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Multielement-Feature-Based Hierarchical Context
Integration Network for Remote Sensing

Image Segmentation
Yunsong Yang , Genji Yuan , and Jinjiang Li

Abstract—In the current remote sensing segmentation tasks, we
identify issues of insufficient accuracy in segmenting objects and
types with similar colors, along with a lack of adequate smoothness
and coherence in edge segmentation. To address these challenges,
we propose a network framework called the multielement-feature-
based hierarchical context integration network (MHCINet). This
framework achieves deep integration of global information, lo-
cal information, multiscale information, and edge information.
First, we introduce an Edge and Levels Grouped Aggregator to
fuse shallow features, deep features, and edge information, en-
hancing foreground saliency. Finally, to better identify instances
with similar colors during the feature reconstruction stage, we
design a constant multivariate feature integrator to fully exploit
multiscale information and global context, thereby improving the
segmentation model’s performance. Comprehensive experimental
results on the Vaihingen and Potsdam datasets demonstrate that
MHCINet outperforms existing state-of-the-art methods, achieving
mean intersection over union of 84.8% and 87.6% on the Vaihingen
and Potsdam datasets, respectively.

Index Terms—Edge fusion, multiscale fusion, remote sensing,
semantic segmentation, transformer.

I. INTRODUCTION

A S SENSOR and aerospace technologies continue to ad-
vance, high-resolution satellite and aerospace remote

sensing images can be easily obtained. These images provide
high-resolution observations of diverse landscapes on Earth,
covering various scenes from urban areas to farmlands, forests
to lakes. Remote sensing image segmentation is a crucial tech-
nology aimed at partitioning remote sensing images of the Earth
into different objects or land cover categories. This is vital for
geographic information systems, resource management, envi-
ronmental monitoring, and crisis management. The following
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are key applications utilizing remote sensing image segmenta-
tion, such as land cover mapping [1], [2], change detection [3],
[4], environmental protection [5], [6], road and building extrac-
tion [7], [8], and many other practical applications [9], [10].

In recent years, deep-learning-based remote sensing tech-
niques for image processing have seen rapid development. In
comparison to traditional machine learning algorithms such as
Random Forest (RF) [11], conditional random field (CRF) [12],
and support vector machine (SVM) [13], deep learning can
automatically learn representations from raw data, alleviating
the burden of feature engineering. Additionally, deep learning
models with multiple layers of feature extraction can capture
different levels of features, from low-level textures to high-level
semantics, aiding in understanding the complex structure and
semantics of the data. Various deep-learning-based methods
have been proposed in the field of remote sensing to analyze
different types of data [14], [15], including hyperspectral images
(HSI), optical images, LiDAR data, and integrated multisensor
data. Convolutional neural network (CNN) methods have proven
effective in classifying and segmenting each pixel in a given
image into semantic labels [16].

For semantic segmentation, the fully convolutional network
(FCN) [17] is an architecture that transforms a CNN into a suit-
able structure for semantic segmentation. However, its design is
relatively coarse. Subsequently, more refined encoder–decoder
structures [18] have been proposed. U-Net [19] combines an
encoder and a decoder, and its uniqueness lies in having skip
connections that link the encoder and decoder parts. These
connections help combine high-level semantic information with
low-level feature information, thereby enhancing segmenta-
tion accuracy. This architecture allows the network to main-
tain detailed information about resolution. While U-Net has
shown good performance on remote sensing images, subse-
quent researchers have made improvements to adapt U-Net
for segmentation tasks, such as U-Net++ [20] and AFF-UNet
[21].

While the aforementioned CNN networks are encouraging
in terms of overall accuracy (OA), in remote sensing image
segmentation, challenges arise due to factors such as lighting,
shadows, and seasonal variations, which result in color similar-
ity among classes and consequently fragmented segmentation
results [22]. Addressing color similarity is crucial for improv-
ing accuracy, ensuring precise differentiation of similar-colored
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objects, and reducing fragmentation to achieve more coher-
ent results. Considering color similarity also aids in capturing
semantic information, enhancing the overall semantic consis-
tency of segmentation results.

The root cause of this problem lies in the fact that model-
ing based on local information typically leads to ambiguous
segmentation results. Therefore, for remote sensing image se-
mantic segmentation, more advanced and specialized methods
are needed to fully utilize global context information. The
transformer’s self-attention mechanism [23] has the capability
to capture global information in images, effectively creating
long-range dependencies, but it often requires substantial com-
putational time and memory. To address this issue, scholars have
proposed more efficient alternative attention mechanisms, such
as dual attention [24] specifically designed for segmentation
and BAM [25], which enhances the ability to obtain global
information.

Combining convolutional networks with attention mecha-
nisms has become a preferred choice for current remote sensing
image segmentation, such as Unetformer with GlobalLocalAt-
tention [26]. In addition, multiscale analysis helps enhance the
contextual understanding of color information in images. At
larger scales, the overall color distribution of target objects can
be captured while at smaller scales, local color variations can be
observed more finely.

The following networks utilize multiscale information:
Deeplabv3+ [27], which achieves good segmentation results
on multiple datasets by integrating the ASPP module into the
encoder–decoder structure; CTMFNet [28], which proposes a
method to fuse global, local, and multiscale information; and
MSCSA-Net [29], which designs local channel spatial attention
and multiscale attention to effectively extract information-rich
multiperspective features. Although the aforementioned meth-
ods utilize multiscale information, they do not address the color
similarity issue present in remote sensing images.

To address the color similarity issue in remote sensing seg-
mentation, we propose a method of integrating and analyzing
global information at different scales of original features through
multiscale information fusion attention. This approach enables
the model to effectively pay attention to color distribution infor-
mation based on various scales.

Furthermore, for remote sensing semantic segmentation, the
segmentation of some objects still tends to have inaccurate
edges. This is because the process of downsampling the original
image and then reconstructing features may lead to the loss of
boundary information, making segmentation tasks more chal-
lenging [30]. Some scholars have introduced edge information
based on deep learning to address the problem of boundary infor-
mation loss. Yuan et al. [31] proposed a method that integrates
cloud segmentation and cloud edge detection, focusing on more
accurately detecting cloud edges to achieve high-precision cloud
detection. Cheng et al. [32] introduced an edge-aware convo-
lutional network for the segmentation task of remote sensing
harbor images. However, although these studies utilize edge
information for segmentation, they focus only on the accuracy
of edge feature extraction, neglecting the importance of the way
in which edge information is integrated. Simple integration of

Fig. 1. Current challenges in remote sensing image segmentation are as fol-
lows. (a) Original image, where it is difficult to distinguish impervious surfaces
and buildings due to color similarity. (b) Ground truth (GT). (c) Segmentation
result of MPCNet, which does not utilize foreground saliency and is challenged
by color similarity, resulting in edges that are not smooth enough.

edge information into the network may introduce information
redundancy or confusion, and the inconsistent fusion of edge
information with other features in the network can lead to feature
representation inconsistency. These factors can have a negative
impact on the final segmentation results. We adopt a group-based
edge fusion method, which can more effectively integrate edge
information into the segmentation method.

Among the segmentation methods mentioned before, there are
still some limitations, such as a lack of global information, insuf-
ficient depth of edge information fusion, and a lack of multiscale
information. These issues restrict the general ability to address
the challenges of remote sensing image segmentation tasks and
consequently limit the improvement of accuracy in remote sens-
ing segmentation images. Considering these challenges (as seen
in Fig. 1), we propose a network called Multielement-Feature-
based Hierarchical Context Integration Network (MHCINet),
which not only performs better in terms of edges but also exhibits
the ability to address challenges related to color similarity.

In summary, the contributions of our work are mainly reflected
in the following aspects:

1) Introduction of the Edge Level Group Aggregator (ELGA):
To overcome the problem of insufficiently deep feature
fusion that traditional skip connections may cause, we
introduce ELGA, which deeply fuses high-level features,
low-level features, and edge features in the feature ex-
traction stage through a grouping method. This helps
efficiently utilize edge information in remote sensing
semantic segmentation.

2) Introduction of the constant multivariate feature integra-
tor (CMFI): In remote sensing images, the segmentation
of objects or types with similar colors may face challenges
due to color similarity. To address this issue, we introduce
CMFI, which integrates multiscale information and then
performs spatial and channel analysis. This enhances the
model’s ability to capture color transformation informa-
tion inherent in different scale features, thereby improving
the segmentation accuracy of objects with similar colors.

3) Construction of MHCINet and multiloss joint-constrained
training: We constructed a two-stage semantic segmen-
tation model, MHCINet, which improves the final se-
mantic segmentation results by effectively guiding with
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edge features. Additionally, we designed a multiloss joint-
constrained training, including multidimensional bound-
ary loss and segmentation loss. Experimental results on the
Vaihingen Dataset and the Potsdam Dataset demonstrate
the significant improvement in semantic segmentation
accuracy achieved by MHCINet.

II. RELATED WORK

Remote sensing semantic segmentation is a highly specialized
and complex field that involves handling various types of remote
sensing image data, such as high-resolution satellite images,
multispectral images, and synthetic aperture radar images. In this
field, researchers and scientists continually strive to find better
methods and technologies to accurately segment and classify
different objects in images. When addressing the challenges
in this field, researchers need to consider the characteristics of
the data to ensure the accuracy and robustness of segmentation
results. The success of remote sensing semantic segmentation
is crucial for urban planning, agricultural monitoring, natural
disaster management, and other areas. Consequently, relevant
research has been evolving to meet the demands of these ap-
plications. This section will introduce some important work
related to remote sensing image semantic segmentation and their
contributions to the field.

A. CNN-Based Remote Sensing Image Semantic Segmentation

In the field of remote sensing image semantic segmenta-
tion, traditional methods often focus on designing more robust
features that combine spectral information and local image
textures [33], [34]. For example, Huang et al. [35] proposed
considering environmental and spectral information to effec-
tively represent objects such as buildings. With the continuous
advancement of remote sensing technology, current research
tends to rely on high-resolution datasets. Although these datasets
have clear geometric information and fine textures [36], the rela-
tionships between foreground and background in these datasets
are more complex, posing greater challenges for more accurate
segmentation.

In recent years, deep learning methods have been widely used
in the field of remote sensing segmentation. The FCN [17], first
proposed by Long et al. in 2015, was the first CNN structure
to effectively address semantic segmentation problems. Sub-
sequently, methods based on CNNs have dominated the field
of semantic segmentation in remote sensing, covering many
research achievements [37], [38]. However, despite being a
pioneer, FCNs decoder structure is too simple, resulting in lower
resolution of segmentation results, thereby limiting the fidelity
and accuracy of images.

To overcome this issue, researchers have proposed a encoder–
decoder network called UNet [19], focusing on more fine-
grained semantic segmentation tasks. The structure of UNet
exhibits symmetry and consists of two key components: 1) the
encoder and 2) the decoder. The encoder extracts multilevel
features by progressively downsampling feature maps’ spatial
resolutions. The decoder is used for feature reconstruction,

gradually restoring the spatial resolutions of feature maps. These
two components are interconnected through skip connections.

This encoder–decoder network structure has become the
standard model for remote sensing image segmentation, lay-
ing the foundation for subsequent research [27]. Subsequent
research based on this structure includes Unet++ [20], which
incorporates dense convolutional blocks to bridge semantic
gaps. MAResUnet-a [39] combines residual concatenation, sub-
attribute convolution, pyramid-style scene understanding, and
multitask inference to establish conditional relationships be-
tween tasks and improve segmentation accuracy. Ma et al. [40]
proposed Factseg, a foreground-activated small target semantic
segmentation network.

However, these methods essentially overlook the importance
of other foreground saliency. Our approach enhances foreground
saliency by integrating edge information from downsampling
features of different sizes.

B. Semantic Segmentation Based on Edge Constraints

To address the issue of insufficiently coherent and smooth
edges in image segmentation results, scholars often employ edge
constraints in segmentation. The commonly used approach is to
apply edge constraints to segmentation, with the initial consid-
eration being postprocessing for classification, such as using
CRF [12] for edge optimization of classification results. Later,
with the rapid development of deep learning, attention turned
to integrating edge information with deep learning models to
improve the accuracy of the segmented edges. For example,
Michieli and Zanuttigh [41] proposed an edge-aware graph
matching network, GMENet, for segmentation. Chen et al. [42]
introduced an edge-aware convolutional kernel that effectively
utilizes geometric information embedded in deep channels to
enhance the quality of feature mapping for RGB-D images,
significantly improving semantic segmentation accuracy. Kuang
et al. [43] presented a novel body and edge-aware network to
enhance the accuracy of medical image segmentation.

In the field of remote sensing, edge constraints are also
frequently applied in semantic segmentation. For instance, Jung
et al. [22] proposed an approach applicable to various semantic
segmentation networks, including encoder–decoder structures.
This method combines holistic nested edge detection with a
boundary enhancement module. Zheng et al. [44] introduced an
optimization algorithm based on Markov random fields (MRFs)
for multiscale edge-preserving in remote sensing segmentation.
Sui et al. [45] presented a segmentation network structure with
blockwise edge detection. Unfortunately, the aforementioned
methods mostly focus on the extraction of finer edges and
overlook the importance of the fusion of edge information in
the segmentation model for effective edge utilization.

This article adopts a joint training approach based on the
combination of edge and segmentation networks, with a specific
focus on the constraint methods of integrating edge information
with the segmentation network. This approach aims to enhance
segmentation accuracy.



7974 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

C. Multiscale Features

In the case of remote sensing images containing instances
of various scales and details, challenges such as recognizing
too small objects, obscured targets, and increased noise in high-
resolution images arise. To address these issues, researchers tend
to use multiscale features. Zhang et al. [46] drew inspiration
from HRNet’s multibranch parallel convolution structure and
creatively generated multiscale feature maps. They introduced
an adaptive spatial pooling module to better aggregate local
context information. DeeplabV3 [47] optimized image feature
information using the atrous spatial pyramid pooling (ASPP)
algorithm. ASPP employs atrous convolutions with four dif-
ferent rates to extract feature maps. AFFPN [48] constructs
multiscale feature maps on high-level feature maps using atrous
convolution and adaptive global context. A2-FPN [49] encodes
semantic features at multiple scales using a feature pyramid and
enhances multiscale feature learning with an attention aggrega-
tion module. Tian et al. [50] designed a multiscale background
information aggregation network to automatically extract
highland lake areas. The multikernel pyramid pooling module in
this network aggregates background information from different
lakes globally. MSLANet [51] is a multiscale position network
with a dual-branch multiscale aggregation unit that achieves
multiscale feature aggregation without increasing computational
parameters.

While the mentioned algorithms enhance the model’s
robustness to changes in object or region scale, they primarily
focus on improving the adaptability of the model to scale
changes. They overlook the potential of multiscale features
in addressing color similarity issues in remote sensing
images. To leverage this characteristic, this article proposes
a method to extract multiscale features from various features
during the feature reconstruction stage. This approach aims
to capture color transformation information at different
scales, providing more robust features for subsequent
analysis.

D. Global Context Modeling

Global context modeling holds a crucial position in the field
of computer vision, aiming to deeply understand and effectively
utilize the global information within images or videos to enhance
the performance of various image processing tasks. Global
context information encompasses the overall background,
context, and intricate relationships between objects in an image.

To capture the long-range dependencies between features in
images, the introduction of attention mechanisms has become
one of the popular methods. This mechanism allows the network
to selectively focus on specific areas of the image, thereby better
capturing the global contextual information. This mechanism in-
cludes self-attention mechanisms in the transformer [23], spatial
attention models [25], etc. By introducing attention mechanisms,
researchers can more effectively model the correlations between
different regions, significantly improving the performance of
image segmentation tasks.

Inspired by the remarkable capabilities of the transformer in
sequence-to-sequence modeling, many researchers in the field

of remote sensing image segmentation have begun to introduce
transformer into remote sensing image processing. Some models
using pure transformer structures, such as Segmenter [52] and
SwinUNet [53], as well as models that combine transformer
and CNN, such as GLOTS [54] and EMRT [55], have achieved
significant success in this field. However, many researchers still
prefer convolution-based attention mechanisms with stronger
generalization abilities, better handling of information loss or
noise, and better balancing of the importance of local and global
information.

For example, Chen et al. [56] introduced local aggregation
with graph convolution and global attention blocks to more
fully capture contextual information. Additionally, Li et al. [39]
proposed a linear attention mechanism that reduces computa-
tional complexity while maintaining performance. Nevertheless,
a single attention module struggles to fully capture the global
information of multilayer semantic features. Therefore, this
article adopts the approach of combining mixed CNN atten-
tion with standard transformer blocks to more comprehensively
capture the global contextual information of multilayer semantic
features.

III. METHOD

In this section, we will first introduce the structure of
MHCINet. Following that, we will present two crucial mod-
ules of MHCINet, namely ELGA and CMFI. Finally, we will
describe the loss functions employed in our study.

A. MHCINet Structure

The overall structure of MHCINet is shown in Fig. 2. The
input image undergoes downsampling using a CNN-based
method, with Convnext serving as the backbone for four down-
sampling stages, resulting in four distinct feature maps: X1,
X2, X3, and X4. Specifically, X1, X2, and X3 pass through a
traditional edge extraction network, as illustrated in Fig. 3. The
traditional edge extraction network produces edge features e1,
e2, and e3. The edges predicted by the Canny algorithm constrain
the loss on the predicted edges. The input to the segmentation
network comprises X1, X2, X3, X4, e1, e2, and e3. The features
are fused through ELGA in a grouped manner, following these
steps:

X ′
3 = ELGA(X4, X3, e3) (1)

X ′
2 = ELGA(X ′

3, X2, e2) (2)

X ′
1 = ELGA(X ′

2, X1, e1). (3)

Here, ELGA(X,Y, Z)denotes the fusion of high-level feature
X , low-level featureY , and edge featureZ, combining low-level
texture information, high-level semantic information, and edge
information.

During the feature reconstruction phase, to address color sim-
ilarity issues more effectively, we introduced a method named
CMFI. The goal of CMFI is to model more effective multiscale
information in the global context to tackle color similarity prob-
lems. We employ CMFI in all subsequent feature reconstruction
stages, taking X4 as an example, where it undergoes CMFI
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Fig. 2. Overall structure diagram of MHCINet.

Fig. 3. Structure of the traditional edge feature extraction network consists of
three standard convolutional blocks and three layers of deconvolutional blocks.

processing. Through this approach, we obtain X ′
4 enriched with

global information, which is then fused with the mixed features
X ′

3 obtained through ELGA. Finally, a weighted fusion strategy
is applied to balance global and mixed information, as specified
by the following formula:

Y = ReLu(BN(Conv1×1(a · CMFIF

+ (1− a) · ELGAF))). (4)

Here, CMFIF represents the global fusion feature obtained
through CMFI, ELGAF represents the mixed feature obtained
through ELGA, and Conv1×1, BN, and ReLu denote the point-
wise convolution, batch normalization, and ReLu processes,
respectively. The parameter a is a learnable weight. After com-
pleting three reconstruction stages, the final segmentation result
is obtained through the feature refinement head [26].

Edge information is typically more pronounced in low-level
features as it reflects the local structure and details of the image,
primarily caused by changes in brightness or color. In contrast,
as features progress through multiple layers of convolutional
networks, high-level features extract more abstract information.
During this process, the original detailed information, such
as edges, gradually becomes abstracted and integrated into
higher-level feature representations. Consequently, extracting
edge information from high-level features becomes relatively
challenging and less critical. Considering this, MHCINet uti-
lizes edge extraction only in the first three relatively low-level
features.

B. Edge Level Group Aggregator

The structure of ELGA can be referenced in Fig. 4. The deep
features undergo convolution followed by bilinear interpolation
to obtain features consistent in size with shallow features. Edge
features are combined with both shallow and deep features and
fused through grouped aggregation to obtain the final mixed
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Fig. 4. ELGA structure diagram.

features. Specifically, the expressions for enhancing edge infor-
mation in deep and shallow features are as follows:

LE = EFM · LFM + LFM (5)

HE = EFM · HFM + HFM (6)

where EFM represents the input edge features, LFM represents
shallow features, and HFM represents deep features after re-
sizing, LE represents the shallow features enhanced by edge
information, and HE represents the deep features enhanced by
edge information. Subsequently, LE and HE are grouped along
the channel dimension into four chunks each{

X1
h, X

2
h, X

3
h, X

4
h = Group (HE)

X1
l , X

2
l , X

3
l , X

4
l = Group (LE)

(7)

Yi = Concat(Xi
l , X

i
h) (8)

where Group denotes the grouping operation, Xi
h represents the

grouped high-level features for the ith group, i ∈ [1, 2, 3, 4], Xi
l

represents the ith group of grouped shallow features, and Yi

represents the aggregated features of the ith shallow feature and
the ith deep feature. Subsequently, dilated convolutions with
kernel size 3×3 and dilation rates (1, 2, 5, 7) are applied to obtain
information with different receptive fields. Finally, the four
groups are concatenated along the channel dimension, followed
by a regular convolution with a kernel size of 1, allowing better
interaction between different groups of features. This facilitates
enhanced integration of deep, shallow, and edge features, en-
abling mutual supplementation and reinforcement to achieve
interaction between features of different scales. The expression
is as follows:

Fout = Conv1×1(Concat(Convdr=1
3×3 (Y1),

Convdr=2
3×3 (Y2),Convdr=5

3×3 (Y3),

Convdr=7
3×3 (Y4))) (9)

where Convdr=j
k×k denotes convolution with a kernel size of k and

dilation rate j.Concat represents the concatenation operation.
Fout represents the final output features.

The deep features of remote sensing images contain seman-
tic information about objects such as buildings, roads, and

vegetation, which is crucial for land cover classification and
target detection. Shallow features, on the other hand, contain
detailed information such as texture, edges, and colors, which
help improve the accuracy of image analysis. Additionally, edge
information typically includes clear boundaries and contours
between objects or foreground objects and the background. En-
hancing foreground saliency enables more precise segmentation
of foreground and background, particularly aiding in extracting
target objects from complex backgrounds. We enhance fore-
ground saliency by integrating semantic, detail, and edge infor-
mation using a grouping fusion approach. The ELGA grouping
fusion structure provides superior feature inputs for subsequent
feature reconstruction compared to simple feature addition or
concatenation methods, thereby enhancing the performance of
the segmentation model.

C. Constant Multivariate Feature Integrator

For the feature reconstruction stage of MHCINet, CMFI was
employed in this study. Its core idea is to combine global
information and enhance multiscale information. By emphasiz-
ing key regions of synthesized information at different scales,
the segmentation performance of the decoder in addressing
challenges related to image color similarity is improved. The
structure of CMFI is illustrated in Fig. 5, where we integrate the
standard transformer encoder structure [23].

In CMFI, for input features, a batch normalization operation
is first applied. Then, two branches are used to process the
features. One branch employs a 1 × 1 convolution to transform
the features’ dimensions. The other branch initially utilizes three
Conv layers for key feature extraction. Subsequently, spatial
pyramid pooling is performed with different scales (5× 5, 9× 9,
13× 13) to process the multiscale features with two convolution
operations to match the original features. Finally, the features
from this branch are concatenated with those from the other
branch to obtain a multiscale synthesized feature.

Following this, the feature is passed through the bottleneck
attention module (BAM) [25] after the multiscale synthesized
feature. BAM can focus attention on key regions in the features,
enhancing the model’s ability to distinguish color-similar objects
by emphasizing significant color differences. Unlike the generic
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Fig. 5. CMFI structure diagram. In CMFI, input features are standardized
using BatchNorm, followed by processing through two branches: One for dimen-
sion transformation and the other for extracting key features followed by spatial
pyramid pooling to obtain multiscale integrated features. BAM is introduced to
focus on key regions, enhancing the ability to distinguish color-similar objects.
Finally, through residual connections and MLP, complex patterns are captured
to obtain the final feature output.

global self-attention module, this method can be adjusted based
on the nature of the input data and the type of task.

Subsequently, the original features are residual-connected and
batch-normalized again, before passing through an MLP and
being residual-connected again to obtain the final feature output.
The final MLP aims to capture complex patterns in the feature
maps, aiding in more accurate segmentation.

In remote sensing images, due to factors such as lighting and
artificial structures, two different types of objects may appear
with similar colors, making precise segmentation difficult. To
address this issue, we introduce multiscale features, allowing
the model to observe the shape and texture features of objects at
different scales, providing more contextual information to better
distinguish objects with similar colors but different scales. By
analyzing images at multiple scales, the model can capture the
diversity of objects and relationships between different scales,
thereby achieving more accurate segmentation of color-similar
objects. When facing the challenge of color similarity, atten-
tion mechanisms become crucial. These mechanisms enable the
model to focus attention on key areas, helping to capture regions
where color differences are more significant. By introducing
attention mechanisms, the model can better identify objects
with similar colors but different semantics, thereby improving
segmentation accuracy. This strategy of combining multiscale
features and attention mechanisms helps overcome the challenge
of color similarity and enhances the performance of segmenta-
tion models in complex scenarios.

D. Loss Function

The schematic diagram of the joint loss structure is shown in
Fig. 6. The entire network needs to effectively detect the bound-
ary mask and segmentation mask to obtain a well-regularized
segmentation mask. For this purpose, we design two types of loss
functions for each output: One is the edge loss (denoted asLe) for
boundary mask detection, and the other is the segmentation loss
(denoted as Ls) for segmentation mask detection. Joint training

Fig. 6. Loss function schematic diagram. In the diagram, the blue lines
represent processes related to segmentation loss while the orange lines represent
processes related to edge loss. The three edge prediction results in the figure
represent the edge predictions for the first, second, and third layers of features
extracted from the backbone of the main network.

Fig. 7. This figure illustrates the proportion of each semantic label in the two
datasets.

with these two losses is performed, and the joint loss (Lcom) is
expressed as

Lcom = k1Le + k2Ls. (10)

Here, k1 and k2 represent the parameters for Le and Ls, re-
spectively. The behavior and learning emphasis of the model can
be controlled through weighted operations. Balancing between
the tasks can be achieved by assigning appropriate weights to
each loss function, ensuring a balanced model across all losses.
As the primary task in this article is segmentation and edge
prediction serves as an auxiliary task to enhance segmentation
results, we set k1 to 0.7 and k2 to 0.3 based on this consideration.

Edge Loss: In the proposed method, there are three different
scales of edges. Therefore, for edge loss, the method treats edge
prediction as a binary prediction. The joint loss for edge loss
is defined using the binary cross-entropy loss (BCELoss) for
the three scales, denoted as Ln

e , where n ∈ [1, 2, ..N ] and here
N = 3. The overall edge loss is denoted as Le and calculated as

Ln
e = −

H∑
i=1

W∑
j=1

[Gn(i, j) logPn(i, j)

+ (1−Gn(i, j)) log (1− Pn(i, j))] (11)
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Le =
1

N

N∑
n=1

Ln
e (12)

where Pn(i, j) represents the predicted value at the ith row
and jth column of the edge feature map for the nth scale, and
Gn(i, j) represents the true value at the ith row and jth column
of the edge feature map for the nth scale.

Segmentation Loss: Cross-entropy loss is commonly used for
image segmentation tasks, encouraging the model to make seg-
mentation results closer to the true labels. However, in regions
with similar colors, cross-entropy loss may make it challenging
for the model to distinguish object boundaries, leading to poor
segmentation results in areas with high color similarity. To
address the challenge of color similarity, dice loss may be better
suited since it focuses on contour matching rather than color.
In our proposed method, the segmentation loss (Ls) for the
segmentation model is a combination of dice loss (Ldice) and
cross-entropy loss (Lce), expressed as

Lce = − 1

N

N∑
n=1

K∑
k=1

y
(n)
k log ŷ

(n)
k (13)

Ldice = 1− 2

N

N∑
n=1

K∑
k=1

ŷ
(n)
k y

(n)
k

ŷ
(n)
k + y

(n)
k

(14)

Ls = Lce + Ldice. (15)

Here, N is the number of samples, K is the number of classes,
y(n) and ŷ(n) represent the one-hot encoding of the true semantic
label and its corresponding network Softmax output for sample
n (n ∈ [1, . . . , N ]). Additionally, ŷ(n)k represents the confidence
of class k for sample n.

IV. EXPERIMENT

In this section, we will first introduce the dataset, experimental
setup, and relevant metrics. Then, we will present our ablation
experiments, and finally, we will discuss comparative experi-
ments with other methods.

A. Experimental Settings

1) Datasets: The ISPRS Potsdam and ISPRS Vaihingen
datasets consist of high-resolution remote sensing images cap-
tured in both urban and rural environments (as seen in Fig. 7).
This diversity reflects real-world scenarios, making these
datasets suitable for evaluating model performance across vari-
ous backgrounds.

Vaihingen: This dataset is primarily based on remote sensing
images from the Vaihingen region in Germany. Vaihingen is
characterized by numerous independent buildings and small
multistory structures. The dataset comprises 33 different-sized
high spatial resolution true orthophoto (TOP) image blocks, with
an average size of 2494 × 2064 pixels each. Each image block
consists of TOP and a digital surface model (DSM) extracted
from a larger TOP mosaic, along with a normalized DSM
(NDSM). Each TOP image block includes three multispectral

bands (near-infrared, red, and green). The dataset encompasses
five foreground land cover classes (impervious surfaces, build-
ings, low vegetation, trees, and cars) and one background land
cover class (clutter). In our experiments, only TOP image blocks
were utilized, excluding DSM and NDSM. The training was con-
ducted on images with IDs 1, 3, 5, 7, 11, 13, 15, 17, 21, 23, 26, 28,
30, 32, 34, and 37 while the remaining 17 images were reserved
for testing. Image blocks were cropped into 1024 × 1024 pixel
patches for processing and analysis.

Potsdam: This dataset utilizes aerial images from Potsdam,
Germany, containing 38 high spatial resolution TOP image
blocks with a ground sampling distance of 5 cm, and each image
block has a size of 6000 × 6000 pixels. Similar to Vaihingen,
each image block is composed of true TOP and DSM extracted
from a larger TOP, along with an NDSM. The land cover classes
in this dataset are identical to Vaihingen, including impervious
surfaces, buildings, low vegetation, trees, cars as foreground land
cover classes, and clutter as the background land cover class.
The dataset provides four multispectral bands (red, green, blue,
and near-infrared), along with DSM and NDSM. For training,
images with IDs 2_10, 2_11, 2_12, 3_10, 3_11, 3_12, 4_10,
4_11, 4_12, 5_10, 5_11, 5_12, 6_7, 6_8, 6_9, 6_10, 6_11, 6_12,
7_7, 7_8, 7_9,7_11, and 7_12 were selected (excluding image
7_10 with annotation errors) for training while the remaining
15 images were used for testing. Similar to Vaihingen, only
three spectral bands (red, green, and blue) were used, and the
original image blocks were cropped into 1024 × 1024 pixel
patches for analysis. In the quantitative evaluation of
these two datasets, the “clutter/background” category was
disregarded.

2) Implementation Details: In this experiment, Ubuntu
18.04 operating system was chosen, and all models were de-
ployed on a single NVIDIA GeForce RTX 2080 Ti 11-GB GPU
using the PyTorch 1.11 framework. To achieve faster model
convergence, the experiment employed the AdamW optimizer
with a base learning rate set to 6e-4 and utilized a cosine
learning rate schedule for adjustment. For the Vaihingen and
Potsdam datasets, the following data preprocessing steps were
applied. First, images were randomly cropped into patches of
size 512×512. During the training phase, multiple data augmen-
tation techniques were introduced, including random scaling
([0.5, 0.75, 1.0, 1.25, 1.5]), random vertical and horizontal flip-
ping, and random rotation. The training process comprised 105
epochs. In the testing phase, multiscale evaluation and random
flipping augmentation techniques were adopted.

3) Evaluation Metrics: Commonly used remote sensing seg-
mentation metrics, including OA, F1 score, and Mean Intersec-
tion over Union (mIoU), were used as evaluation metrics in this
experiment. In addition, the experiment employed the number
of parameters as an evaluation metric. Before introducing these
metrics, other related metrics such as precision and recall will be
discussed, along with the meanings of some symbols: tp (true
positive), fp (false positive), fn (false negative), and tn (true
negative).

Precision: Precision measures the proportion of true positives
among the samples predicted as positive by the model. In other
words, precision informs us of the probability that a sample
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predicted as positive is truly positive

Precision =
tp

tp+fp
. (16)

Recall: Recall is the proportion of true positives among all
samples truly positive. Recall measures the model’s ability to
discover all positives.

Recall =
tp

tp + fn
. (17)

Overall Accuracy: OA is a commonly used performance
evaluation metric in image classification tasks. It is the ratio
of correctly classified samples to the total number of samples.
However, OA may not handle class imbalance well, as the model
may bias toward predicting the class with more samples

OA =
tp + tn

tp + fp + fn + tn
. (18)

F1 Score: The F1 score is the harmonic mean of precision and
recall. It synthetically considers the model’s accuracy and its
ability to capture positives. For multiclass problems, F1 scores
are usually calculated for each class, and then, the average of
these class F1 scores is computed

F1 =
2× (Precision × Recall)

Precision + Recall
. (19)

Overall F1 score: Average of F1 scores for all classes.
Mean Intersection over Union: mIoU is a commonly used

evaluation metric in semantic segmentation tasks, measuring the
model’s accuracy in pixel-level segmentation. Intersection over
Union (IoU) is used to assess the model’s segmentation results
for each class, and mIoU calculates the average of IoUs for all
classes.

IoU =
tp

tp + fp + fn
. (20)

mIoU is the sum of IoU values for all categories divided by the
number of categories.

B. Ablation Experiment

1) Components of MHCINet: To assess the performance of
each component of MHCINet, a series of ablation experiments
were conducted on the Vaihingen and Potsdam datasets. For
ease of discussion, the main focus is on mIoU and meanF1.
The metrics presented in this experiment are the averaged
results of multiple experiments. Table I provides the results
of removing individual modules from MHCINet and training
with different losses. Here, Diceloss represents the dice loss in
the segmentation loss, Celoss represents the cross-entropy loss
in the segmentation loss, and Seloss represents the combined
segmentation loss composed of dice loss and cross-entropy loss.
The removed modules are indicated by (-). Fig. 8 illustrates
the segmentation results after removing a single module from
MHCINet.

We conducted additional experiments on the Vaihingen
dataset by adding a single module to the baseline. The ex-
perimental setup involved using U-Net and ConvNext as the
backbone networks, augmented with FRH as our baseline. The

TABLE I
RESULTS OF MHCINET AFTER REMOVING MODULES

Fig. 8. Effect diagrams of MHCINet with individual modules removed. No
matter which structure is removed from the network, the final segmentation
performance will degrade.

TABLE II
RESULTS AFTER ADDING ANY MODULE TO THE BASELINE ON VAIHINGEN

DATASET

Fig. 9. Illustrates the effect of incorporating ELGA into the Baseline. The
addition of ELGA results in smoother and more coherent edges.
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TABLE III
COMPARISON OF RESULTS BETWEEN ELGA METHOD AND OTHER EDGE

FUSION METHODS

Vaihingen Potsdam

Fig. 10. Incorporating the effect of CMFI into the baseline: Results and
analysis.

TABLE IV
COMPARISON OF RESULTS BETWEEN ELGA METHOD AND OTHER EDGE

FUSION METHODS

training of the baseline utilized cross-entropy loss (celoss) as the
loss function. The modules added to the baseline are indicated
with a plus sign (+). Table II presents the results of adding a
single module to the baseline and training with Seloss as the
loss function.

2) Effect of ELGA: From Table I, it can be observed that for
MHCINet, removing the ELGA module results in a decrease in
mIoU and F1 scores by 1.01% and 0.61%, respectively, on the
Vaihingen dataset. Similarly, on the Potsdam dataset, the gaps
in mIoU and F1 scores are 1.35% and 0.8%, respectively, when
compared to the configuration with ELGA. Table II provides a
more intuitive view, indicating that the utilization of ELGA in
the baseline enhances mIoU and F1 scores by 1.56% and 0.95%,
respectively, on the Vaihingen dataset. It can be concluded that
the use of ELGA brings at least a 1.01% improvement in mIoU
and a 0.61% improvement in F1 to the model.

Fig. 11. Segmentation results of MHCINet on the Vaihingen dataset for IDs
2 and 6 are shown in the images.

TABLE V
PARAMETER QUANTITY OF DIFFERENT BACKBONES AND MIOU ON THE

VAIHINGEN DATASET

From the second row of Fig. 8, it can be observed that, without
ELGA, MHCINet lacks smoothness and continuity in the seg-
mentation of building edges. This situation is more apparent in
Fig. 9, where the addition of ELGA to the baseline leads to more
accurate edge detection. The first row of Fig. 9 illustrates that
incorporating ELGA enhances the coherence and smoothness
of the image edges.

To further demonstrate the advantages of ELGA, we con-
ducted experiments using two common feature fusion methods,
regular addition (ra) and concat (cat), as alternatives to ELGA.
Specifically, the features of the three edges were added or
concatenated with the corresponding downsampling features
at the same layer, and the fusion results were directly out-
putted. As shown in Table III, when using regular addition
(83.43% mIoU and 90.84% F1 on the Vaihingen dataset) and
concatenation (83.50% mIoU and 90.84% F1 on the Vaihingen
dataset), the differences in performance were marginal, and
both were lower than using ELGA (84.80% mIoU and 91.67%
F1 on the Vaihingen dataset). It is worth noting that MHCINet
without ELGA but with ra and cat outperforms Baseline+CMFI
because MHCINet-ELGA+ra includes Baseline+CMFI, utilizes
seloss training, and incorporates edge features. However, the
results using ra and cat in MHCINet are comparable to those of
Baseline+CMFI (83.49% mIoU and 90.88% F1 on the Vaihingen
dataset). This phenomenon suggests that inappropriate edge
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TABLE VI
COMPARISON OF SEGMENTATION RESULTS ON THE VAIHINGEN DATASET

information fusion methods lead to redundancy or confusion in
network information and inconsistent fusion of edge information
with other features in the network, resulting in inconsistent fea-
ture representations. This not only emphasizes the importance
of an appropriate edge feature fusion method but also validates
the effectiveness of ELGA.

3) Effect of CMFI: CMFI, proposed to address the issue of
color similarity, deeply integrates multiscale and synthesizes
global and local information. From experimental data, on the
Vaihingen dataset, MHCINet experienced a decrease of 0.91%
in mIoU and 0.55% in F1 scores after removing CMFI. On the
Potsdam dataset, the removal of CMFI resulted in a decrease of
1.22% in mIoU and 0.71% in F1 scores. Intuitively, the addition
of CMFI to the baseline is more evident, as seen in Table II,
where the mIoU and F1 scores improved by 1.42% and 0.87%,
respectively, after incorporating CMFI. The use of CMFI leads
to at least a 0.91% increase in mIoU and at least a 0.55% increase
in F1.

Considering the Vaihingen and Potsdam datasets, the classes
“lowveg” and “tree” face significant color similarity issues in
the original images due to lighting, seasons, etc. Adding CMFI
to the model proves effective in addressing color similarity is-
sues, particularly for “lowveg” and “tree” classes. Experimental
results in Table IV show that, after adding CMFI to the baseline,
the IoU and F1 for “lowveg” improved by 2.55% and 1.69%,
respectively, and for “tree,” the IoU and F1 scores increased by
0.73% and 0.45%. The effectiveness of CMFI in resolving color
similarity issues is evident. In Fig. 8, the sensitivity of MHCINet
to global information diminishes after removing CMFI, resulting
in misclassification of buildings as “lowveg” due to the red color.
Fig. 10 illustrates the segmentation results with and without
CMFI added to the baseline, emphasizing the impact of CMFI
on improving accuracy in classification, particularly when global
information is considered.

4) Effect of Loss Function: To demonstrate the effectiveness
of the joint loss, experiments were conducted using only indi-
vidual losses. The experimental results, as shown in Table I,
indicate that when employing only celoss and diceloss training

strategies, the results are consistently lower than those achieved
with the joint loss. Additionally, in the baseline, we employed
a joint training strategy with celoss and diceloss. According to
the experimental results in Table II, using the joint loss (seloss)
improves mIoU and F1 by 0.29% and 0.17%, respectively,
compared to the single celoss.

5) Effect of Backbone: To eliminate the influence of the back-
bone, we conducted experiments involving the replacement of
the backbone. The selected backbones include ConvNext-Tiny,
used in our network, as well as commonly used backbones
such as ResNet50, ResNext50, and ResNest50. The results are
presented in Table V, revealing that ConvNext-Tiny has a larger
parameter count, yet MHCINet achieves the best performance
when using ConvNext-Tiny as the backbone. Therefore, we
recommend using ConvNext-Tiny as the backbone.

C. Comparative Experiments

The selected models for comparison in this experimental
study are as follows: the multiattention network (MANet) [57]
with kernel attention, the “bilateral network” ABCNet [58]
incorporating spatial and context pathways, MACU-Net [59]
based on multiscale skip connections and asymmetric con-
volutions, the multistage attention residual UNet (MAResU-
Net) [39] featuring a linear attention mechanism, A2-FPN [49]
with attention-aggregated feature pyramid network, Unet-
Former [26] is a U-shaped neural network with integrated
global and local feature reconstruction, DC-Swin [60] employ-
ing a dense connection feature aggregation module, and MPC-
Net [61], a network with a multiscale prototype transformer
decoder. Our proposed model ultimately achieved higher accu-
racy on the widely used ISPRS Vaihingen and ISPRS Potsdam
datasets for remote sensing segmentation tasks compared to the
aforementioned models.

Results on the Vaihingen Dataset: Table VI presents the
numerical results of various semantic segmentation methods
on the Vaihingen dataset for comparison. The results indicate
that our proposed MHCINet achieved an average F1 of 91.67%,
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Fig. 12. Examples of segmentation results for different models on the Vaihingen dataset. (a) MANet. (b) ABCNet. (c) MACU-Net. (d) MAResU-Res. (e) A2-FPN.
(f) UnetFormer. (g) DC-Swin. (h) MPCNet. (i) MHCINet. In areas with significant differences, regions are outlined with yellow boxes in the original image, and
with black boxes in the GT and segmentation network’s prediction results. As highlighted in the second row for building areas and the fourth row for tree and low
vegetation areas, our model demonstrates superior results in addressing color similarity challenges compared to other state-of-the-art methods. The first and fourth
rows emphasize the more coherent and smooth segmentation edges achieved by our model.

mIoU of 84.80%, and OA of 91.95%. MHCINet outperformed
other networks with the best F1, OA, and mIoU. Notably,
MHCINet surpassed the excellent convolutional lightweight net-
work ABCNet and outperformed the DC-Swin network, which
has strong global information representation capabilities. It is
worth mentioning that our proposed MHCINet method achieved
F1 scores of 86.09% and 91.33% for the “Lowveg” and “Tree”
classes, respectively, surpassing other state-of-the-art networks
by more than 0.77% and 0.93%. We believe that most lowveg and
tree instances exhibit certain color similarities. Experimental
results demonstrate that our model can address color similarity
challenges to some extent.

Fig. 11 illustrates the segmentation results of MHCINet on
images with ID 2 and 6 from the Vaihingen dataset. Fig. 12
compares the segmentation results of MHCINet with other
state-of-the-art networks on the Vaihingen dataset. From Fig. 12,
the third row shows that buildings and impervious surfaces
exhibit color similarities in the original images due to factors
such as lighting. MHCINet with CMFI successfully segmented
buildings and impervious surfaces precisely. Compared to net-
works that do not consider global and multiscale information, the
model fused with CMFI analyzes and understands segmentation
instances from a global perspective by combining information
from various scales. This allows the model to observe the
overall segmentation instance as much as possible, enabling it
to perform pixelwise classification without solely considering
individual pixel values. This is why MHCINet with CMFI excels
in addressing color similarity challenges compared to other
networks. From Fig. 12, the fourth row shows that MHCINet,
with the use of CMFI, not only excels in addressing color
similarity challenges but also, with the incorporation of ELGA,

Fig. 13. Segmentation results of MHCINet on images with IDs 2_13 and 5_13
from the Potsdam dataset are illustrated.

achieves smoother and more coherent edges in the segmentation
results compared to models without edge information. Through
various experiments, we demonstrate that the proposed ELGA
is effective.

Results on the Potsdam Dataset: To comprehensively evaluate
the network performance, we conducted further experiments
on the Potsdam dataset. The experimental results are presented
in Table VII, where MHCINet achieved an average F1 score
of 93.31%, an mIoU of 87.64%, and an OA index of 91.90%
on the Potsdam test set, outperforming other methods. Due to
differences in data size and types, the segmentation accuracy on
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TABLE VII
COMPARISON OF SEGMENTATION RESULTS ON THE POTSDAM DATASET

Fig. 14. Examples of segmentation results for different models on the Potsdam dataset. (a) MANet. (b) ABCNet. (c) MACU-Net. (d) MAResU-Res. (e) A2-FPN.
(f) UnetFormer. (g) DC-Swin. (h) MPCNet. (i) MHCINet. The regions with significant differences are highlighted with yellow bounding boxes in the original
image, and with black bounding boxes in both the GT and the prediction results from the segmentation network. Compared to other state-of-the-art networks, we
achieve superior segmentation results.

the Potsdam dataset is generally higher than that on the Vaihin-
gen dataset. Similar to the results on the Vaihingen dataset, the
Lowveg and Tree classes on the Potsdam dataset also surpassed
other state-of-the-art networks by 1.05% and 1.38%, respec-
tively.

As illustrated in Fig. 13, we provide overall segmentation
images for ID2_13 and 5_13, and Fig. 14 showcases the seg-
mentation results of the network models involved in Table VI on
the Potsdam dataset. Similar to its performance on the Vaihingen
dataset, MHCINet exhibited superior performance in addressing
the challenge of color similarity compared to other networks.
For instance, in Fig. 14, the second and third rows demonstrate
that networks without CMFI tend to misclassify imp.surf and

lowveg classes that exhibit similar colors. However, MHCINet
with CMFI effectively leveraged global information to correctly
classify these instances. For the first and fourth rows in Fig. 14,
models using ELGA showed increased sensitivity to edges,
enhancing the accuracy of edge segmentation.

V. LIMITATIONS AND FUTURE PROSPECTS

While our MHCINet demonstrates superior performance in
terms of data and partially addresses issues related to edge fusion
and color similarity, there are several limitations to consider.
The proposed model in this article focuses solely on semantic
segmentation of urban scenes in remote sensing imagery and
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has not explored other remote sensing visual tasks, such as road
segmentation and parcel segmentation. In our future work, we
intend to delve further into developing more optimal network
architectures that incorporate foreground saliency and refine
our model to cater to a broader range of remote sensing visual
tasks. Furthermore, we may explore segmentation tasks that go
beyond pixelwise classification, potentially utilizing approaches
beyond the conventional pixel-level labeling. Additionally, our
model relies heavily on labeled data for both segmentation and
edge detection. In real-world scenarios, obtaining accurate and
comprehensive labels can be challenging. Therefore, we plan to
enhance our segmentation network by incorporating improve-
ments from unsupervised models, making it more adaptable
to practical remote sensing segmentation challenges. Finally,
our focus will extend to model compression as we continue our
research endeavors.

VI. CONCLUSION

This article aimed to enhance the sensitivity of segmentation
models to edges by incorporating edge information and address-
ing the challenge of color similarity through the integration
of global and multiscale information. These directions were
pursued to improve the segmentation accuracy of remote sensing
images. The proposed method, MHCINet, is based on fore-
ground saliency and incorporates cross-scale and global infor-
mation. Specifically, we introduced ELGA, a module designed
to fuse low-level and high-level information enhanced by edge
features, mitigating edge discontinuity and smoothness issues. In
comparison with common fusion methods, ELGA demonstrated
a deeper integration of the mentioned information. Additionally,
CMFI was introduced to tackle color similarity challenges. This
module utilized the encoder part of a standard transformer,
replacing layer normalization with batch normalization, and
incorporating attention mechanisms after multiscale features to
ensure effective integration of multiscale and global informa-
tion. To adapt the model to our task, a joint loss was designed
for training. Experimental results validated the superiority of
our network architecture and the effectiveness of individual
modules. The findings of this study pave the way for further
exploration of fusion models in the remote sensing domain,
utilizing foreground saliency, global information, and multiscale
features. The potential and applications of such models are
substantial. We encourage researchers to delve into the possibil-
ities of foreground saliency-based fusion models, contributing
to advancements and applications in remote sensing.
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