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FsrGAN: A Satellite and Radar-Based Fusion
Prediction Network for Precipitation Nowcasting

Dan Niu , Yinghao Li , Hongbin Wang , Zengliang Zang , Mingbo Jiang , Xunlai Chen ,
and Qunbo Huang

Abstract—Precipitation nowcasting refers to the prediction of
small-scale precipitation events at minute and kilometer scales
within the upcoming 0 to 2 h, which significantly impacts both
human activities and daily life. However, prevailing deep learning
models have primarily focused on a single radar echo data source,
limiting their ability to effectively capture intricate and rapidly
evolving precipitation patterns. Thus, meteorological satellite is
considered to supplement radar echo data. To achieve a compre-
hensive integration of multisource data with enhanced details, a
two-stage fusion satellite and radar GAN-based prediction net-
work (named FsrGAN) is proposed. In the first stage, we design
a satellite-radar fusion prediction network known as FsrNet. This
network employs an encoder-fusion-decoder architecture, where a
novel spatial-channel attention (SCA) is proposed to enhance the
filtering and fusion of multisource and multiscale features. In the
second stage, we introduce a GAN-based network (FusionGAN)
that also mines the complementary information of satellite im-
ages to sharpen the first-stage predicted radar maps with more
details. Experiments are conducted on meteorological dataset in the
Yangtze River Delta (YRD) region. The test results exhibit the no-
tably superior performance of our model in terms of image quality
and precipitation forecasting metrics in comparison to traditional
optical flow-based methods and some well-known deep learning
methods (ConvLSTM, ConvGRU, TrajGRU and PredRNN++).
More importantly, our fusion model using satellite and radar data
demonstrates the ability to predict convective initiation.

Index Terms—Generative adversarial network, multisource,
precipitation nowcasting, spatiotemporal fusion.
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I. INTRODUCTION

PRECIPITATION nowcasting is a high-resolution forecast
of rainfall intensity in the next few hours (0–2 h) for a

specific region [1] and is one of the important issues in weather
forecasting [2]. It is closely related to human life and affects
decision-making in various industries, such as agricultural pro-
duction [3], [4], transportation [5], [6], and aviation control [7].
Given the complexity of atmospheric dynamical processes and
the dynamic characteristics of precipitation events, precipitation
nowcasting has been a challenging research hotspot in meteo-
rology [8], [9], [10].

Traditional rainfall forecasting methods, also known as nu-
merical weather prediction (NWP) [11], are based on hydro-
dynamic and thermodynamic equations describing complex at-
mospheric motions and predicting future atmospheric states.
However, NWP is usually very sensitive to perturbations in
initial and boundary conditions, which leads to the inability to
provide accurate 0–2 h precipitation forecasts [12]. In addition,
the computational cost of NWP is high and time-consuming
to solve even on modern supercomputers [13]. With the devel-
opment of observational techniques, faster methods based on
radar echo extrapolation have become the mainstream method
for precipitation nowcasting [14], [15], [16]. The optical flow
based radar echo extrapolation method has high computational
efficiency [17] and is now widely adopted in the short-term
precipitation nowcasting system. It estimates the convective
motion by obtaining the future radar echo maps and then predicts
the rainfall area. However, the two important assumptions of
Lagrangian persistence and smooth kinematic field [18] in the
optical flow methods have some limitations, which make it
difficult to cope with the complex and highly dynamic nonlinear
precipitation variations [19].

The rise of artificial intelligence has triggered the creation
of a series of deep learning-based radar echo extrapolation
methods [20], [21], [22], which do not rely on complex meteoro-
logical knowledge, but are trained to predict rainfall by existing
radar echo datasets. Precipitation nowcasting can be treated
as a video prediction problem [23], where future radar echo
sequences are predicted based on past radar echo sequences.
First, some approaches based on recurrent neural networks
(RNNs) provided useful insights [24], [25]. Shi et al. [19] ex-
tended the input-to-state and state-to-state transitions in LSTM
to convolutional structures and proposed the convolutional
LSTM (ConvLSTM) model, which outperforms the optical
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flow method and fully connected LSTM in grid precipitation
nowcasting. Considering that the convolutional in ConvLSTM
model is position invariant, they further proposed the trajec-
tory gated recursive unit (TrajGRU) model [7] to adapt to the
rotational and scaling motion patterns of clouds by actively
learning different positional structures of the recursive connec-
tions. In [26], Wang et al. proposed ST-LSTM based on LSTM
units and applied it to predictive recurrent neural networks
(PredRNN). To alleviate the difficulty of gradient propagation in
PredRNN, they further proposed an improved PredRNN++ [27]
with a gradient unit module to adaptively capture short-term
and long-term dependencies. In addition, memory-in-memory
(MIM) networks [28] and MotionGRU units [29] are also pro-
posed to capture complex spatiotemporal motions more pre-
cisely. However, the above approaches mainly focus on the
improvement of the model structure without considering the one-
sidedness of single data source in some complex tasks [30], [31].

Precipitation is also related to many other factors, such as
wind speed, temperature, and humidity. Thus, in recent years,
many meteorological researchers have investigated multisource
data fusion methods [32], [33]. Wehbe et al. [34] proposed a
geographically weighted regression algorithm. Bouget et al. [35]
introduced an extrapolation prediction algorithm that fuses wind
and radar data. In addition, Zhou et al. [36] designed a lightning
prediction network, named LightningNet, which simultaneously
uses three different sources of data, including radar data, satel-
lite data, and lightning data to make predictions of lightning
occurrence. Furthermore, LightNet+ fuses lightning data (LIG),
weather research, and forecasting data (WRF), and automated
weather station data to predict the lightning field at future
moments [37]. For precipitation, radar can observe the internal
distribution characteristics of convective storms to reflect the
specific precipitation intensity at the current moment, but it is
difficult to predict convective initiation because the radar is not
sensitive to the movement of clouds before the precipitation
process is formed. In addition to radar echo maps, meteorolog-
ical satellite data can also reflect precipitation intensity [38].
Meteorological satellites are capable of observing convective
initiation and the development characteristics of convective
cloud tops. Therefore, satellites data can relieve the limitations
of extrapolation using single radar echo data. In addition, the
widely used MSE or MAE loss functions smooth the prediction
results and lead to blurry extrapolation radar maps [5], [21], [25],
[39]. The reasons can be attributed to two aspects. 1) MSE losses
are very sensitive to outliers, which may lead to overaveraging
of the prediction results [21]. 2) The predictability of the radar
echo is related to the scale of the echo, and the MSE is not
able to focus well on the small-scale fine structure of certain
regions, leading to the loss of these details in the extrapolation
process [5].

In this work, we propose a two-stage GAN-based fusion pre-
diction model to take advantage of multisource complementary
information of satellite and radar data for precipitation forecast-
ing. Our method fuses radar and satellite data as inputs, and is
divided into the fusion extrapolation stage and detail refinement
stage. The first stage named FsrNet adopts a encoder-fusion-
decoder structure and designs a novel spatial-channel attention

(SCA) mechanism to filter and merge multisource information
for radar echo extrapolation. In the second stage, a GAN-based
detail enhancement model (FusionGAN) is proposed to refine
the first-stage prediction and sharpen the predicted maps with
more details. The contributions of this work are as follows:

1) We propose a multisource spatiotemporal prediction
model (named FsrGAN), which can mine and fuse the
effective precipitation complementary information from
radar and satellite data to achieve the prediction of convec-
tive initiation, as well as enhance the prediction accuracy
and small-scale details for the radar echo extrapolation.

2) An encoder-fusion-decoder framework is designed in the
fusion extrapolation stage, which mines complementary
information of multisource data for prediction. In the
fusion part, a novel SCA module is proposed to adaptively
fuse the multiscale spatiotemporal discriminative features
of multisource data.

3) For dealing with the blurry radar extrapolation, a GAN-
based detail refinement model (FusionGAN) is designed,
which also fuses the complementary information of his-
tory real satellite images to sharpen the first-stage pre-
dicted radar maps with more details.

II. PRELIMINARY

Weather radar and satellite are two important means of re-
mote observations. While satellites offer a panoramic view,
facilitating the monitoring of cloud formation and movement,
they lack precision in quantifying precipitation intensity. Con-
versely, weather radar’s perspective spans from the surface to
the atmosphere, enabling the capture of radar echo intensity and
thus precipitation intensity and distribution in weather systems,
however, it is not sensitive to the movement of clouds. This
means that satellite data can complement some of the limitations
of extrapolation using radar echo data alone.

A. Multisource Spatiotemporal Data

As shown in Fig. 1, the model inputs include two types of
spatiotemporal data, namely satellite data (S) and radar echo
observations (R). The radar echo dataset and meteorological
satellite dataset used in this article are a subset of the three-
year radar echo intensities and Himawari-8 satellite cloud maps
provided by the Nanjing Joint Institute for Atmospheric Sciences
(NJIAS) with synchronized temporal resolution, and the data
cover part of the Jiangsu province with an area of 300 km ×
300 km.

Satellite Data: There are 16 observation channels in satellite
data, including 6 visible light channels and 10 infrared channels.
The visible light channels receive solar radiation reflected by
clouds and the surface during the day, and the value of the
visible light channel at night is almost 0, while the infrared
channel obtains radiation information around the clock. Thus,
the visible light channels (1–6) are not used in the fusion
prediction. Considering the large number of satellite data, we
will group the satellite channels to simplify the model inputs.
We count the range of values for different channels of NJIAS
satellite data from 2019 to 2021, as shown in Fig. 3. In addition,
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Fig. 1. Examples of visualization of multisource data. (a) Color visualizations of 16 satellite observation channels at 13:50 on July 25, 2019. (b) Visualizations
of radar echo data at 01:10 on June 1, 2019 (grayscale on the left and color on the right).

Fig. 2. Method overview. In the first stage, multiscale spatiotemporal complementary features from input radar and satellite sequences are extracted by the
dual-path encoders. The multisource and multiscale feature information is further fused by the proposed SCA block, and connected to the decoder by the skip
connections to generate the predicted radar echo sequence. In the second stage, the first-stage radar echo extrapolation sequence and past satellite sequence are fed
into the generator, which learns against the discriminator to sharpen the blurry predictions with more details.

Fig. 3. Range of values for channels of satellite data.

Pearson correlation analysis is used to analyze the correlation
between channels (7–16), and the results are shown in Table I.
To simplify the subsequent inputs, the satellite channels will be
grouped here. From the combination of the range of values and
Pearson correlation analysis, channels (7–16) will be divided
into four groups, which are (1) channel 7, (2) channels 8, 9, and Fig. 4. Architecture of the satellite-radar fusion prediction network (FsrNet).
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TABLE I
CORRELATION COEFFICIENT MATRIX OF SATELLITE CHANNEL 7–16

10, (3) channels 11, 13, 14, and 15, and (4) channels 12 and 16.
The different satellite channels in each group have similar range
of values and high correlation, as well as similar visualizations.

Radar Data: The radar echo dataset used in this work is a
subset of the three-year weather radar intensities provided by
NJIAS from 2019–2021. The radar echo maps have resolution
of 300 × 300 pixels and also cover a 300 km × 300 km
area. They are captured at a frequency of 10 min. It means
a spatial resolution of 1 km and a temporal resolution of 10
min. Given that different satellite channels have different spatial
resolutions (0.5 km, 1 km or 2 km), a data preprocessing process
including screening and interpolation is implemented to achieve
harmonized temporal and spatial resolutions between satellite
and radar data.

B. Problem Formulation

Short-term precipitation forecasts typically refer to prediction
of precipitation over the upcoming 1–2 h. The radar echo map re-
flects regional precipitation intensity by acquiring the magnitude
of the radar echo. Consequently, the extrapolation of radar echo
serves as a valuable tool for short-term precipitation prediction.
The radar echo extrapolation constitutes a form of time-series
prediction. The historical radar echo maps are employed as
inputs to the model, which subsequently predicts future radar
echo images. In this work, fusion prediction by multisource data
is proposed, combining both satellite channels and radar echo
maps for precipitation forecasting.

Using the tensor Rt, St ∈ RC×W×H to denote the radar
echo data and the satellite data observed at time t, respec-
tively, where C, W , and H denote the number of chan-
nels, the width, and the height of the time series data.
Thus, the radar echo sequence can be represented as a ten-
sor sequence {Rt−T+1, . . . , Rt−1, Rt, . . . , Rt+T }. Let X =
{Rt−T+1, . . . , Rt} is the past radar observations as the model
inputs and Y = {Rt+1, . . . , Rt+T } is the future real maps.
Similarly, let S = {St−T+1, . . . , St} is the input past satellite
observations. In this work, we train a neural network parameter-
ized as θ for multisource fusion prediction, and the radar echo
extrapolation problem can be described as

Ŷ = argmax
Y

P (Y | X,S; θ) (1)

where P is the conditional probability, Ŷ = {R̂t+1, . . . , R̂t+T }
denotes the final predicted radar sequence of length T by the
model.

III. METHOD

A general overview of the methodology is shown in Fig. 2.
We first propose the FsrNet to explore and mine the com-
plementary roles of satellite data and radar echoes in pre-
cipitation forecasting. Considering the blurry problem of the
predicted radar echo maps, we use the prediction results of
FsrNet ({R̄t+1, . . . , R̄t+T }) as a pre-extrapolation and further
refine the image details through the GAN-based network (Fu-
sionGAN) in the second stage ({R̂t+1, . . . , R̂t+T }). Since the
two data sources have the same temporal and spatial resolu-
tion, the two input sequences are processed separately using
similar-structured encoders. The multiscale representations are
extracted by downscaling blocks and then fed into the mul-
tisource fusion (MSF) module. The MSF module employs a
novel SCA to filter and fuse the spatiotemporal complementary
features of the radar and satellite data, which update the lower
level features for radar echo prediction. In the second stage, a
detail refinement network based on the GAN model is designed
to extract and fuse satellite data features using multiscale blocks
to refine the details of the first-stage extrapolation results.

A. First Stage: FsrNet

Fig. 4 illustrates the detailed structure of FsrNet, which con-
sists of three parts, i.e., the multisource encoder module (MSE),
the MSF, and the fusion prediction decoder module (FPD),
which are denoted with orange, blue, and green background in
Fig. 3, respectively.

Multisource Encoder: The encoder is divided into two parts,
which encode and extract the multiscale features of the radar
and satellite data separately. The radar encoder and the satellite
encoder have similar structures, consisting of three stacked
REN/SEN layers. The REN/SEN layer consists of a succession
of a bilinear downsampling layer (Conv2D) followed by a leaky
rectifier linear unit (LeakyReLU) and trajectory gated recurrent
unit (TrajGRU [7]). The Conv2D layers reduce the input image
size and double the number of feature maps. The LeakyReLU
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layer enables the network to model nonlinear relations. TrajGRU
[7] is employed for effectively capturing spatiotemporal correla-
tions and features. Note that the parameters in REN and SEN are
different since there is only one channel in the radar echo data,
whereas there are ten channels in the satellite data. The different
scale spatiotemporal features ER0, ER1, ER2 and EH1, EH2

will be extracted by the three REN/SEN layers. Then, ER0 will
be used as the initial state of the RDN1 layer of the decoder.ER1,
ER2 and EH1, EH2 will be input to the fusion module, and
then the fused middle- and large-scale spatiotemporal features
H1,H2 are connected to RDN2 and RDN3 layers of the decoder
by global skip connections, respectively.

Multisource Fusion Module: The fusion module is repre-
sented in Fig. 4 with a blue background and is divided into two
parts. In the upper right part, satellite data are downsampled and
directly sent to the decoder. The comparison tests show that not
all ten satellite channels but four selected channels are enough
to supply satellite complementary spatiotemporal features in the
fusion part. Obviously, lightweight satellite inputs are conducive
to reduce the training and prediction loads. In this work, only one
channel is selected in each satellite group and then lightweight
four-channel satellite input is formed. In detail, channel 7,
8, 13, 16 (representing mid-infrared channel, infrared water
vapor channel, infrared window channel and infrared channel,
respectively) are selected based on meteorologists’ suggestions
and test comparisons in this work. Then, the high-level satellite
features are extracted through a two-layer downscaling block,
and they are used as the input unit of the TrajGRU layer in the
RDN3 module to enhance the prediction ability for convective
initiation. The middle and large-scale spatiotemporal features
ER1, ER2, EH1, and EH2 are used to generate the multiscale
spatiotemporal fusion features H1 and H2 by the proposed SCA
and then are connected as the initial hidden state of the TrajGRU
layer in the RDN1 and RDN2 modules.

Fusion Prediction Decoder: The decoder is shown in the
green background of Fig. 4. It is formed by stacking three
layers of RDNs, where multiscale spatiotemporal features from
the radar and satellite sequence in the encoder part will be
adaptively rescaled and fused to achieve a high-to-low level
residual prediction. The bottom layer RDN3 takes the satel-
lite feature map C as the unit input and the spatiotemporal
fusion information H2 as the initial hidden state of the Tra-
jGRU layer. Similarly, the RDN2 employs the middle-scale
fusion feature H1. The RDN1 takes the ER0 from the radar
encoder as the initial hidden state. The skip connections will
ease and combine the flow of multiscale spatiotemporal fusion
features to recover the lost information and generate better
predictions.

B. SCA Module

In this work, a novel SCA block is proposed to filter and
fuse the spatiotemporal features of radar and satellite sequences,
as shown in Fig. 5. EH and ER represent the multiscale
spatiotemporal features from the satellite encoder and radar
encoder, respectively. The output H of the SCA serves as the
initial hidden state of the TrajGRU layer in the decoder part.

Fig. 5. Novel SCA block.

The radar and satellite data have different characteristics. For
radar echo data, it is necessary to pay attention to its spatial
characteristics, while satellite data are more important to extract
its channel features. Instead of treating all features equally,
SCA is proposed for spatialwise and channelwise weightings,
and strengthens the discriminative learning ability and the rep-
resentational power. For the radar feature input, the average
and maximum values on the spatial scale are first calculated,
and summed by a two-layer convolutional network. Average
pooling is used to retain more common features while max
pooling can filter out more recognizable features. Both max
and average-pooled features are simultaneously used to greatly
improve the representation power of networks. Next, the spatial
feature map is obtained by the sigmoid activation function. As
for the satellite feature data, the average and maximum values
on the channel scale are calculated to obtain the channel feature
map. Finally, in order to increase the weight of the radar echo
features, the spatial feature map, the channel feature map, and
the original radar echo feature are summed up to get the final
output of SCA. Local skip connections can stabilize the network
training and ease the flow of spatiotemporal information.

C. Second Stage: FusionGAN

Although FsrNet can fuse satellite and radar echo data to
achieve higher precision for precipitation forecasting. However,
the predicted radar echo maps still tend to be blurry due to
the widely used loss functions (e.g., MSE/MAE). Therefore,
we designed a GAN-based detail refinement model (named
FusionGAN) in the second stage to further fuse with satellite data
to achieve more small-scale detailed prediction. FusionGAN
consists of a generator and a discriminator. The discriminator
is only used during model training, and only the generator is
used for formal prediction.

Generator: Fig. 6 illustrates the structure of the FusionGAN
generator, which also can be divided into three parts: encoder,
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Fig. 6. Architecture of the generator in FusionGAN.

decoder, and fusion network. In this work, the first-stage pre-
diction radar echo maps {R̄t+1, . . . , R̄t+T }, history four real
radar echo maps {Rt−3 ∼ Rt}, as well as history three satellite
maps blue {St−2 ∼ St} are input to the generator to obtain
the final predicted radar echo sequence {R̂t+1, . . . , R̂t+T }. In
this case, the generator can not only enjoy relatively accurate
prediction results generated by FsrNet in the first stage and focus
on improving the small-scale details of the prediction maps, but
also can take advantage of the spatiotemporal features of the
historical real radar echo and satellite maps to further improve
the prediction accuracy.

In the encoder part of the generator, an eight-layer convo-
lutional network, together with BatchNorm and LeakyReLU
modules are used. Similarly, the decoder also consists of an
eight-layer deconvolutional network, together with a Batch-
Norm module, ReLU module, and Dropout. Multiscale skipping
connections are used between the encoder and the decoder
to capture and preserve the multiscale spatiotemporal features
obtained in the encoder. The attention module in Fig. 6 employs
the self-attention block in [40], which help the model to capture
spatial features between different regions of the radar echo
maps and enhance its generalization under different precipitation
events. In order to better utilize the high-level spatiotemporal
fusion representations in the decoder to guide the updating of the
low-level features, the N-RSSAB block (N denotes the number
of stacks) in [8] is introduced in the decoder and the fusion
module, where the 3-D convolution operation in N-RSSAB is
adapted with a 2-D convolution to form our N-2DSRAB, which
can adaptively rescale the multiscale spatial fusion features in
the decoder and fusion network to improve the performance of
the residual prediction at different scales.

Discriminator: The structure of the discriminator is shown in
Fig. 7. Both the refined maps by the generator and the real radar
echo images are fed into the discriminator. The training objective
is to determine that the true radar echo maps are true and the

Fig. 7. Architecture of the discriminator in FusionGAN.

refined maps are false. By adopting a five-layer convolutional
structure, the discriminator could obtain good discriminative
performance. The last layer is composed of Conv2D and Sig-
moid.

D. Loss Functions

First Stage Loss: To improve the prediction accuracy of heavy
rainfall, we use weighted MSE and MAE as loss function in the
first-stage FsrNet to enhance the prediction accuracy for heavy
rainfall, which assign different weights to pixels with different
precipitation intensities. The weights are defined as in (2), where
dBZ is the radar echo value

w(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, z < 25dBZ
2, 25dBZ ≤ z < 35dBZ
6, 35dBZ ≤ z < 40dBZ
10, 40dBZ ≤ z < 45dBZ
20, 45dBZ ≤ z < 50dBZ
60, z ≥ 50dBZ

(2)

Lossstage1 =
1

T

T∑
t=1

∑
i,j

(wt,i,j((Rt,i,j − R̄t,i,j)
2

+
∣∣Rt,i,j − R̄t,i,j

∣∣)) (3)
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TABLE II
CSI AND HSS SCORES OF THE MODELS WITH THE THRESHOLDS OF 25, 35, 40, 45, AND 50 DBZ

TABLE III
COMPARISON OF IMAGE QUALITY INDICATOR RESULTS

TABLE IV
ABLATION STUDY FOR SCA (50 DBZ THRESHOLD)

where T is the length of the predicted radar echo sequence,
wt,i,j is the weight of (i, j) pixels at moment t. Rt,i,j and R̄t,i,j

are the (i, j) pixel values of the ground truth and the first-stage
predicted image at moment t, respectively.

Second Stage Loss: Although the original GAN model can
generate realistic results from noise, it is difficult to produce
expected constraints on the output of the generator. The CGAN
model can be used to better match the required image in the
input of the generator. The discriminator determines whether the
image is from the generator or the real image, and consequently
directs the generator to produce an image that satisfies the
real data distribution. They compete with each other for better
performance. The loss function of CGAN is as follows:

LossCGAN = Ex,z[logD(z, x)] + Ez[log(1−D(z,G(z)))]
(4)

where x represents the real image and z represents the condi-
tional input of the generator. However, it is difficult to constrain
the generated image on a pixel scale just using the loss of CGAN.
To achieve better echo intensity prediction accuracy, the MSE

and MAE functions are also incorporated into the loss function
in the second stage, described as

Lossstage2

= w1 (Ex,z[logD(z, x)]− Ez[log(1−D(z,G(z)))])

+ w2(x−G(z))2 + w3 |x−G(z)| (5)

where w1, w2, w3 denote the weights of each part. Here w1 =
1, w2 = w3 = 200 are set to match the orders of magnitude.

IV. EXPERIMENTS

A. Experiments Setup

Our goal is to predict the radar echo sequence for the next hour,
and the inputs to the model include the radar echo observations
and satellite data for the previous hour. Since the spatial resolu-
tion is 1 km and the temporal resolution is 10 min, the radar echo
input dimension is 6 × 1 × 300 × 300. The radar echo intensity
is linearly transformed to pixel values and cropped to between
(0, 255) by the formula pixel = 255× dBZ

70 . Besides, the points
with values smaller than 15 dBZ and larger than 70 dBZ are
set to 0. Moreover, the satellite data contains 16 channels with
different wavelengths, it is necessary to standardize the data
magnitude on each channel and perform a linear transformation
to map the raw data into the range of (0, 1). Then a 12-frame wide
sliding window is used to slice the radar echo sequence and the
satellite image instances respectively to obtain a 12-frame long
multisource spatiotemporal sequence, where the first 6 frames
are used for input and the last 6 frames are used for prediction.
Our dataset is formed with a total of 246 days, and 28 953 frames
for training samples and 7992 frames for test samples. Since
satellite data and radar data have the same temporal and spatial
resolutions, the dataset divisions are kept consistent.

B. Metrics

To achieve “no blurry” and high-accuracy radar echo predic-
tion, we employed both image quality evaluation and prediction
accuracy indexes to evaluate the performance of the proposed
network.

First, two commonly used precipitation nowcasting metrics,
including critical success index (CSI), and Heidecker Skill Score
(HSS), will also be used to evaluate the forecast accuracy.
To give an all-round evaluation of the algorithms’ nowcasting
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Fig. 8. Visualization comparison of different models. Our method outperforms other deep learning methods and traditional ROVER method in terms of clarity
and prediction accuracy (especially in heavy rainfall). The figure shows the precipitation process starting at 19:50:00 on July 6, 2019 in some areas of Jiangsu
province.
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Fig. 9. Visualization comparison of convective initiation prediction by different models. The figure shows the precipitation process starting at 14:30:00 on August
1, 2019 in some areas of Jiangsu province.

performance, we evaluate the skill scores for multiple thresholds
(25, 35, 40, 45, and 50 dBZ) that correspond to different rainfall
levels. We first convert the pixel values of forecast or true-ground
images to 0 or 1 according to the thresholds, and then calculate
TP (forecast = 1, truth = 1), FN (forecast = 0, truth = 1), FP
(forecast = 1, truth = 0), and TN (forecast = 0, truth = 0),
respectively. Finally, the two forecast metrics are calculated as

follows:

CSI =
TP

TP + FP + FN

HSS =
2× (TP × TN − FP × FN)

(TP+FN)(FN+TN)+(TP+FP )(FP+FN)
.

(6)
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Second, to compare echo images generated by our model
with the real images considering image structure and clarity,
some image quality assessment metrics are used to evaluate
the small-scale detail performance of the predicted echo maps.
In this work, we use the root mean square error (RMSE) for
evaluating the overall error, and the structural similarity index
(SSIM) [41] and the sharpness difference (SD) for measuring
the overall similarity between the two images.

C. Quantification Results

In the experiments, we compare our FsrGAN model with
one optical-flow based model: ROVER [18], four well-known
deep-learning models: ConvLSTM [19], ConvGRU, TrajGRU
[7], and PredRNN++ [27] on the forecasting evaluation in-
dexes CSI, HSS, and on the image quality evaluation indexes
RMSE, SSIM, and sharpness. Moreover, we conduct ablation
experiments in the FusionGAN stage to investigate the effect of
satellite data on radar echo map refinement and extrapolation
accuracy. “No satellite” represents that satellite data are deleted
in the fusionGAN stage.

Tables II and III present the one-hour precipitation nowcasting
skill scores for the different models as well as the image quality
evaluation scores, where “↑,” and “↓” imply that higher, and
lower values are better, respectively. The best results under
each metric are labeled in bold, and the second best results are
underlined. As shown in Tables II, and III, the deep learning
methods are significantly better than the ROVER-based optical
flow method because of their nonlinear fitting advantage to learn
more complex spatiotemporal patterns from the data. Among the
deep learning models, the proposed FsrGAN network extracts
and fuses the multiscale spatiotemporal complementary features
from radar and satellite data, and performs the best at all five
metrics. It is worth noting that our method have more significant
improvements on heavy rainfall forecasting (45 and 50 dBZ),
which usually is a more difficult task. Specifically, the CSI of
the proposed FsrGAN is 28.0% higher than PredRNN++ and
32% higher than ConvLSTM at the 45 dBZ threshold. For the
50 dBZ threshold, our method also achieve 27% higher CSI than
PredRNN++, and 30.9% higher than ConvLSTM. Moreover, the
HSS at the 50 dBZ threshold is also much improved by 23.1%
relative to that under the PredRNN++ method of 26.6% relative
to that under the ConvLSTM method.

Furthermore, considering the image quality evaluation in-
dexes, our method can also achieve the best results in RSME,
SSIM, especially Sharpness metrics. It improves the Sharpness
score of TrajGRU (second best) from 91.346 to 104.438 (in-
crease of 14.3%). It is clear that our model is beneficial to
generate sharper radar echo prediction with more small-scale
details. In addition, the proposed FsrGAN that incorporates
satellite data in the FusionGAN stage can further improve the
prediction accuracy and refinement for radar echo extrapola-
tion by comparing the FsrGAN with FsrGAN (No satellite) in
Tables II and III.

A visual comparison of the radar echo maps by different meth-
ods is shown in Fig. 8. It shows the 1-h precipitation movement.
It can be seen that the ROVER method has no echo intensity

change and lower prediction accuracy although it retains the
small-scale echo details. The predictions of other deep learning
methods are relatively fuzzy and lose a lot of details. They also
tend to exaggerate the forecasting scale and the echo intensity
tends to be overestimated. By comparison, our method achieves
good prediction performance and the echo intensity and position
are more consistent with the real echo maps.

In order to verify the prediction ability for convective initia-
tion. Fig. 9 shows a case of convective initiation. From observing
the region circled by the red box, it is clear that the echo intensity
of circled region on the input radar echo maps are all 0, but
convective initiation occurs from the future six real radar echo
maps. In this case, the echo intensity of circled region are still
0 on the predicted maps by other methods. However, the echo
intensity is effectively predicted by our method on the circled
region due to the complementary information from the satellite
data.

D. Ablation Studies

To further explore the role of SCA in the first stage, Table IV
gives the test results of FsrNet with and without SCA. It is
clear that when the SCA block is removed, the prediction ac-
curacy (CSI and HSS) will decrease significantly. In addition,
only adding SCA modules to R&SEN3 (REN3 and SEN3) or
R&SEN2 (REN2 and SEN2) will also weaken the accuracy
performance of the model due to the loss of spatiotemporal
information from multisource fusion. It is demonstrated that the
fusion of multisource spatiotemporal features by the proposed
SCA is crucial for enhancing the prediction accuracy.

V. CONCLUSION

In this article, an effective multisource data fusion short-term
precipitation prediction model (FsrGAN) is proposed by fusing
satellite data to complement the limitation of extrapolation using
radar echo data alone. In the first-stage fusion network, the novel
SCA is proposed to realize the multiscale adaptive fusion of
satellite and radar echo features. In addition, a postprocessing
stage based on the improved GAN model (FusionGAN) is de-
signed to further fuse the satellite data to sharpen the first-stage
predicted radar maps with more details. The experimental results
show that the proposed FsrGAN is superior to other methods
in terms of clarity and forecast accuracy, and also effectively
realizes the prediction of convective initiation.
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