:

Yit1 =Y, +Lévy (e) + Y} (12)

where ¢ denotes the current iteration and e give the dimensions
of position vector. The value of Levy flight can be calculated as
follows:

Lévy(q) = 0.01 x (13)



7268 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

1st Residual Block

L

R | — -
B = —
| (e —— =

e | ]
—e—

Sth Residual Block
Convolution Batch Normalization  Convolution Rotu
Convolution Batch Normalization  Convolution Rou
Fitersize: 33 ' Batch Normailzation  Convotution Rotu
Stride: 2 x 2
Convolution (Batoh Normalization]  Convolution ReLu
6th Residual Block
Convolution —m FilterSize: 2 x 2
NumFliters: 256
Stride: 2 x 2
. Rotu Convolution [{Bateh Normalization| Convolution
Max Pool Layer
7th Residual Block
Convolution Batch Normalization  Convolution Rolu  Bateh Normalization || |
Convotution (BatehNommalzstion]  Comvolution Rotu  Batch Normaiization |
i m’

— |

-

E;!
!

FiltorSize: 2 x 2 c

NumFliters: 256
Stride: 2 x 2
Convolution (Batch Nermalization | Convolution Rotu  Batch Normalization |
Max Pool Layer

| [—
e —

9th Residual
Convolution  Batch Normalization  Comvalution Relu  Batch Normalization || |
Convolution Batch Normailzation  Comvolution  Relu  Batch Normalization )/ | ’
FiterSize: 2x 2 |- Gonvolution |Batch Normalization  Convolution  Relu | Batch Nermalization // !
NumFlitors: 512
Stride: 2 x 2 ”1“.
Convolution Batch Normallzation  Convlution  Relu | Batch Normalization
s ’

Fig. 8. Architecture of the proposed 9-RBNet with self-attention.

The KNN classifiers return fitness which is described in (15)

where u; and wus are two random numbers lie between the
and the cost value is returned using (16)

range of [0, 1], 8 is a constant value, and o is mathematically

formulated as follows: FV( )
s T =y ?;ks "
C(1+ B) xsin () i
o= = (14) Num_ of_sel_features
¢ <#) B X Q(T) Keost = Wa X Oerr +wp X < _Ma; f;at ) (16)

where w,, and wg presented the coefficient value which is 0.92

where ¢ (¢) = (¢ — 1) and the fitness and cost value of dragon-
and 0.014, respectively. oey The error rate is presented, which

fly optimization is measured by employing the KNN classifier.
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TABLE VI
RESULTS OF THE PROPOSED 3-RBNET ON WHEAT DATASET

Name Range Type

No. of layers  [1,5] Integer
Activations RELU, tanh, Sigmoid Categorical
Standardize [true, false] Categorical
Lambda [8.5238e-09,92.2381] Categorical
Layer_1_Size [1 400] Real

is calculated using the following:

a7

Oer = 1 — waccup

In this article, the binary dragonfly optimization is utilized for
best feature selection. The proposed feature selection algorithm
is first applied on the 9-RBNET self-model for the wheat dataset
and returns a feature vector of dimension N x 916. Also, the
optimization algorithm is applied on 5S-RBNET Self for cotton
dataset and returns a feature vector of N x 736. The main reason
behind the selection of both models is initial accuracy. These
models give better accuracy on the selected datasets; therefore,
we applied optimization. The selected features are passed to
neural network classifiers such as narrow neural network (NN),
bilayered NN, trilayered NN, medium NN, and wide NN. Fur-
thermore, the hyperparameters of these neural networks are op-
timized using Bayesian Optimization. The results are discussed
in Section III.

III. RESULTS AND DISCUSSION

The results of the proposed methodology have been presented
in this section. The selected datasets are divided into 50:50 ratios.
The 50% samples are utilized for training and the remaining
50% data are used for testing purposes. The entire experimental
process was carried out using 10-fold cross validation. For
the training of proposed models, several hyperparameters are
manually selected such as such as learning rate value of 0.00023,
momentum value of 0.722, epochs are 50, mini-batch size of 64,
and SGD is employed as an optimizer. The performance of the
proposed models has been is conducted using several neural net-
work classifiers such as narrow neural network (NN), bilayered
NN, trilayered NN, medium NN, and wide NN. In addition,
the hyperparameters of the models has been optimized using
Bayesian optimization (BO). The hyperparameters for BO opti-
mization is described below. The performance of each classifier
is evaluated using accuracy, precision, sensitivity, FNR, time,
Kappa, and Mathew’s correlation coefficient (MCC) measures.
The entire experiments are conducted using MATLAB R2023a
on Desktop computer configured with 128GB RAM, 512 SSD,
and 12GB NVIDIA RTX 3060 graphics card.

A. Results of the Proposed 3-RBNet Self

The classification results of the proposed 3-RBNet on wheat
dataset have been presented in Table VII. The proposed 3- RB-
Net) Selfis implemented on wheat and cotton datasets to validate
its performance. The table shows the maximum accuracy of
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Fig.9. Confusion matrix of 3-RBNET Self for wheat dataset using wide NN.
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Fig. 10.  Confusion matrix of 3-RBNET Self for cotton dataset using wide NN
classifier.

96.40% on wide NN. Furthermore, few other measures are also
computed such as sensitivity rate of 93.38, precision rate of
94.46, kappa value of 0.8868, and MCC value of 0.9292, respec-
tively. Computational time is also computed and the minimum
noted time is 10.196 (s) on medium NN classifier. Confusion
matrix of the wheat dataset is also shown in Fig. 9. In this figure,
the number of observations has been reported that can be utilized
to confirm to above computed measures of wide NN classifier.

Table VIII illustrates the results of cotton data using 3-RBNet
Self architecture. The highest accuracy of this dataset is 92.50%
on wide NN classifier. In addition, the sensitivity rate of this
classifier is 92.13, precision rate of 94.60, Kappa values of
0.6591, and MCC value of 0.9128, respectively. Confusion
matrix of this dataset is also shown in Fig. 10. In this figure,
the number of true and false observations has been added that
can be utilized to confirm the calculated measures of wide NN
classifier. The minimum noted computational time of this dataset
for 3-RBNET Self architecture is 6.679 (sec) on medium NN
classifier.

B. Results of the Proposed 5-RBNet Self

Table IX shows the results of 5-RBNet Self architecture on
the wheat dataset. The table shows that the narrow NN achieved
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TABLE VII
RESULTS OF THE PROPOSED 3-RBNET ON WHEAT DATASET

Method Sensitivity Precision (%) FNR (%) Accuracy (%) Time (s) Kappa MCC
(%)

Narrow NN 92.92 94.20 7.08 95.80 13.632 0.8699 0.9239

Medium NN 92.58 92.84 7.42 95.70 10.196 0.8669 0.9155

Wide NN 93.38 94.46 6.62 96.40 12.419 0.8868 0.9292

Bi-layered NN 92.42 92.38 7.58 95.80 15.309 0.8699 0.9128

Tri-layered NN 93.08 92.58 6.92 95.80 27.711 0.8684 0.9165
The bold values denote the best results.

TABLE VIII
RESULTS OF THE PROPOSED 3-RBNET ON COTTON DATASET

Method Sensitivity (%) Precision (%) FNR (%) Accuracy (%) Time (s) Kappa MCC

Narrow NN 89.60 89.71 10.40 90.10 11.878 0.5455 0.8823

Medium NN 91.31 91.56 8.68 91.60 6.679 0.6168 0.9021

Wide NN 92.13 94.60 7.86 92.50 7.739 0.6591 0.9128

Bi-layered NN 90.40 90.61 9.60 90.80 8.953 0.5789 0.8917

Tri-layered NN 89.80 89.912 10.20 90.10 18.115 0.5478 0.8842
The bold values denote the best results.

TABLE IX
RESULTS OF THE PROPOSED 5-RBNET SELF ON WHEAT DATASET
Method Sensitivity Precision (%) FNR (%) Accuracy (%) Time (s) Kappa MCC
(%)

Narrow NN 90.88 91.44 9.12 95.90 9.7245 0.8714 0.9006

Medium NN 93.00 92.92 7.00 96.30 6.2061 0.8837 0.9198

Wide NN 93.46 93.68 6.54 96.70 6.4544 0.8975 0.9269

Bi-layered NN 94.34 94.04 5.66 96.70 9.7736 0.8959 0.9329

Tri-layered NN 93.00 92.52 7.00 96.20 20.116 0.8806 09174
The bold value denote the best results.

TABLE X
RESULTS OF 5-RBNET SELF ON COTTON DATASET
Method Sensitivity Precision (%) FNR (%) Accuracy (%) Time (s) Kappa MCC
(%)

Narrow NN 91.65 91.72 8.35 92.20 10.104 0.6436 0.9056

Medium NN 92.70 92.86 7.30 93.20 6.037 0.6903 0.9181

Wide NN 92.65 92.91 7.35 93.20 6.157 0.6924 0.9195

Bi-layered NN 90.98 91.05 9.02 91.50 8.265 0.6101 0.8978

Tri-layered NN 89.98 90.20 10.02 90.90 9.629 0.5834 0.8877

The bold value denote the best results.

an accuracy of 95.90%, the medium NN obtained an accuracy of
96.30%, the wide NN obtained an accuracy of 96.70%, 96.70%
accuracy obtained by bilayered NN, and 96.20% accuracy is
achieved by TNN classifier, respectively. Based on these ac-
curacies, it is noted that the wide NN classifier obtained the
highest accuracy. Moreover, the other computed measures of
this classifier are sensitivity rate of 93.46, precision rate of 93.68,
Kappa value of 0.8975, and MCC value of 0.9269, respectively.
A confusion matrix is illustrated in Fig. 11 that can be utilized
to confirm these measures. The execution time of each classifier
is also noted, and the minimum time of 6.2061 (s) for medium
NN, whereas the wide NN is executed in 6.4544 (s).

Table X presents the results of the proposed 5-RBNet Self
for cotton dataset. This table demonstrates that the medium
NN classifier achieved the highest accuracy of 93.20%. The
sensitivity rate of this classifier is 92.70, precision rate of 92.86,

Kappa value of 0.6903, and MCC value of 0.9181, respectively.
The rest of the classifications also obtained better accuracy
of 92.20%, 93.20%, 91.50%, and 90.90%, respectively. The
confusion matrix is also illustrated in Fig. 12 for medium NN that
can be utilized to confirm the reported measures. Time is also
noted for the testing process of each classifier, and it is observed
that the minimum reported time of 6.03 (s) for the medium NN
classifier.

C. Results of the Proposed 9-RBNet Self

The classification results of the 9-RBNet Self architecture
on the wheat dataset are presented in Table XI. Deep features
are extracted from the self-attention layer of the trained model,
and results are obtained. In this table, the obtained classification
accuracy is 98.10% by narrow NN, 98.40% by medium NN,
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TABLE XI
RESULTS OF THE PROPOSED 9-RBNET ON WHEAT DATASET

Method Sensitivity Precision (%) FNR (%) Accuracy (%) Time (s) Kappa MCC
(%)
Narrow NN 97.72 97.28 2.28 98.10 7.6015 0.9403 0.9695
Medium NN 98.32 98.14 1.68 98.40 5.6170 0.9510 0.9780
Wide NN 98.32 98.48 1.68 98.40 5.7622 0.9510 0.9795
Bi-layered NN 97.10 97.40 2.90 98.00 5.5546 0.9373 0.9670
Tri-layered NN 94.72 96.64 5.28 97.70 9.1644 0.9296 0.9510
The bold values denote the best results.
Brown Rust | 542 5 6 1 10 Brown Rust | 550 5 7 0 b
@ Healthy 5 737 1 1 4 @ Healthy 4 740 1 0 3
= =
% Septoria| 6 5 567 0 0 % Septoria| 6 0 572 0 0
= g2
= Stripe Rust| © 1 0 45 2 = Stripe Rust| 0 0 0 48 0
Yellow Rust 10 8 0 2 84 Yellow Rust 3 1 0 0 100
x S Y \ x ot S o st st
QA > o o W W \o Oy 0y
\«\Qy a® S .‘,e?“‘ o @«‘& W e et
o° e (e ® o <
Fig. 11.  Confusion matrix of WNN classifier using 5-RBNet on wheat dataset. Fig. 13.  Confusion matrix of MNN classifier for wheat dataset using 9-RBNet.
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Fig. 14. Confusion matrix of WNN classifier for the cotton dataset using
9-RBNet.

98.40% by wide NN, 98.00% by bilayered NN, and 97.70% by
trilayered NN. The medium NN accuracy is higher than that of
other listed classifiers in this table. In addition, the sensitivity
rate of this classifier is 98.32, with a precision rate of 98.14,
Kappa value of 0.9510, and MCC value of 0.9780, respectively.
A confusion matrix of medium NN is also illustrated in Fig. 13.
Using the confusion matrix, the obtained performance measures
of medium NN can be confirmed. The computation time is
also noted, and the minimum reported time is 5.5546 (s) for
the Bi-layered NN classifier, whereas the medium NN classifier
execution time of 5.6170 s.

Similarly, the proposed 9-RBNet Self architecture is tested on
the cotton dataset and obtained the highest accuracy of 90.60%
for the wide NN classifier (see Table XII). The precision rate of
this classifier is 90.25%, sensitivity rate of 90.31%, FNR is 9.8,
Kappa value of 0.570, and MCC value of 0.889, respectively. A
confusion matrix is also provided in Fig. 14 for the verification
of wide NN computed measures. Time is also noted for all
classifiers and minimum tested time of 5.91 (s) for medium NN
classifier.
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TABLE XII
RESULTS OF THE PROPOSED 9-RBNET ON COTTON DATASET
Method Sensitivity Precision (%) FNR (%) Accuracy (%) Time (s) Kappa MCC
(%)
Narrow NN 87.46 87.325 12.53 87.70 9.2753 0.4386 0.8561
Medium NN 89.51 89.50 10.48 89.90 5.9164 0.5366 0.8804
Wide NN 90.31 90.25 9.68 90.60 6.1749 0.5700 0.8891
Bi-layered NN 86.97 86.96 13.02 87.60 11.514 0.4341 0.8518
Tri-layered NN 86.00 85.98 14.00 86.60 13.207 0.3874 0.8403
The bold value denote the best results.
TABLE XIII
RESULTS OF THE PROPOSED DRAGONFLY OPTIMIZATION ON WHEAT DATASET
Classifiers Sensitivity Precision (%) FNR (%) Accuracy (%) Time (s) Kappa MCC
(%)
Narrow NN 98.42 98.44 1.52 98.60 4.7342 0.955 0.980
Medium NN 98.04 97.36 1.96 98.20 3.4632 0.944 0.972
Wide NN 98.28 97.58 1.72 98.30 2.9939 0.948 0.974
Bi-layered NN 96.92 96.84 3.08 98.10 3.2534 0.941 0.963
Tri-layered NN 97.34 97.46 2.66 98.10 3.6398 0.941 0.969
The bold value denote the best results.
TABLE XIV
RESULTS OF THE PROPOSED DRAGONFLY OPTIMIZATION ON COTTON DATASET
Methods Sensitivity Precision (%) FNR (%) Accuracy (%) Time (s) Kappa MCC
(%)
Narrow NN 90.60 90.88 9.40 91.20 3.231 0.5990 0.8946
Medium NN 92.46 92.52 7.54 92.90 4.583 0.7193 0.9262
Wide NN 93.48 93.51 6.52 93.90 3.068 0.6770 0.9146
Bi-layered NN 92.16 92.18 7.84 92.50 3.959 0.6591 0.9109
Tri-layered NN 90.68 91.02 9.32 91.30 4.680 0.6012 0.8958
The bold values denote the best results.
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we selected 5-RBNET Self architecture and 9-RBNET Self
architecture features and optimized using a binary dragonfly
optimization. The purpose of optimization is to maintain the
accuracy, precision, Kappa, and MCC value, whereas reduce
the computational time.

E. Optimization Results

As seen in the analysis section, the 5-RBNet Self obtained
the better accuracy on the wheat dataset (highest classification
accuracy of 98.40% with an execution time of 5.6170 s on
the medium NN classifier, see Table X). After employing the
optimization algorithm on this model, the wide NN obtained
an accuracy of 98.60% (see Table XII). The precision rate of
this classifier is 98.44%, the sensitivity rate of 98.42%, the
kappa value of 0.955, and MCC value of 0.980, respectively.

Fig. 15.  Confusion of the proposed dragonfly optimization.

The confusion matrix is also shown in Fig. 15. Compared to
accuracy with original proposed network, the cotton dataset
accuracy has been improved, and time is almost 100% reduced.
The minimum noted time of 2.9939 (s) for wide NN classifier,
whereas the computation time of medium NN is 3.4632 (s)
before optimization (best time).

Tables XIII and XIV presents the classification results of the
optimization algorithm for cotton dataset on 5-RBNet Self ar-
chitecture. As discussed under the analysis section, the 5-RBNet
Self architecture performed well for the cotton dataset. Before
optimization, the best accuracy and time of this network was
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Fig. 16. Confusion matrix of the proposed dragonfly optimization.

TABLE XV
PROPOSED CLASSIFICATION RESULTS USING THE EUROSAT DATASET

Sensitivity Precision FNR Accuracy Time

Methods %) ©% | | (s | Kappa | MCC
Narrow NN | 80.66 8055 | 1934 | sa30 | asssy | 0910 | 0780
Medium NN|  80.22 8012 | 1978 | 8240 i | 090 | 078
Wide NN 80.60 8054 | 1940 | 8200 | am2g | 090 | 0786
Bi'ﬁf’ed 81.35 81.23 18.65 83.00 198.71 0‘%5 6 O'Z)%
Tﬁ'}jly\fred 81.35 8122 | 1865 | 83.10 20693 | 097 | 07

93.205% and 6.037 (s). After employing the optimization algo-
rithm, the obtained accuracy is 93.90% for wide NN classifier.
Moreover, the computational time of this classifier is 3.068 (s).
Overall, it is observed that the accuracy is improved after the
optimization algorithm, and time is 100% reduced compared
to the originally proposed architectures (before optimization).
Fig. 16 illustrates the confusion matrix of a wide NN classifier
that can be utilized to confirm the computed measures such as
sensitivity, precision, Kappa, and MCC.

1) Proposed Results on EuroSAT Dataset: The proposed
classification results using EuroSAT are presented in this sec-
tion. Results are given in Table XV. In this table, it is shown
that the trilayered NN obtained the highest accuracy of 83.10%.
The sensitivity rate of this classifier is 81.35%, the precision
rate is 81.22%, the Kappa value is 0.0593, and the MCC value
is 0.7931, respectively. The confusion matrix of this classifier
is illustrated in Fig. 17, which can be utilized to confirm the
obtained performance measures. In addition, the time of each
classifier has been noted, and the narrow NN classifier was
executed in 188.57 (sec), which is faster than other classifiers’
time.

F. Discussion and Comparison With SOTA

A brief discussion of the proposed method has been conducted
under this section. In this article, we proposed deep residual
self-attention models for the classification of wheat and cotton
left diseases. We proposed three variants of residual blocks with
a self-attention layer in order to extract the most prominent
information from the data. The first model consists of three resid-
ual blocks, the second model consists of five residual blocks,
and the third model contains nine residual blocks. All models
have been trained through the selected datasets as discussed
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Fig. 17.  Confusion matrix of the proposed method for EuroSAT dataset.
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Fig. 18.  Validation accuracy of the proposed model on each epoch.

previously (see Section II-A1), and the validation accuracy at
each epoch was measured, as shown in Fig. 18. The proposed
model was trained using 50 epochs. The table illustrates that
the 3-RBNet Self has lower validation accuracy than the 5 and
9-RBNet Self. The accuracy of 5S-RBNet Self was stable after 36
epochs. Initially, the loss was high for the proposed 9-RBNet,
but the validation accuracy improved as the epoch passed. After
the experimental procedure, it was observed that the rest of the
network outperformed the proposed 9-RBNet.

In addition, a detailed comparison is conducted with pre-
trained neural networks, as shown in Fig. 19. It represents the
comparison of the proposed models for both cotton and wheat
datasets with other state-of-the-art ML models. Models involve
VGG-19, AlexNet, ResNet-18, ResNet-50, ResNet-101, and
NasNet-Mobile, and they are compared with the proposed mod-
els, namely 3-RBNET Self, 5-RBNET Self, 9-RBNET Self and
optimized 9-RBNET Self models. It is shown that the proposed
architectures obtained better classification accuracy. Moreover,
Fig. 20 illustrates the proposed labelled results. Finally, a com-
prehensive comparison is conducted with the state-of-the-art
techniques, as presented in Table XVI. The table describes that
the 2023 study achieved the highest accuracy of 98.5% with the
method of continuous learning for wheat disease. At the same
time, our proposed framework achieved 98.64% accuracy on
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TABLE XVI
COMPARISON WITH THE SOTA TECHNIQUE
Refs. Year Dataset Methodology Accuracy
: - - - o
Alharbi et al. [69] 2023 Self-created dataset ClaSS{ﬁcatlon.of wheat cl.lsease 93.190A),
using continual learning 98.5%
Wheat growth Classification of wheat disease
L tal. [70 9
ong etal. [70] 2023 greenhouse dataset using DL methods 97.05%
: Wheat rust disease Wheat disease identification using
N tal. [71 9
igam etal. [71] 2023 dataset Deep transfer learning method 97.8%
Dhakal et al. [72] 2023 Hyperspef:tral of Damaged wheat analysis using ML 97.00%
wheat discase method
. Cotton leaves Classification of cotton leave
Jenifa et al. [73 0
enifa ctal. [73] 2019 disease detection using DCNN 6%
Alexnet Model 2024 EuroSAT TL based training and features 80.52
(TL) extraction
Resnet101 TL based training and features
Model (TL) 2024 EuroSAT extraction 81.46
Inception V3 TL based training and features
Model (TL) 2024 EuroSAT extraction 82.95
98.60%,
Proposed methodology (Wheat and Cotton) 93.90%
Proposed methodology (EuroSAT Dataset) 83.10%
‘Wheat Dataset: Sclected Deep| Learning Modcls for Comparison T R DR Predi T

964 96.7

Accuracy (%)

Accuracy (%)

Fig. 19.  Comparison of proposed self-attention architectures with pretrained
neural nets.

the wheat disease dataset and 93.90% accuracy on the cotton
disease dataset. Overall, the proposed method shows improved
accuracy. Fig. 21 shows the labeled prediction results of the
proposed method using EuroSAT dataset.

IV. CONCLUSION

In this article, we proposed a novel self-attention and opti-
mization architecture for crop leaf disease classification. The
strength of the proposed architecture is designing two self-
attention 5-RBNET and 9-RBNET architectures for cotton and

Wlit-nl—msm S.RBNe:

Bt [re——

!I ?I

’E E E "E
Fig. 20.

Visual illustration of proposed labelled images.

Original Labots

Powdery Mikdew | [t

Curl Virus

.
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wheat disease recognition. The contrast enhancement technique
has been proposed based on the fusion of two filter mathematical
formulations and passed resultant images to proposed architec-
tures for the training. Based on the initial accuracy, the binary
dragonfly optimization algorithm was applied on 5-RBNET and
9-RBNET architectures, and the best-selected features for the
classification were obtained. Furthermore, hyperparameters of
the neural network classifiers have been optimized using the
Bayesian optimization algorithm. The proposed architecture
obtained improved accuracy of 98.60 and 93.90% for wheat
and cotton leaf diseases, respectively. Based on the detailed
experimental process, we concluded the following.

1) The addition of a self-attention layer in 5-RBNET im-
proved the accuracy and precision rate for cotton leaf
disease recognition.

2) The addition of a self-attention layer in 9-RBNET im-
proved the accuracy and precision rate for wheat leaf
disease recognition.
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Fig. 21.  Visual illustration of the proposed prediction.

3) Optimization of extracted deep features and hyperparam-
eters improved the accuracy and precision rates while
reducing the computation time.

The limitation of the proposed framework was the manual
setting of hyperparameters. In the future, we will propose a
technique to dynamically select the hyperparameters, and an
inverted bottleneck architecture with a self-attention layer will
be proposed for the recognition of fruit leaf disease recognition.
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