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Abstract—Uncrewed aerial vehicles (UAVs) carrying sensors,
such as light detection and ranging (LiDAR) and multiband
cameras georeferenced by an onboard global navigation satel-
lite system/inertial navigation system (GNSS/INS), have become
a popular means to quickly acquire near-proximal agricultural
remote sensing data. These platforms have bridged the gap be-
tween high-altitude airborne and ground-based measurements.
UAV data acquisitions also allow for surveying remote sites that
are logistically difficult to access from ground. With that said,
deriving well-georeferenced mapping products from these mobile
mapping systems is contingent on accurate determination of plat-
form trajectory along with intersensor positional and rotational
relationships, that is, the mounting parameters of various sensors
with respect to the GNSS/INS unit. Conventional techniques for
estimating LiDAR mounting parameters (also referred to as LiDAR
system calibration) require carefully planned trajectory and target
configuration. Such techniques are time-consuming, and in certain
cases, not feasible to accomplish. In this article, an in-situ system
calibration and trajectory enhancement strategy for UAV LiDAR
is proposed. The strategy uses planting geometry in mechanized
agricultural fields through an automated procedure for feature
extraction/matching and using them to enhance the quality of
LiDAR-derived point clouds. The proposed approach is qualita-
tively and quantitatively evaluated using calibration datasets as
well as separately acquired validation datasets to demonstrate
the performance of the developed procedure. Quantitatively, the
accuracy of the resulting UAV point clouds after system calibration
and an accompanying trajectory enhancement improved from as
much as 43 to 4 cm.

Index Terms—Direct georeferencing, field-based phenotyping,
in-situ calibration, light detection and ranging (LiDAR), mobile
mapping system (MMS), row/alley extraction, uncrewed aerial
vehicle (UAV).

I. INTRODUCTION

OVER the last decade, a lot of research on phenotyping
has benefitted from the use of aerial remote sensing data,

such as those derived from light detection and ranging (LiDAR),
RGB, and multispectral/hyperspectral sensors [1], [2], [3], [4],
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[5], [6]. For example, these sensing technologies have been used
to analyze change in plant height over time under various circum-
stances [7], [8], as well as to estimate anatomical characteristics
and predict biomass [9], [10], [11], [12]. Inarguably, uncrewed
aerial vehicles (UAVs)-based mobile mapping systems (MMSs)
have become a valuable phenotyping tool in advancing key
research on seed breeding trials. Among the various sensors,
RGB and multispectral/hyperspectral cameras are used to ac-
quire images in several electromagnetic spectral bands. On the
other hand, LiDAR are ranging sensors, and they have the ability
to travel through gaps between leaves and acquire points from
under-canopy plant structures and ground. Despite the differ-
ent functionalities, information derived from any of the above
sensors is only as good as the quality of their georeferencing.
In general, most UAV MMSs are equipped with a global nav-
igation satellite system/inertial navigation system (GNSS/INS)
unit that is used for direct georeferencing of their sensor data.
However, direct georeferencing requires precise estimates of
translational and rotational offsets between the GNSS/INS unit
and various sensors. In the case of a LiDAR unit (which is
the focus of this article), by estimating its translational and
rotational offsets relative to the GNSS/INS unit—the process
is also known as LiDAR system calibration—one can transform
any raw LiDAR data to a global coordinate frame. Conventional
LiDAR system calibration techniques are often time-consuming
and require special skills and artificial targets [13], [14], [15],
[16], [17], [18], [19]. This means that circumstances of limited
time availability and lack of artificial targets for calibration may
lead to a significant delay in the onsite deployment of MMS
in agricultural fields. Moreover, even a mission-ready system is
prone to unforeseen scenarios of equipment mishandling during
its transportation. With the further increase in demand for these
MMS, it is therefore imperative that an alternative technique for
LiDAR system calibration is explored. In this article, an in-situ
LiDAR system calibration and trajectory refinement strategy
are developed that can directly use point cloud data acquired
over agricultural fields, particularly those that are used for seed
breeding trials. As in the case of the conventional-feature-based
calibration approach, the proposed method relies on geometric
features available in point clouds from field data acquisitions.

The rest of the article is organized as follows. In Section II,
the concept of system calibration is introduced with a brief back-
ground on intrinsic sensor parameters and mounting parameters
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Fig. 1. Illustration of the vectors and quantities involved in the LiDAR point
positioning equation for 3-D reconstruction of a LiDAR point cloud.

relating the georeferencing and LiDAR units; then, a review
of related work on LiDAR system calibration is presented in
Section III. This is followed by Section IV, which introduces the
MMS and datasets used in this article. Thereafter, in Sections V
and VI, the proposed methodology is explained in detail with
supporting experiments and their results. In Section VI, the
resulting point clouds from the experiments are qualitatively
and quantitatively assessed, and the performance of the proposed
strategy is validated using conventional artificial targets. Finally,
Section VII concludes this article.

II. BACKGROUND: LIDAR SYSTEM CALIBRATION

LiDAR system calibration refers to determining the intrinsic
sensor parameters as well as the relative mounting parameters of
the LiDAR unit. These parameters are needed to define the laser
beam orientation with respect to the body frame of GNSS/INS’s
inertial measurement unit (IMU). The system calibration is
based on a mathematical model that relates the position of
a point in the LiDAR unit frame to the corresponding point
in the mapping frame through a coordinate transformation, as
represented by (1). The transformation takes into account the
absolute position and orientation of the georeferencing unit
and its translational/rotational offsets relative to the LiDAR. A
schematic diagram of the LiDAR point positioning equation is
shown in Fig. 1. In this diagram, the point positioning equation

refers to the summation of three vectors (
⇀

A,
⇀

B, and
⇀

C) defined
in the mapping frame to derive the object coordinates of the laser

beam footprint (
⇀

D) [14]. In (1), rlu(t)I represents the position of
an object point in the LiDAR unit frame at the time of the laser
pulse t. The position and orientation of the platform body, i.e.,
the IMU coordinate frame, with respect to the mapping frame at
time t, are denoted by rmb(t) andRm

b(t), respectively. The mounting
parameters that relate the LiDAR unit frame to the platform body
are represented by the time-invariant lever arm rblu and boresight
matrix Rb

lu. Last, the coordinates of the LiDAR point I in the
mapping frame are denoted by rmI

rmI = rmb(t) +Rm
b(t)r

b
lu +Rm

b(t)R
b
lur

lu(t)
I . (1)

It is important to mention that for the LiDAR units considered
in this article, their internal characteristic parameters, which

Fig. 2. Impact of inaccurate mounting parameters on the alignment of point
clouds.

define certain properties of the laser beam, such as its firing angle
and footprint relative to the LiDAR unit, are provided by the
manufacturer. In other words, the laser rangefinders in LiDAR
are typically factory calibrated with a high precision. On the
other hand, the external characteristic (or mounting) parameters
that relate the LiDAR unit to the IMU body frame must be
estimated and refined through a system calibration procedure.
One should note that a bias might still be present in the intrinsic
parameters and may vary over time with sensor usage. Those
biases, however, will have much less impact on the LiDAR
point cloud compared to resulting discrepancies from incorrect
estimates of the mounting parameters. Hence, the internal sensor
parameters are not considered in the proposed methodology.

To illustrate the impact of these parameters on point cloud
quality, Fig. 2 shows sample agricultural point clouds acquired
from two different UAV flight tracks within the same mission
and a common region selected for the assessment. As a result of
inaccurate mounting parameters, conjugate segments from the
highlighted regions exhibit misalignment between them. More-
over, an inaccurate trajectory may also introduce misalignment
among corresponding features. Thus, the focus of this article is
the refinement of LiDAR mounting and trajectory parameters
through an in-situ system calibration and trajectory enhance-
ment approach. Conceptually, these parameters are estimated
through an optimization procedure, which minimizes discrep-
ancies among identifiable conjugate features, such as plant rows
and ground patches extracted from LiDAR point clouds.

III. RELATED WORK ON IN-SITU SYSTEM CALIBRATION

As discussed in the previous section, accurate knowledge of
the mounting parameters is necessary to correctly transform raw
scans onto a global coordinate system. Most of the prior work on
in-situ LiDAR calibration can be categorized into four groups
as follows.

1) In-situ calibration focused only on enhancing the internal
characteristic parameters of static terrestrial laser scanners
(TLS) or multibeam LiDAR units.

2) In-situ calibration techniques to determine LiDAR mount-
ing parameters for terrestrial mapping platforms.

3) In-situ calibration techniques to determine mounting pa-
rameters for airborne or UAV-mounted LiDAR systems.
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4) In-situ multimodal sensor calibration techniques involving
two or more LiDAR units, or a combination of camera and
LiDAR sensors to assist with the calibration.

A. In-Situ Calibration Focused Only on Enhancing the
Internal Characteristic Parameters of Static Terrestrial Laser
Scanners (TLS) or Multibeam Lidar Units

Early work related to in-situ calibration focused mainly on
enhancing the internal characteristic parameters of static TLS
or multibeam LiDAR units [20], [21], [22], [23], [24]. Since
these systems do not have a georeferencing unit, the recon-
structed point clouds are manually georeferenced using control
points. Chan and Lichti [25] demonstrated an automatic in-situ
calibration of a multibeam Velodyne HDL32e LiDAR in static
and kinematic modes by mounting the unit on a tripod and a
vehicle, respectively. In their approach, objects observed in each
LiDAR scan, such as lamp posts, were extracted and modeled as
three-dimensional (3-D) cylindrical features in order to estimate
the LiDAR’s internal systematic errors. As the calibration was
performed entirely in the LiDAR unit frame, measurements
from a georeferencing unit were not used. In a similar work,
Kim et al. [26] stressed on periodic recalibration of LiDAR units
with a primary focus on their internal characteristic parameters.
They used planar features to minimize systematic errors associ-
ated with multibeam LiDAR. As a drawback, their experiments
were limited to scanning indoor environments using a backpack
system.

B. In-Situ Calibration Techniques to Determine LiDAR
Mounting Parameters for Terrestrial Mapping Platforms

Among some in-situ calibration techniques that targeted Li-
DAR mounting parameters, Mirzaei et al. [15] used a planar
checkerboard target to estimate both the internal characteristic
parameters of a 64-beam Velodyne LiDAR as well as the external
transformation between the LiDAR unit and a spherical vision
system mounted on the same platform. On the downside, they
only considered static scenarios, and their method involved man-
ual movement of the platform within a calibration site comprised
of planar targets. Gong et al. [27] proposed an approach to
determine LiDAR-to-camera transformation by using trihedral
building structures observed in different epochs. Chan et al. [28]
proposed an in-situ calibration technique that used ground planes
and power cables in point clouds for estimating boresight angles
between 2-D scanners mounted on a terrestrial platform and the
platform’s body frame. This approach can be helpful for LiDAR
calibration in locations near roadways, where there are few or no
building structures. All the above methods target ground-based
platforms.

C. In-Situ Calibration Techniques to Determine Mounting
Parameters for Airborne or UAV-Mounted LiDAR Systems

Several authors have centered their work on airborne or UAV-
mounted LiDAR systems. It is important to mention that dif-
ferent studies estimated either only the boresight parameters or
both the lever arm and boresight parameters, depending on their

developed procedure. Filin [29] proposed a system calibration
method for airborne laser scanners (ALS) using natural terrain
and emphasized that well-distributed slopes with different orien-
tations are required for accurate calibration. Skaloud and Lichti
[30] presented an in-situ boresight self-calibration of ALS. The
calibration was conducted by optimizing LiDAR points from
different scans to fit a common plane model. The authors noted
that planar features from buildings, particularly tilted ones,
were more effective than ground patches. Kumari et al. [31]
estimated the mounting parameters for an ALS through an ad-
justment of systematic errors among conjugate ground surfaces
by conducting an iterative closest point (ICP)-based point cloud
registration. Lee et al. [32] proposed a similar ALS calibration
technique that implemented a correlation-based matching of
surface profiles. Guo et al. [33] obtained boresight parameters
for their UAV LiDAR through an approach similar to that in
Skaloud and Lichti [30]. Oliveira and Dos Santos [34] developed
a sequential approach of estimating and refining UAV LiDAR
system calibration parameters. Datasets were acquired in a
built-up area which facilitated the identification and extraction
of gabled building roofs as planar features. Subsequently, these
features were utilized in a point-to-plane distance minimization
approach for refining the mounting parameters. Li et al. [35]
similarly performed a rigorous boresight calibration using UAV
LiDAR point clouds from urban areas. The point clouds were
segmented and matched within overlapping regions to determine
the required rigid body transformation for coarse registration.
It was subsequently followed by an ICP-based fine registra-
tion. These coarse and fine registration steps sequentially refine
the boresight parameters necessary to improve the alignment
of point clouds. Like the above studies, Keyetieu and Seube
[36] used features from terrain slopes and buildings to conduct
boresight adjustment. Rodrigues dos Santos et al. [37] applied a
combination of morphological filter and random sample consen-
sus on building structures to identify and extract planar features,
such as gabled roofs. Then, a triangular irregular network (TIN)
correspondence model was incorporated to estimate boresight
misalignment by minimizing the sum of normal distances be-
tween points and corresponding TIN patches. Their method
was able to reduce the point-to-TIN patch distance from about
1.2 to 0.8 cm. Yu et al. [13] proposed a calibration technique
using planar features and artificial spherical targets for point
cloud registration. They claimed a registration accuracy range
of 0.009–0.07 m across four datasets. Dharmadasa et al. [38]
used building features, such as edges and slopes, from over-
lapping scans and aligned them by heuristically modifying the
boresight parameters. Several attempts were required to achieve
a satisfactory alignment.

D. In-Situ Multimodal Sensor Calibration Techniques
Involving Two or More LiDAR Units, or a Combination of
Camera and Lidar Sensors to ASSIST With the Calibration

Some studies have proposed multimodal sensor calibration
techniques involving two or more LiDAR sensors, or a combina-
tion of camera and LiDAR sensors to assist with the calibration.
Cortes et al. [39] performed a combined bundle adjustment
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(BA) for their UAV MMS to obtain camera–LiDAR mounting
parameters. They emphasized the need to consider georeferenc-
ing uncertainty in the calibration. Ravi et al. [14] developed
a feature-based calibration approach for multimodal MMS that
does not require special calibration targets. One of the limitations
of their proposed method is the need to manually extract features
from point clouds. Zhou et al. [40] performed the extrinsic
calibration of camera and LiDAR with only a few targets using
3-D line-to-plane correspondences. Elbahnasawy et al. [41]
proposed an integration of LiDAR and image points in a BA
for simultaneous calibration of the two sensors. Zhou et al. [42]
developed an automated in-situ calibration approach based on a
tightly coupled camera–LiDAR integration workflow for UAV
systems. At first, a GNSS/INS-assisted structure from motion
(SFM) strategy is implemented on camera imagery to generate
image-based point clouds. Thereupon, feature correspondences
between the image-based and LiDAR point clouds are identified
through an automated procedure. Finally, an integrated-BA is
conducted that incorporates image points, raw LiDAR mea-
surements, and GNSS/INS information to estimate system cali-
bration parameters. Through experiments, the authors reported
an absolute accuracy of 3–5 cm for image and LiDAR point
clouds. More recently, Tian et al. [43] determined lever arm
and boresight parameters separately in two steps. The lever arm
parameters were estimated with the help of ground control points
and SFM modeling using camera images. On the other hand, the
boresight parameters were refined by conducting an ICP-based
point cloud registration.

Although a lot of work has been done on LiDAR system cal-
ibration, none of them simultaneously addresses the following.

1) A true in-situ calibration of UAV LiDAR using a dataset
that would eventually reach an end-user instead of obtain-
ing separate calibration data (for example, an approach
suitable for mechanized agricultural fields).

2) A method that relies primarily on georeferenced point
clouds from the candidate LiDAR unit with little or no
aid from a secondary LiDAR or camera (i.e., point clouds
from the candidate LiDAR alone are used to provide plenty
of features for a reliable and accurate calibration).

3) Refinement of trajectory parameters in addition to LiDAR
system calibration.

4) Minimal amount of user effort in feature extraction, i.e., a
fully automatic procedure.

Thus, a new strategy is desired that addresses the aforemen-
tioned limitations. In this article, we present the development of
an in-situ calibration and trajectory enhancement approach that
uses the planting geometry of mechanized agricultural fields to
establish feature correspondences and perform a feature-based
LiDAR system calibration with the possibility of refining the
trajectory.

IV. UAV MAPPING SYSTEMS AND DATASETS DESCRIPTION

Two UAV systems are used in this article, namely UAV–
LRGB-1 and UAV–LRGB-2, as shown in Fig. 3. Both systems
feature the same sensor integration configuration, as pictured
in Fig. 3(a). The UAV–LRGB-1 consists of a DJI Matrice 600

Fig. 3. Details of the UAV systems used in this article. (a) UAV with integrated
sensors. (b) Components of UAV–LRGB-1. (c) Components of UAV–LRGB-2.

Pro hexacopter equipped with a Velodyne VLP-32C LiDAR
unit, a Sony α7R III RGB camera, and an Applanix APX-15v3
GNSS/INS unit for direct georeferencing. The VLP-32C is a
multibeam LiDAR consisting of 32 laser rangefinders mounted
radially in a vertical plane with a 40◦ FOV from +15◦ to −25◦

about the horizontal. The entire laser assembly spins about the
unit’s vertical axis, which results in a 360◦ horizontal FOV.
The LiDAR has a pulse repetition rate of 600 000 points/s in
single return mode at a maximum range of 200 m and a range
accuracy of ±3 cm (Velodyne VLP-32C Data Sheet, 2023).
The GNSS/INS unit has a postprocessing positional accuracy
of ±2–5 cm and roll/pitch and heading accuracy of ±0.025◦

and ±0.08◦, respectively (Applanix APX-15 Datasheet, 2023).
The expected accuracy of the derived point cloud based on the
georeferencing and LiDAR specifications is evaluated using an
error propagation calculator developed by Habib et al. [46]. At
a flying height of 50 m, the expected accuracy at nadir is in
the range of ±5− 6 cm. For the second system used in this
article, i.e., UAV–LRGB-2, the only difference between the two
platforms is in the RGB camera; UAV–LRGB-2 is equipped with
a Sony RX1R mirrorless camera.

Two datasets, one from each platform, were collected over
a mechanized maize field used for seed breeding trials located
at Purdue University’s agronomy center for research and educa-
tion, West Lafayette, IN, USA. The surveyed field, together with
the UAV flight lines/tracks are shown in Fig. 4(a). Seed breeding
trials involve studying variation in crop yield based on factors,
such as the genetic background of seed, time of sowing, and
soil nutrition content. As such, for each trial, seeds are sown in
consistently spaced plant rows and are grouped into plots where
these plots have gaps along the plant rows known as alleys.
Fig. 4(b) illustrates the characteristics of the mechanized field
used in this article on aerial imagery as well as LiDAR point
cloud. The plant rows have a nominal spacing of approximately
76 cm, according to the planter’s specification. Alleys also have
the same width. It is noteworthy that, due to the differing nature
of experiments, plant growth varies from plot to plot, as shown
by the varying heights of the LiDAR point cloud in Fig. 4(b).
This variability forms the basis for the subsequent development
in this article.

Along with the field surveys, two additional datasets were
acquired using the two platforms to validate the calibration
results. For these validation datasets, the UAV systems were
flown over conventional calibration targets and other man-made
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TABLE I
DATASETS USED IN THIS ARTICLE

Fig. 4. Location of the surveyed field and UAV mission plan along with an
illustration of various planting terminologies common in mechanized fields for
seed breeding trials.

Fig. 5. Target and flight configuration at the study site for the validation
dataset: (a) target layout, and (b) UAV flight trajectory colored by time.

infrastructure. Fig. 5(a) shows the types of target features used
in the mission: high-reflectivity checkerboards, wooden huts,
rooftops, walls, and ground. Moreover, the UAV missions were
designed to include multiple parallel flight lines to capture

targets from different viewing geometry. Fig. 5(b) visualizes the
mission trajectory with flying heights of 20, 40, and 60 m, and
lateral separations of 2, 3, and 4 m, respectively. Table I lists the
flight details of all four datasets, denoted by their mission type
and the corresponding platform names. Both platforms had the
same mission plan for their respective missions.

V. METHODOLOGY

This section describes the proposed strategy for LiDAR sys-
tem calibration and trajectory enhancement. Initially, the plat-
forms are assumed to have coarsely calibrated LiDAR units.
Alternatively, approximations of the mounting parameters can
also be based on the knowledge of sensor installation. As
long as these nominal mounting parameters are reasonably
accurate—particularly, if boresight parameters are within a few
degrees from the true boresight—the derived point clouds can
be used for identifying various planting features, as introduced
in Section IV. These features—plant rows, alleys, and ground
patches, are then matched across different tracks and used in
a system-driven approach for minimizing discrepancies among
them while refining the mounting parameters and/or platform
trajectory. It is worth noting, however, that a sequential imple-
mentation is required for such a technique to avoid any correla-
tion among system calibration and trajectory parameters. Thus,
in a two-step approach, the first run refines the calibration, fol-
lowed by a second run for the trajectory enhancement. Moreover,
the system calibration, with or without trajectory enhancement,
can be implemented iteratively by using the updated mounting
parameters (and trajectory) to reconstruct a new set of point
clouds for a second iteration of feature extraction and parameter
refinement.

Fig. 6 presents the data processing workflow. It is comprised of
1) generation of point clouds from different tracks using a coarse
set of the calibration parameters, 2) aboveground/bare-Earth
(AG/BE) point separation, 3) identification of rows and alleys
in AG point cloud from each track, 4) matching rows across
different tracks through a height-based correlation scheme, 5)
feature extraction from individual row segments, and 6) least
squares optimization for mounting parameter refinement and
trajectory enhancement. The procedure is entirely automated.
Moreover, some of the workflow components (feature extraction
and matching) have been parallelized to improve the algorithm’s
performance. A parallel execution allows for running the oper-
ation on multiple tracks simultaneously, thereby reducing the
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Fig. 6. Workflow of the proposed calibration (and optional trajectory enhance-
ment) procedure.

processing time. In the subsequent sections, each of the auto-
mated processing steps, from feature extraction and matching to
mounting parameter refinement or trajectory optimization, will
be discussed in detail.

A. Point Cloud Reconstruction From Individual Tracks and
AG/BE Point Separation

For the developed methodology, the UAV systems are flown in
parallel flight lines or tracks with overlapping ground coverage.
Fig. 7(a) and (b) shows the overlap between point clouds from
two different flight tracks reconstructed with an off-nadir range
of ±110◦. The overlap allows for identifying feature correspon-
dences, which are used in the optimization process. Fig. 7(c)
shows the region selected for further analysis in this article.

For each point cloud reconstructed by track, points above the
ground, which mostly consist of LiDAR returns from plants, are
separated from the ground points. This facilitates the identifi-
cation of rows and alleys in each track. The AG/BE separation
is conducted based on the modified cloth simulation approach
proposed by Lin and Habib [47]. The modified approach im-
proves the original cloth simulation by Zhang et al. [48] to
generate a more complete digital terrain model in areas with
sparse point distribution along the ground. This is often observed
in agricultural field datasets when plant canopy located at sig-
nificant distance from the sensor limits LiDAR returns from the

Fig. 7. Point cloud coverage for two UAV flight tracks: (a) track 1, (b) track
5, and (c) region selected for row/alley identification (point clouds are from
UAV-LRGB-1).

Fig. 8. AG/BE point separation from the selected region of track 1 point cloud
with profiles showing side views: (a) entire point cloud, (b) AG points, (c) BE
points, (d) point density map of AG points, and (e) point density map of BE
points.

ground. Fig. 8 shows sample AG/BE point clouds derived from
track 1 of the UAV–LRGB-1 platform. For each of the AG and
BE point clouds, Fig. 8(d) and (e) visualizes the corresponding
point density maps. From the two figures, one can easily notice
the varying sparsity of AG/BE points as we move away from
the track’s projection onto the ground. The increasing sparsity
increases the probability of errors in AB/BE point classification,
particularly for far regions with few or no points. To avoid the
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Fig. 9. Identification of plant row/alley locations based on column/row sum
of elevation of points (point cloud is colored by height).

inclusion of incorrectly classified AG/BE points in the subse-
quent processing, only those points that are within a certain
lateral distance from individual tracks are included in the point
cloud.

B. Row/Alley Identification in AG Points

With the AG/BE points separated, plant rows and alleys are
identified in AG points based on the method developed by Lin
and Habib [47]. In this method, the point cloud is first rotated to
a local coordinate system, say XY, in such a way that plant rows
and alleys lie along the Y and X axes, respectively. Note that a
precise knowledge of the planting orientation is not required as
long as the plant rows are within a few degrees of the Y-axis.
Then, 2-D cells of a user-specified size are created along the
two axes and the sum of elevation of all points within each cell
is computed. The hypothesis is that plant locations in the point
cloud will have a higher point density. Therefore, the sums of
elevation along the rows and columns of the defined 2-D cells
will result in a pattern where local peaks in the column sum
and local valleys in the row sum will indicate plant row and
alley locations, respectively [47]. Fig. 9 illustrates the row/alley
detection approach, where row locations are characterized by
peaks when column sums are plotted against distance along the
X-axis. Similarly, alleys are identified as negative peaks in the
row sum plot against distance along the Y -axis. As previously
mentioned, for this approach to work, the quality of point
clouds reconstructed using coarse calibration parameters must
be adequate to differentiate individual rows as well as identify
gaps between row segments. Given the LiDAR’s FOV, UAV
flying height, and planting pattern, one can evaluate a reasonable
boresight misalignment beyond which the row segments might
not be distinguishable. It was found that a range of ±2° was
tolerable for the initial reconstruction.

C. Row Matching Among Tracks

In this step, rows (and alleys) from different flight tracks are
matched to identify feature correspondences. A straight-forward
method for matching rows and alleys could be based on spatial

Fig. 10. Misalignment of rows/alleys due to inaccurate mounting parameters
illustrated with point clouds from a highlighted region: (a) point cloud with the
highlighted region, (b) along-row misalignment between alley locations, and
(c) across-row misalignment.

proximity, for example, based on the Euclidian distance (in hor-
izontal plane) between row/alley centers. A row can be matched
with the nearest row from another track such that the matched
row pair has the minimum Euclidean distance between their cen-
ters compared to other possible matches. Similarly, alley centers
can be matched with those from other tracks using the same prin-
ciple. It is worth mentioning however, since point clouds from
individual tracks are reconstructed using inaccurate/nominal
LiDAR mounting parameters, conjugate rows/alleys may have
large discrepancies across/along rows. Fig. 10 visualizes a
section of point clouds from two flight tracks with side and
top views. For this example, row/alley matches were manually
conducted. In Fig. 10(b), one can tell that a matching based on
spatial proximity can be reliably performed for alleys given the
large ratio of center-to-center distance to the calibration-related
misalignment. On the other hand, a proximity-based technique
would be difficult to implement for matching rows if across-row
discrepancies are larger than half the nominal spacing between
the rows, i.e., 38 cm for this field, as shown in Fig. 10(c).
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Fig. 11. Height distribution of row segments between two alleys for point
clouds from UAV–LRGB-1: (a) point cloud divided into cells and 90th percentile
height distribution for one track, (b) height distribution for all 11 tracks before
matching, and (c) height distribution of all tracks after matching, i.e., after
applying the necessary shifts required to achieve the highest correlation.

Instead of proximity-based row matching, the proposed ap-
proach in this article uses a height-based correlation between
track pairs to establish an accurate match among row segments. It
is based on the hypothesis that the distribution of row segments’
average heights over the field will be correlated among all tracks.
When two such distributions are analyzed mathematically, the
positional shift that results in the highest (positive) correlation
will correspond to the best possible match between the two
distributions. Such a correlation-based procedure is applicable
for any field data that exhibits variation in plant height from one
plot to another, as discussed in Section IV. Fig. 11 visualizes the
height distribution profiles of row segments between alleys 1 and
2 for all 11 tracks of the uncalibrated UAV–LRGB-1 platform.
The procedure for determining height-based correlation can be
summarized in the following steps.

1) In the first step, points contained within two neighboring
alleys in an overlapping region of two tracks are cropped
from the point clouds.

2) Then, these point cloud segments are divided into rect-
angular cells of equal width similar to the nominal row
spacing (0.76 m) across-row (along X-direction), where

the cells are centered at the row location. The cell height
corresponds to the length of the row segment.

3) From these cells, a 90th percentile height of points is
determined for the entire across-row length, and the same
is performed for all tracks, as shown in Fig. 11.

4) Using these 90th percentile height profiles from different
tracks, a cross-correlation is computed between a user-
defined reference (usually track 1) and all other tracks.

Mathematically, a cross-correlation between two datasets
(here, tracks) is represented by (2), where f and g are the
input height profiles, N is the total number of cells, n is the
displacement or shift between the two profiles, and 〈·〉 denotes
the complex conjugate of its content

(f � g) [n]
Δ
=

N−1∑
m = 0

f [m]g [m+ n] . (2)

By determining the shift needed to obtain the highest cor-
relation, it is possible to match two different height profiles,
and thus match row segments. It is worth mentioning that the
matching procedure need only be performed for row segments
between a single pair of successive alleys unless such region of
the point cloud had been excluded due to point sparsity. In that
case, for the affected tracks, row segments from a different pair
of successive alleys should be considered. Fig. 11(c) visualizes
the outcome of the matching procedure when applied to all 11
tracks of the UAV–LRGB-1 dataset.

D. Geometric Feature Extraction

In this step, various geometric primitives are identified and
modeled using points extracted from each row segment. These
primitives, which can be classified as planar and linear features,
essentially provide necessary control in various directions. All
these planar and linear primitives are used in an optimization
framework to minimize discrepancies among conjugate features
from different tracks while enhancing mounting or trajectory
parameters. The selection of these features is motivated by the
geometry of the planting pattern in mechanized agricultural
fields used for seed breeding trials (these fields often use a
precise planter with GNSS-assisted autosteer functionality). The
well-defined rows and alleys enable easy identification of indi-
vidual row segments. For the agricultural field datasets used in
this article, Fig. 12 visualizes the three feature types—two planar
and one linear, that are extracted from each row segment and used
in the developed procedure. Among the three feature types, a
near-vertical planar feature is defined using 3-D points along the
crop stalks within a row segment. Similarly, a horizontal plane
can be defined by the BE points for a given row segment. Last,
a linear, near vertical, feature of user-defined width is derived
from the start and end of each row segment, providing control in
the third direction. The start/end of row segments are determined
by observing sudden changes in the row sum plot (these sudden
changes represent the end and beginning of the alley separating
two neighboring plots). It is important to mention that due to the
sparsity of point clouds at a given location, not all features can
be identified (and therefore extracted) from each row segment.
In Fig. 12, one of the row segments (row segment 1) does not
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Fig. 12. Types of features extracted from each track.

have enough BE points to correctly define a ground plane.
Nonetheless, the datasets used in the article have 11 tracks,
providing sufficient feature redundancy. Therefore, the absence
of features from a few tracks would not affect the optimization
accuracy.

E. LiDAR System Calibration and Trajectory Enhancement

Once the features from all tracks have been extracted and
matched, an optimization procedure is implemented that mini-
mizes discrepancies between the matched features while refining
the mounting parameters. It is important to note that the UAV’s
GNSS/INS trajectory is usually considered to be of the best
quality possible. Yet, if necessary, trajectory parameters can
also be corrected for errors following the same principle as the
mounting parameters. When it comes to trajectory, one might
argue that trajectory enhancement alone could resolve point
cloud misalignments. Such an assumption is risky, however,
since an independently conducted trajectory enhancement might
mask any discrepancies caused by biases in the mounting param-
eters. Therefore, a trajectory enhancement should be conducted
after the mounting parameters have been refined. Conceptually,
in the optimization step, extracted features are utilized in an
iterative least squares adjustment (LSA) that minimizes normal
distances between feature points and the respective parametric
model of the extracted feature until a predefined normal distance
threshold is achieved [14], [49]. The optimization is based on
the point positioning equation [as introduced earlier by (1)]
to refine the LiDAR-to-body-frame mounting parameters, rblu
and Rb

lu, or the trajectory parameters, rmb(t) and Rm
b(t), expressed

symbolically by (3) and (4). In (4), rmI (t)corrected are the corrected
coordinates of the LiDAR point rmI (t) obtained after system
calibration (or after trajectory enhancement following system
calibration). Thus, the corrected coordinates will depend on
the refined mounting parameters (rblu(refined), Rb

lu(refined)),
or the combination of both the refined mounting parameters
as well as the estimated corrections to the trajectory position
and orientation parameters, δrmb(t) and δRm

b(t), respectively. Usu-
ally, trajectory corrections are not solved for every laser pulse
timestamp, as that would lead to overparameterization in the
LSA. Given the moderate platform dynamics in the case of
UAVs, the original high-frequency trajectory is downsampled

Fig. 13. Discrepancy between 3-D point pairs for (a) linear and (b) planar
features.

to a user-defined rate, where the downsampled timestamps are
referred to as trajectory reference points. Then, the corrections
to the trajectory at each laser pulse timestamp are modeled as
pth order polynomial functions of estimated corrections to their
n neighboring reference points

rmI (t) = f
(
rmb(t), R

m
b(t), r

b
lu, R

b
lu, r

lu(t)
I

)
(3)

rmI (t)corrected = f

(
rmb(t), δr

m
b(t), R

m
b(t), δR

m
b(t),

rblu (refined) , Rb
lu (refined) , rlu(t)I

)
.

(4)

Fig. 13 illustrates the concept of discrepancy minimization for
conjugate linear and planar features. Due to the irregular distri-
bution of point clouds, point-to-point correspondences cannot be
used in this procedure. As such, the minimization is conducted
between pseudoconjugate 3-D points along corresponding lin-
ear/planar features following the mathematical expression given
by (5). In the case of linear features, discrepancies between 3-D
point pairs (denoted as the random misclosure vector �e) are
minimized along the two directions that are normal to the axis of
the reference feature. On the other hand, for planar features, dis-
crepancies only along the normal vector of the reference feature
are minimized. Vector �D is the nonrandom component of the
discrepancy positioned along the feature. In (6),

⇀

e is normally
distributed with zero mean, and its variance–covariance matrix
is obtained from the product of a priori variance factor σ2

0 and
weight matrix P. The weight matrix is eventually modified to
P ′ for each feature type to ensure that the unknown vectors �D
along the features are eliminated [49]. The LSA subsequently
results in updated system calibration parameters, or trajectory
parameters if enhanced following the calibration

rmI − rmJ =
⇀

D +
⇀

e (5)

⇀

e ∼ (0, σ2
0P

−1
)
, P ′ �D = 0. (6)

VI. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed strategy for LiDAR system calibration and
trajectory enhancement was implemented for each of the two
UAV systems using the previously defined features extracted
and matched across different tracks. For feature extraction, the
width of cloud for the fitted vertical and ground planar features
is set to 0.1 m, as illustrated in Fig. 12. Likewise, the vertical
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TABLE II
NUMBER OF UNIQUE LINEAR AND PLANAR FEATURES (AND POINTS)

EXTRACTED FROM THE TWO FIELD DATASETS

linear features have cross-sectional dimensions of 0.3 m×0.3 m.
These values were empirically determined for UAV datasets
based on the sparsity of points within the features. It is worth
mentioning that the features need not be extracted from all
rows as long as the overall area covered is large. In the current
experiment, only every 10th row is used for the features, for a
total of 17 rows out of about 170 in the field. Table II reports the
specifics of the extracted features for the two datasets. For both
experiments, the initial mounting parameters are user-defined
based on direct measurement of the lever arm together with a
reasonable approximation of the boresight angles. Results from
an earlier calibration could also be used for the boresight angles.
One should note that having a constant flying height for different
tracks will lead to a high correlation among the lever arm and
boresight angles [50]. Hence, the lever arm parameters were set
as constants during the estimation of boresight angles.

A. Results

The results of the LSA were evaluated both qualitatively and
quantitatively. Table III summarizes the initial and estimated
mounting parameters together with their standard deviations
(STDs) after the LSA. One can notice that the STD values
are very small. At this point, if there is a need to enhance
the trajectory, a second LSA is conducted. In this sequential
approach, the refined mounting parameters estimated from the
first LSA are fixed, followed by evaluating the corrections for the
trajectory reference points. Figs. 14 and 15 show feature points,
respectively, for the two datasets before and after calibration, as
well as after the sequential calibration and trajectory enhance-
ment. In both figures, it can be seen from the different views that
the alignment of features has improved after each LSA process.
The refined mounting parameters result in an improvement in
the point cloud quality in all three directions. However, small
misalignments may still exist, as seen in Fig. 14(c) and (d) and
Fig. 15(c) and (d) for X and Y directions, which are then reduced
with the second LSA, i.e., after trajectory enhancement. From
the two figures, one can see a significant improvement in feature
alignment after the sequential LSA processes.

To demonstrate the changes in trajectory parameters, Fig. 16
shows individual tracks from the UAV–LRGB-1 trajectory, col-
ored by applied distance and angular corrections. It is worth men-
tioning that the characteristics of applied corrections are similar
for the UAV–LRGB-2 trajectory, and therefore not visualized.
Table IV shows the root mean of squared (rms) corrections for
all six trajectory parameters. The values in Table IV indicate

Fig. 14. Alignment of sample UAV–LRGB-1 features before and after system
calibration, as well as after system calibration and trajectory enhancement:
(a) top view of the extracted features before calibration (colored by time) and
selected regions in different views, (b) region A, (c) region B, and (d) region C.

that the distance corrections observed in the lateral (Y) direction
were relatively higher than those in forward (X) and vertical
(Z) directions. As for the angular corrections, the ω component
(corresponding to the platform roll) is relatively higher than
φ (pitch) and κ (heading). For the quantitative evaluation of
the proposed calibration and trajectory enhancement strategy,
Table V reports the rms normal distances of points to their cor-
responding feature parametric model. The proposed approach
enhances feature alignment in both datasets. Most notably, for
UAV–LRGB-2, the linear feature fitting RMSE reduces from
over a meter in the original point cloud to about 20 cm after
refinement. This value is in agreement with the cross-sectional
dimensions of the vertical features defined earlier in this section.
It is worth noting that the values listed in Table V and those
annotated in Figs. 14 and 15 are different. The latter are samples
representing double the normal distances used to derive the
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TABLE III
LIDAR MOUNTING PARAMETERS BEFORE AND AFTER REFINEMENT

TABLE IV
ROOT MEAN OF SQUARED CORRECTIONS APPLIED TO

TRAJECTORY PARAMETERS

TABLE V
QUANTITATIVE EVALUATION OF THE POINT CLOUD ALIGNMENT BEFORE

SYSTEM CALIBRATION, AFTER SYSTEM CALIBRATION, AND AFTER

TRAJECTORY ENHANCEMENT FOLLOWING SYSTEM CALIBRATION

statistics in Table V (i.e., the normal distances for the samples
are expected to be multiples of the rms measures in Table V with
a factor of 2 to 3, considering the 99.7% range of discrepancies
that follow a normal distribution).

For a better insight into the impact of calibration and sys-
tem trajectory enhancement on reconstructed point clouds, two
profiles: one across-row (P1) and one along-row (P2), were man-
ually extracted from reconstructed point clouds, as in Fig. 17. In
Fig. 17(b) and (d), individual rows and alleys can be distinctly
identified in UAV–LRGB-1 point clouds reconstructed using
the refined calibration or calibration and trajectory parameters.
An identical observation can be made in Fig. 17(c) and (e)
for UAV–LRGB-2. In general, ground and row segments have
better alignment among tracks following system calibration and
trajectory enhancement, indicating an overall high quality of
point cloud alignment.

TABLE VI
COMPARISON OF THE ESTIMATED BORESIGHT PARAMETERS FOR THE

TWO SYSTEMS

B. Validation

In the previous section, the performance of the proposed sys-
tem calibration (as well as the sequential system calibration and
trajectory enhancement) approach was evaluated using features
extracted from row segments. In this section, the accuracy of
refined mounting parameters is validated using additional UAV
datasets acquired over conventional calibration targets, as intro-
duced in Section IV. The validation procedure assumes that the
LiDAR units remained rigidly mounted over time between the
two acquisition dates. Following the GNSS/INS postprocessing,
point clouds from different flight tracks are reconstructed using
the original (initialized) and refined mounting parameters. Fi-
nally, for the qualitative and quantitative assessment of the point
clouds, several calibration targets comprising retroreflective sign
boards and huts are manually extracted from these point clouds.

Table VI presents the estimated boresight parameters for the
two datasets from both the proposed as well as conventional
approaches. The maximum difference in the parameter values
is under 0.08◦. Fig. 18 shows the alignment quality of reflec-
tive targets for the UAV–LRGB-1 and UAV–LRGB-2 datasets
reconstructed using mounting parameters from the uncalibrated
system and the proposed calibration technique. While the targets
in the original “uncalibrated” point clouds appear noisy and
indistinguishable, those extracted from the point clouds based
on the proposed calibration technique are significantly less noisy
and are easy to identify. Fig. 19 shows the alignment quality of
huts positioned along the north–south and east–west directions
in the UAV point clouds. One can see that the proposed approach
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Fig. 15. Alignment of sample UAV–LRGB-2 features before and after system
calibration, as well as after system calibration and trajectory enhancement:
(a) top view of the extracted features before calibration (colored by time) and
selected regions in different views, (b) region D, (c) region E, and (d) region F.

results in a significant improvement of the alignment in all three
directions.

While the above assessment investigates the relative accu-
racy of individual UAV datasets following the proposed system
calibration, analyzing the alignment of point clouds from the
two platforms together may provide further indications for their
absolute accuracy. This comes from the fact that the datasets
UAV–LRGB-1 and UAV–LRGB-2 are independently acquired
and processed in an absolute reference frame. Fig. 20 shows
four different hut features extracted from the two UAV datasets
after system calibration through the proposed and conventional
approaches. From the figure, one can clearly see that the features
are well-aligned in the planimetric direction. A small misalign-
ment exists in the north–south and vertical directions, which

Fig. 16. UAV–LRGB-1 tracks colored by the magnitude of applied distance
and angular corrections to the GNSS/INS trajectory: (a) distance corrections,
(b) ω corrections, (c) φ corrections, and (d) κ corrections.

can be attributed to the lever arm components that were derived
through manual measurements and fixed in the LSA.

C. Discussion

The results from the proposed system calibration and trajec-
tory enhancement technique suggest that the strategy developed
in this article has the potential to determine accurate boresight
parameters and, if needed, refine the platform position and
orientation. Through the proposed method, discrepancies among
point clouds from different calibration tracks were reduced by
65, 140, and 80 cm in the across-row, along-row, and vertical
directions, respectively. The validation results also demonstrated
the effectiveness of the technique toward achieving high relative
accuracy of adjusted point clouds. The absolute accuracy is
verified by the alignment of point clouds from two UAV sys-
tems whose data have been independently processed. Among
the planar and linear features used in this article, the control
provided by the linear features (along plant rows) was limited
due to the sparseness of the point cloud along the individual
row segments. As such, the procedure may benefit from fur-
ther investigation into the more precise derivation of along-row
features. Compared to traditional calibration strategies, which
require the deployment of calibration targets, the proposed
work is more practical. It eliminates the user effort required
during data acquisition and processing. The feature extraction
and matching processes are automated. Moreover, the entire
calibration and trajectory enhancement procedure utilizes data
typically acquired data over seed breeding trials. Thus, the
method can be considered a valuable alternative in scenarios
with limited calibration opportunities. In terms of calibration
accuracy, removing the fixed lever arm constraint, as previously
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Fig. 17. Point cloud alignment (for all tracks) before and after system cal-
ibration and trajectory enhancement: (a) profile locations on UAV–LRGB-1
point cloud, (b) P1 (across-row) in UAV–LRGB-1, (c) P1 (across-row) in
UAV–LRGB-2, (d) P2 (along-row) in UAV–LRGB-1, and (e) P2 (along-row)
in UAV–LRGB-2 (point clouds are colored by height).

Fig. 18. Qualitative evaluation of 2-D alignment of reflective targets before and
after system calibration: (a) targets selected for comparison, (b) UAV–LRGB-1
point cloud, and (c) UAV–LRGB-2 point cloud (point clouds are from all 18
tracks and are colored by intensity).

discussed, may result in more accurate estimates of the mounting
parameters, provided the UAV is flown at multiple flying heights.
Table VII enumerates the average feature extraction/matching
time needed to process each dataset used in this article. It should
be noted that the algorithm allows for adjusting the number of
features to be extracted (therefore adjusting the processing time)

Fig. 19. Qualitative evaluation of 3-D alignment of huts along north–south
and east–west directions before and after system calibration: (a) targets selected
for comparison, (b) UAV–LRGB-1 point cloud, and (c) UAV–LRGB-2 point
cloud (point clouds are from all 18 tracks and are colored by intensity).

Fig. 20. 3-D alignment of hut targets for the UAV–LRGB-1 and UAV–LRGB-2
datasets: (a) targets selected for comparison, (b) alignment along north–south
direction, and (c) alignment along east–west direction.

TABLE VII
AVERAGE PROCESSING TIME FOR FEATURE EXTRACTION AND MATCHING

depending on the redundancy requirement. The performance can
be further improved by employing a more powerful workstation
with additional cores, larger RAM capacity, and faster read/write
capable hard drive.
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VII. CONCLUSION

UAV-based data acquisitions for high-throughput phenotyp-
ing are often conducted in mechanized agricultural fields. The
UAV LiDAR system calibration and trajectory enhancement
strategy developed in this article leverages onsite data acquired
from such fields in its implementation. The performance of the
proposed strategy was evaluated on two UAV platforms. The
results after system calibration followed by trajectory enhance-
ment show a reduction in feature-fitting error for linear features
from over 1 m to 20 cm, and for planar features from 43 to 4 cm.
The method developed in this article offers several advantages
as follows.

1) It allows for using actual agricultural datasets as opposed
to flying separate calibration missions, i.e., there is no need
for specialized target or building structures for feature
extraction.

2) Along with system calibration, the developed approach
can also enhance UAV trajectory in a sequential process.

3) The entire process is automated, requiring no supervision.
4) It can be valuable in scenarios where logistic restrictions

prevent proceeding with the conventional calibration.
The calibration precision achieved by the developed method is

sufficient for most UAV LiDAR applications. Further improve-
ment in techniques for feature extraction and matching, espe-
cially for fields with irregular planting patterns, can be studied as
a part of future development. Such fields may have rows without
alleys, crops in the early season offering little or no height varia-
tions, or crops with a nonplanar stalk distribution. On that note,
generalizing the technique for different application areas, such
as forestry, can also be explored. Such developments might as
well benefit from the simultaneous integration of multitemporal
datasets from UAVs and ground-based mapping platforms.
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