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Abstract— Fine-grained radar target classification based on
single-band, such as wideband or narrowband, poses challenges
even when utilizing deep learning methods. Since different bands
reflect distinct characteristics of the targets, we focus on the fine-
grained classification of radar aircraft benefits from dual-band
data. However, the selection of complementary dual-band features
and the fusion of decisions from two bands are the key issues that
need to be addressed. In order to tackle these issues, we propose
a framework for fine-grained radar target classification called
mutual-attention guided feature extraction and adaptative decision
fusion. In this article, we propose a mutual attention selection mech-
anism to explore the complementary feature information between
wideband and narrowband data. Furthermore, the wideband and
narrowband features make distinct contributions to determine the
class types. In order to address the uncertainty associated with the
contribution of the wideband and narrowband data, we propose
a new adaptive decision fusion strategy that adaptively assigns
different weights to model the contribution uncertainty. We con-
ducted extensive experiments on a homebrew simulated dual-band
fine-grained aircraft dataset, which includes the high resolution
range profile signal and the jet engine modulation signal. Compared
with other classification methods, the proposed approach exhibits
a remarkable classification accuracy of 95.5% in our homebrew
dataset and maintains an impressive accuracy of 87.4% even in
challenging environments with a 5 dB SNRs. Moreover, it achieves
exceptional inference speeds of up to 3073 data pairs per second on
the GPU: RTX3090. The results demonstrate the robustness and
efficiency of the proposed method.

Index Terms—Adaptive decision fusion (DF), deep learning,
dual-band, fine-grained classification, mutual-attention selection.

I. INTRODUCTION

DUE to the good penetration and wide detection range of
electromagnetic waves, radar signals possess the advan-

tage of working all day in all weather conditions. Consequently,
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radar automatic target recognition (RATR) technology is ex-
tensively utilized in both military and civilian domains. Radar
detects the distance, position, size, and other target information
by transmitting electromagnetic waves and receiving the target
echo. Depending on their bandwidth, radar echo signals can
be divided into wideband and narrowband signals. Commonly
used wideband signals include high-resolution range profile
(HRRP) [1], [2], synthetic aperture radar (SAR) [3], [4], [5],
and inverse synthetic aperture radar (ISAR) [6], [7], [8], etc.
Narrow jet engine modulation (JEM) signals [9] can effectively
capture the micromotion characteristics of long-range aircraft
targets. This includes the periodic motion of the moving parts of
the aircraft, such as propellers or rotating blades of jet engines,
and rotor blades of helicopters [10]. HRRP not only provides
information about the intensity distribution of the scatterer along
the radar line of sight, but also reveals the size of the target from a
specific radar perspective [11]. Numerous studies have concen-
trated on the coarse-level classification of long-range aircraft tar-
gets based on radar echo signals. This includes categorizing them
by size (large, medium, small) [12] or power type (propeller, jet,
helicopter, etc.) [13]. However, the fine-grained classification of
long-range aircraft targets plays a crucial role in guiding battle-
field situational estimation, assessing the threat level of aircraft
targets, and evaluating the operational performance of aircraft
targets. Fine-grained classification of radar data is highly chal-
lenging due to its sensitivity to radar data orientation, translation,
and intensity. In addition, information obtained from a single
radar band is limited in detecting long-range aircraft targets.
There is limited research on the fine-grained classification of
long-range aircraft targets based on radar echo signals. In this
article, we use wideband HRRP and narrowband JEM signals
for fine-grained classification of aircraft.

Traditional manually-designed features may not always pro-
vide enough discrimination for radar data in fine-grained air-
craft classification tasks [14]. Most traditional radar target
classification methods only use single-band radar data to ex-
tract manually-designed features with shallow classification
networks. Commonly used features can be categorized into
physical and transform domain features. The physical features
include the location and magnitude of peak, the scattering center
location, the intensity magnitude, the profile, the perimeter and
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area of the target, the shape, the micromotion characteristics, etc.
The transform domain features mean the features obtained by
Fourier transform [15], [16], wavelet transform [17], [18], non-
negative matrix factorization [19], [20], radon transform [21],
or sparse representation [22], [23],. Then, these features are
classified by K-nearest neighbor classifier [24], Bayesian clas-
sifier [25], AdaBoosting Classifier [26], [27], support vector
machine (SVM) [28], or hidden Markov model [29]. Deep learn-
ing has recently demonstrated strong capabilities in representing
features, allowing for data-driven feature extraction. Commonly
used deep architectures encompass various models, such as deep
belief network [30], autoencoders (AE) [31], bidirectional recur-
rent neural networks (BiRNN) [32], and convolutional neural
networks (CNN) [33].

The majority of current RATR methods rely on single-band
signals, which provide limited information for fine-grained
target classification. Fine-grained target classification methods
using both wideband and narrowband signals have received lim-
ited attention in the existing literature. Moreover, multimodality
classification involves feature selection, feature association, and
decision fusion (DF). Distributed array radar captures data from
multiple bands, including narrowband JEM, broadband HRRP,
SAR, and ISAR, among others [34] [35]. The complementary
nature of multimodal data can enhance the representation of
target features [36], [37], thus, potentially improving the ac-
curacy of classification algorithms. Studying the correlation
among radar multimodal data is crucial for improving algorithm
accuracy [38], [39], [40]. Multimodal data fusion can be broadly
categorized into three types: signal fusion, feature fusion, and
DF. Signal fusion involves concatenating and summing the
original data from two modalities at the data level to obtain
the fused signal. Feature fusion aims to extract features from
different modalities and combine them using mutual attention
mechanisms, concatenation, or dot product operations. DF aims
to obtain fused classification results based on the classification
results from each individual modality.

In this manuscript, we conduct a large number of ablation
and comparison experiments on the simulated dataset, which
verify the superiority of MAAF and the effectiveness of each
module. In addition, to verify the robustness of the model [41],
we add random Gaussian noise with different signal-to-noise
ratios (SNRs) to the simulated data to evaluate the fine-grained
recognition accuracy of MAAF under various SNRs conditions.

The main contribution of this article is that we propose a
framework for fine-grained radar target classification called
mutual-attention guided feature extraction and adaptative de-
cision fusion (MAAF). Specifically, it lies in three folds.

1) Since the narrowband JEM and wideband HRRP echos
reflect target properties from different aspects, we can
extract complementary features of the target from them.
However, the features from JEM and HRRP echos are not
equally important to classification. Thus, there are strong
and weak modalities in the process of fusion. To address
this issue, we propose a novel mutual-attention selection
mechanism, which enhances weak modality features while
maintaining the effectiveness of the strong modality to
improve the classification accuracy of radar target.

2) Further, we propose a novel adaptive DF strategy to model
the imbalance of JEM and HRRP signals. It adaptively
assigns different weights to the feature of each modality
to estimate their uncertainty. This strategy enhances radar
target classification accuracy by adjusting the impact of
strong and weak modalities in DF.

3) We conduct extensive experiments on a custom simulated
dual-band fine-grained aircraft dataset, which includes
wideband signal HRRP and the narrowband signal JEM.
The superior classification performance of our method
compared with popular radar target classification methods
showcases its effectiveness and robustness.

II. RELATED WORKS

A. Bimodal Fusion Classification for Remote Sensing

Though the research on crossmodal fine-grained aircraft clas-
sification methods are rare currently, the crossmodal methods
have been explored in the context of remote sensing fields,
such as ship identification, ground object classification, radar
jamming signal classification, and so on. Zhang et al. [42]
employed deep CNN features from SAR and integrated them
with traditional HOG features to perform feature fusion, thereby
enhancing the accuracy of ship classification in SAR images.
Geng et al. [43] utilized dual-modal data from SAR images
and multispectral images to perform feature fusion at conclu-
sion of the network, leading to a significant enhancement in
the accuracy of ground target classification. Shao et al. [44]
initially preprocessed the radar jamming signal to acquire the
filtered jamming signal and its corresponding time-frequency
diagrams, which are referred to as two modal data. Subsequently,
they extract depth features from these two modalities using a
one-dimensional convolutional neural network (1-D-CNN) and
a two-dimensional convolutional neural network (2-D-CNN).
Finally, the depth features from both modalities are combined
and input into the fully connected (FC) layer for radar jam-
ming signal classification. Zhang et al. [45] introduced a fea-
ture fusion algorithm that combines electromagnetic scattering
features with deep CNN features. This approach utilizes the
extraction of scattering centers and deep learning to enhance
SAR characterization, resulting in the improved classification
accuracy. Sun et al. [46] presented a multifeature DF method for
classifying aircraft targets using wideband and narrowband data.
This method utilizes the traditional approach to classify aircraft
based on wideband and narrowband signals. Subsequently, the
classification results from different modalities are combined us-
ing Dempster–Shafer (DS) evidence theory. The aircraft type is
determined through a voting process, which can significantly en-
hance classification accuracy compared with using single-modal
data alone. These methods effectively showcase the benefits
of incorporating multiple modal data in RATR. However, they
do not emphasize feature fusion and DF, and the architectural
designs of these methods still face limitations in extracting more
robust features.

In this article, we propose a fine-grained classification al-
gorithm for aircraft based on mutual attention in feature
selection and adaptive wideband and narrowband DF for
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classification, which achieves the complementary informa-
tion of HRRP and JEM signals at both feature and decision
levels.

B. HRRP Signal-Based Radar Object Classification

HRRP reflects the distribution and size of scattered intensity
from target scatterers along the radar line-of-sight in a specific
radar view. Neural networks have recently gained widespread
usage in HRRP target classification. Fu et al. [47] demonstrated
that CNN outperforms AE in HRRP target classification. Simi-
larly, Ding and Chen [48] showed that CNN effectively extracts
features from time-frequency maps of HRRP. Wan et al. [49]
also computed the time-frequency maps from HRRP. They intro-
duced an attention module that assigns different weights to time-
frequency maps with varying resolutions. This approach led to
a significant improvement in HRRP classification performance
using CNN. Wan et al. [50] combined the strengths of CNN
and BiRNN with an attention mechanism. They first utilized
CNN to capture the spatial correlation within the original HRRP
data. Subsequently, they employed BiRNN to fully account for
the temporal dependencies among distance units. Finally, the
attention mechanism directed the focus of the overall network
toward the target region of interest. These methods effectively
demonstrate the robust feature extraction capability of the CNN
facilitated by the attention mechanism. However, their attention
mechanism solely emphasizes the spatial positioning of features
and does not account for the varying importance of different
channels.

In this article, our HRRP feature extraction branch employs
a CNN network with a channelwise attention mechanism to
represent the weights of various channels in HRRP features.
This approach effectively captures classification information
that reflects the scale of the target.

C. JEM Signal-Based Radar Object Classification

JEM signal reflects the micromovement characteristics of
aircraft through the periodic motion of its moving parts, such
as propellers, rotating blades of jet engines, and rotor blades of
helicopters. While few methods directly utilize JEM for aircraft
target classification, it effectively captures the micromotion
characteristics of targets, typically applied to the classification
of small targets. Kim et al. [51] merged time domain and fre-
quency domain maps of microDoppler signals. Subsequently,
the drone classification CNN is trained using the combined
maps, showcasing its robust classification performance. Mean-
while, Wang et al. [52] computed the time-frequency maps
of radar echoes, capturing the micromotion characteristics of
the target. The CNN classification is used to determine the
micromotion category of the target. In a similar approach, Wang
et al. [53] first computed the time-frequency maps that reflect the
microDoppler of the target, and then employ CNN to classify the
three motion states of the rotor target: hover, ascent, and descent.
The existing research on JEM classification is limited, with most
classifications being based on time-frequency transformation.

TABLE I
PARAMETERS OF THE FEATURE EXTRACTION NETWORK

In this article, our JEM feature extraction branch utilizes a
CNN network with an attention mechanism to effectively ex-
tract classification information that reflects the micromovement
characteristics of the target.

III. METHODOLOGY

In order to fully exploit the relevance and complementary
information from the features of HRRP and JEM, we explore
an effective DF strategy for strong and weak modalities. This
approach aims to enhance the fine-grained classification accu-
racy of aircraft targets. As a solution, we present a fine-grained
classification network for aircraft that is based on mutual at-
tention and adaptive wideband and narrowband fusion. The
overall architecture is shown in Fig 1. The HRRP and JEM of
each individual aircraft are input into a dual-branch network. In
addition, we employ a channel mutual-attention mechanism to
integrate the two modal data at the feature level. Subsequently,
the outcomes from different branches are directed into the same
classification layer to acquire evidence for each modality. These
pieces of evidence are then input into the adaptive DF network
to obtain the final evidence, which discriminates the target class
based on its confidence.

A. Feature Selection

In this article, we propose a dual-branch CNN with multiscale
channel mutual attention for feature extraction. Drawing inspi-
ration from the squeeze-and-excitation networks (SE-Net) [54]
module, we incorporate self-attention within each branch and
mutual attention between the two branches. The structure is il-
lustrated in Fig. 1, and the parameters of the dual-branch network
are detailed in Table I. The CNN comprises three fundamental
components: the convolutional layer, pooling layer, and FC
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Fig. 1. Framework of the proposed MAAF framework for fine-grained dual-band radar target classification. It is comprised of the MuAtt classification net and
the weighted fuse net. In the first stage, we trained the features of the classification network. In the second stage, we adaptively trained the weights corresponding
to the HRRP and JEM.

layer. Specifically, the convolutional layer is employed to extract
features, thereby augmenting the perceptual field of features.
The pooling layer reduces the scale of the feature map, thereby
increasing the sensitivity of the network to small changes in the
data. Subsequently, the FC layer integrates all features learned
by the network. In each convolutional layer of CNN, spatial and
channel information can be combined within the local perceptual
field. The number of convolutional kernels corresponds to the
number of channels. Given that this article deals with 1-D data
lacking spatial information, our primary emphasis lies in the
channel information of HRRP and JEM across various CNN
layers. SE-Net can effectively model the significance of various
channels in the convolution process through compression and
excitation, utilizing the channel information from the convolu-
tional layer with minimal computational resources. The chan-
nelwise features are then rescaled based on attention weighting,
thereby enhancing the feature representation. Since features
extracted by convolution have multiple channel dimensions,
SE-Net applies to the HRRP and JEM signals in this article.

The backbone employs a combination of 5+4 networks with
dense FC. Due to the high number of 0 elements in the original
HRRP data, the addition of a batch normalization (BN) layer
would actually lead to a significant performance degradation
of the network. Consequently, we only incorporate BN layers
in the JEM branch to normalize various features and achieve
optimal network performance. In the 5+4 CNN, the number of
channels remains the same across different branches. A mutual
attention mechanism is incorporated between different branches,
allowing us to place the JEM features into the attention module
in order to obtain their respective weights. Subsequently, these
weights are added to the HRRP features, followed by inputting
the HRRP features into the same attention module to obtain the
weights of different channels. Similarly, the weights are added
to the JEM features. This sequence of operations results in the
implementation of a layer of self-attentive and mutual-attentive

fusion within the network. As a result, we have constructed a
feature extraction network based on multiscale channel mutual
attention by incorporating mutual attention into each layer of
the network.

B. Adaptive DF Network

HRRP data reflects the distribution and size of target scat-
tering points, whereas JEM data reflects the micromovement
characteristics of the target. The fusion of these two modal data
has the potential to enhance the accuracy of fine-grained aircraft
target classification. However, a challenge arises in the aircraft
target fine-grained classification process due to the disparity in
strength between the JEM and HRRP modalities. To address this
issue, we propose a weighted adaptive DF strategy based on DS
evidence theory to effectively combine the detection character-
istics of two modalities, as inspired by the literature [55]. The
flowchart of the DF process is depicted in Fig. 2.

Through the dual-branch CNN feature extraction network
based on multiscale channel mutual attention, we can obtain
the classification confidence of both HRRP and JEM branches,
which is called HRRP and JEM classification evidence, denoted
by ēhK = [ēh1 , ē

h
2 , . . . ē

h
K ] and ējK = [ēj1, ē

j
2, . . . ē

j
K ], K repre-

sents the number of categories and the superscripts j and h
represent the confidence parameters of JEM and HRRP data,
respectively. After adding adaptive weights to the classification
evidence ēhK and ējK , we can obtain the final evidence of HRRP
and JEM.

ejK = wj · ējK , ehK = wh · ēhK (1)

where wj and wh represent the weights of JEM and HRRP,
respectively, and satisfy wj + wh = 1.

For each modal evidences eK = [e1, e2, . . . eK ], the cor-
responding opinions αK= [α1,α2, . . . αK ], belief quality bK ,
Dirichlet strength S, and uncertainty u are inferred according to
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Fig. 2. Architecture of adaptive DF network.

the Dirichlet distribution, respectively.

αK = eK + 1, S =

K∑
i=1

αi, bK =
eK
S
, u =

K

S
. (2)

Based on ejK = [ej1, e
j
2, . . . e

j
K ] and ehK = [eh1 , e

h
2 , . . . e

h
K ], we

derive parameter groups pj = [αj
K , S

j , bjK , u
j ] and ph =

[αh
K , S

h, bhK , u
h] as determined by (2), for the two modalities

of JEM and HRRP using the Dirichlet distribution. The fusion
mass Mf = {{bfk}Kk=1, u

f} is calculated from the JEM and
HRRP massesM j = {{bjk}Kk=1, u

j} andMh = {{bhk}Kk=1, u
h}

in following manner:

Mf =M j ⊕Mh (3)

where ⊕ means DS fusion.The fused belief mass bfK with
uncertainty uf is calculated as follows:

bfK =
1

1− C

(
bjKb

h
K + bjKu

h + bhKu
j
)
, uf =

1

1− C
ujuh

(4)
where C =

∑
m �=n b

j
mb

h
n is a measure of the amount of conflict

between the two modal belief mass, and 1/1− C is used as
scale factors to normalize the belief quality and uncertainty after
fusion.

After obtaining the fused belief quality bfK and uncertainty
uf , the fused Dirichlet strength Sf and the final fused evidence
efK = [ef1 , e

f
2 , . . . e

f
K ] are calculated by (2). The final classifica-

tion result is inferred by efK .

C. Training Strategy and Loss Function

For traditional classification tasks, most methods usually use
the softmax function in the last layer of the network to obtain
the probability of the corresponding category pij . Then, the
crossentropy loss function is calculated between pij and one-hot
ground truth yij for back propagation, which is defined as
follows:

Lce = −
K∑
j=1

yij log(pij). (5)

It has been shown that using a softmax output as confidence
often leads to high confidence values, even for erroneous pre-
dictions since the largest softmax output is used for the final
prediction [56].

In addition, we use the parameters of Dirichlet distribution
to measure the confidence of the category. Thus, we adjust the

crossentropy loss based on the Dirichlet distribution as follows:

Lace =

∫ ⎡
⎣ K∑
j=1

−yij log(pij)
⎤
⎦ 1

B(αi)

K∏
j=1

pij
αij−1dpi

=
K∑
j=1

yij(ψ(Si)− ψ(αij)) (6)

where y denotes the ground truth label, ψ(•) is the digamma
function, B(•) is the multinomial beta function, and the entire
equation is the mean of the crossentropy loss determined by αi

alone. The above loss function ensures that the correct category
for each sample generates large categorical evidence than the
other categories, but does not suppress evidence generation for
incorrect labels.

To ensure a more reasonable Dirichlet distribution and sup-
press the generation of mislabeled evidence, we introduce the
KL loss function, which is formulated as follows:

KL [D(pi|α̃i)||D(pi|1)] = log

⎛
⎝ Γ

(∑K
k=1 α̃ik

)
Γ(K)

∏K
k=1 α̃ik

⎞
⎠

+

K∑
k=1

(α̃ik − 1)

[
ψ(α̃ik)

− ψ

⎛
⎝ K∑

j=1

α̃ij

⎞
⎠]

(7)

where α̃i = yi + (1− yi)� αi is the parameter-adjusted
Dirichlet distribution, which avoids penalizing the evidence of
the ground truth class to 0, and Γ(•) is the gamma function.
Therefore, the total loss of the Dirichlet distributionαi is defined
as follows:

L (αi) = Lace (αi) + λtKL [D (pi | α̃i) ‖D (pi | 1)] (8)

where λt > 0 is a time-dependent factor that balances the ex-
pected classification error and KL regularization. In practice, we
gradually increase the value of λt to prevent the network from
focusing too much on the KL part at the initial stage of training,
which may cause the network hard to converge.

In this article, we employ a two-stage training strategy. In the
first stage, to ensure that each modality gets reasonable evidence,
we first fix the weights wh and wj of both modalities to be
0.5, which can prevent excessive shifts of modal weights due to
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different convergence rates of two-branch networks in the initial
training stage.

The feature extraction network is trained first to ensure that
the dual-branch feature extraction network can generate robust
features. The loss function for training is defined as follows:

Lstage_1 = L(αi
f ) +

V∑
v=1

L(αi
v) (9)

where L(αi
f ) denotes the loss function of the opinions after the

fusion of JEM and HRRP, and L(αi
v) denotes the loss function

of each modal opinions.
In the second stage, to solve the modal strength imbalance

issue and achieve the adaptive weight (AW) change strategy
of HRRP and JEM, we fix the parameters of the CNN feature
extraction network. After training the two-branch feature extrac-
tion network and obtaining good features, the networks JEM and
HRRP are separately trained based on the modal weights wh

and wj , leading to further optimization of the overall network
performance.

As the network ultimately utilizes the fused multiple opinions
for prediction, stage 2 exclusively supervises the fused opinions,
and the loss function is as follows:

Lstage_2 = L(αf ) (10)

where αf is the fused multiple opinions after DF. By supervis-
ing the fusion results, the problem of strong and weak modal
imbalance can be effectively solved.

In the first stage, we obtained reasonable evidence from each
modality. Subsequently, in the second stage, we effectively ad-
dressed the issue of modal strength imbalance and implemented
an AW change strategy for HRRP and JEM. Extensive experi-
ments validate the effectiveness and superiority of our training
strategy.

IV. EXPERIMENTS AND ANALYSIS

A. Homebrew Simulated Dataset

We follow the dataset construction method of [57] to develop
our homebrew multimode HRRP and JEM dataset, which is
designed for radar target classification. The experimental data
consist of HRRP and JEM data from a specific band of dual-base
radar simulating seven types of aircraft targets, labeled P1 to
P7, conducted by a research institute. There are 2520 HRRP
and JEM data points for both radars. The data of the original
radar for both modalities include 630 items, with 90 items for
each aircraft class. The data of the other radar comprise 1890
items for both modalities, with 270 items for each aircraft class.
The training dataset comprises 630 HRRP and JEM data points
from the original radar, whereas the testing dataset includes 1890
HRRP and JEM data points from the other radar. During the data
preprocessing stage, normalization is applied to both the HRRP
and JEM data.

We initially disordered the HRRP and JEM signals of each
aircraft class based on azimuth. Subsequently, we matched
HRRP and JEM data from each aircraft class to create 90 pairs
of training data, and the rest 270 pairs as testing data.

B. Ablation Experiments

We set HRRP+CNN and JEM+CNN as baseline. In addition,
we incorporated the DF module, the AW adjustment module, and
three mutual attention modules: the HRRP branch adds mutual
attention to the JEM branch (H2JAtt), the JEM branch adds
attention to the HRRP branch (J2HAtt), and both the HRRP
and JEM branches add attention to each other (MuAtt). In our
experiments, we concurrently classified and tested the HRRP
evidence, JEM evidence, and FUSE evidence to determine their
respective accuracy rates. The ablation analysis of MAAF is
presented in Table II.

In Experiment 1, the classification accuracy of single-branch
CNN achieved is 69.6% for HRRP and 90.3% for JEM modal.
Compared with Experiment 1, Experiment 2 achieved 23.5%
improvement in the accuracy of HRRP and 2.8% improvement
in the accuracy of JEM, which indicates that the DF module
can effectively integrate the classification evidence of the two
modalities by modeling their uncertainties. Compared with the
baseline result of single modality in Experiment 1, the classifi-
cation accuracy of FUSE is significantly improved. However, in
Experiment 2 FUSE result decreased by 0.7% compared with
the result of strong modality JEM at 93.8%, which is caused
by the imbalance between the strong and weak modalities. The
FUSE result is dragged down by the HRRP modality. To address
the unbalanced modality in DF, we propose the AW module,
which can adaptively adjust the weights of HRRP and JEM in DF
module by network learning, so as to achieve better classification
results. Experiment 3 demonstrates the effectiveness of AW
module. Compared with Experiment 2, the FUSE accuracy can
be improved by 1.2% by adjusting the weights of HRRP and
JEM. Furthermore, the FUSE outcome surpasses the accuracy
of the strong modality JEM. Thus, the proposed AW module
effectively resolves the imbalance issue between the strong and
weak modalities.

In addition, we investigate the feature correlation between
HRRP and JEM using various feature interactions. Experiments
4, 6, and 8 confirmed the impact of H2JAtt, J2HAtt, and MuAtt
mechanisms on the classification results, respectively. Based on
the results of Experiment 2, the H2JAtt module can enhance
JEM accuracy by 1.0% and FUSE accuracy by 1.0%. The J2HAtt
module enhances HRRP accuracy by 35.3% and FUSE accuracy
by 1.2%. The MuAtt module achieves accuracy improvements of
36.7%, 1.1%, and 2.2% on HRRP, JEM, and FUSE, respectively.
The aforementioned experiments demonstrate that the H2JAtt
module utilizes HRRP information to enhance JEM learning.
The J2HAtt module leverages JEM information to improve
HRRP learning. The MuAtt module establishes feature-level
connections between HRRP and JEM, resulting in effective
learning improvements for both modalities. All those three
attention mechanisms can improve FUSE classification results.
MuAtt is the only attention module among the three that en-
hances the classification accuracy of HRRP, JEM, and FUSE. It
improves both weak modality HRRP and strong modality JEM.
As a result, we select MuAtt as our final attention mechanism,
which combined with the AW module, contributes to an ad-
ditional 0.2% improvement in accuracy. As a result, the final
MAAF achieves an amazing classification accuracy of 95.5%.
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TABLE II
ABLATION EXPERIMENTS

Fig. 3. Confusion matrix of MAAF.

From above analysis, we obtain the following conclusions.
1) The DF module enhances network learning by modeling

modality uncertainty, surpassing the baseline with single
branch. However, it is hard for DF to handle the unbal-
anced modality.

2) The AW module adjusts the modal weights adaptively in
the DF module through network learning even when it
confronts the unbalanced modalities. It does not alter the
parameters in the backbone network.

3) The H2JAtt module leverages HRRP information to en-
hance the learning on JEM modal, whereas the J2HAtt
module utilizes JEM information to improve the learning
on HRRP modal.

The MuAtt module establishes connections between HRRP
and JEM features, effectively enhancing the learning of both
HRRP and JEM modals. It helps the model to extract comple-
mentary features even when it confronts with the unbalanced
modalities.

C. Convergence and Robustness Experiments and Analysis

The confusion matrix clearly displays the classification accu-
racy and misclassification of each aircraft type. Fig. 3 illustrates
the confusion matrix generated by our method.

The classification accuracy for each aircraft category exceeds
90%, demonstrating the strong performance of our method in
classifying the seven aircraft types. We present the training

Fig. 4. Loss curves of MAAF in Stage 1.

Fig. 5. Accuracy curves of MAAF in Stage 1.

and testing loss and accuracy for each iteration, and depict the
convergence loss curve and variation accuracy curve in Figs. 4
and 5.

Fig. 4 illustrates the gradual convergence of training loss
for HRRP, JEM, and FUSE, reaching its optimal value at 50
epochs. Furthermore, Fig. 5 indicates that the accuracy of HRRP,
JEM, and FUSE shows no significant increase after 50 epochs,
indicating the convergence and stability of our model after
approximately 50 epochs.

To assess noise immunity and robustness, random Gaussian
noise with average SNRs of 5, 10, 15, and 20 dB is added to both
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TABLE III
RESULTS OF MAAF ON DATA WITH DIFFERENT SNRS

TABLE IV
COMPARATIVE EXPERIMENTS ON RADAR TARGET CLASSIFICATION

the training and testing sets to simulate the classification accu-
racy and robustness of our method in a real-world environment.
The experimental results are presented in Table III.

The experiments demonstrate that our algorithm maintains
strong performance at SNRs of 15 and 20 dB, whereas exhibiting
a slight decrease at SNRs of 5 and 10 dB. This provides full
verification of the noise immunity and robustness of our method.
Besides, the model has 121.857 M parameters and 0.817 G
FLOPs. On RTX3090, the recognition speed reaches 3073 items
per second. The performance meets the requirements for radar
target recognition in real-world scenarios.

D. Comparative Experiments

To comprehensively evaluate the performance of our algo-
rithm, we conducted comparative experiments with several clas-
sical algorithms, including LDA+SVM [58], PCA+SVM [59],
RNN [60], LSTM [61], BiGRU [32], and CNN [62]. The tradi-
tional algorithms PCA and LDA are used to reduce the dimen-
sionality of features and then classify with them using SVM.
For PCA, we found through experiments that for HRRP and
JEM modals, the best results are achieved when the cumulative
contribution degree reaches 80% and 77% in dimensionality
reduction. The deep learning algorithms RNN, LSTM, and
Bi-GRU take raw data as input into the network after applying a
sliding window. The FUSE in the table refers to fusion algorithm
that utilizes CNN on HRRP and JEM signals. The experiments
were conducted separately on HRRP and JEM signals.

The CNN algorithm used in this article achieves the best
classification accuracy for both HRRP and JEM modalities on

the homebrew dataset. MAAF demonstrates significantly supe-
rior performance compared with other advanced classification
methods. Specifically, on our homebrew multimodal simulated
dataset, the classification accuracy of MAAF reaches 95.5%,
representing 35.9% and 5.2% improvements over the base-
line. This outstanding performance and substantial improvement
proves the effectiveness of our proposed framework.

V. CONCLUSION

In this article, we propose a fine-grained classification algo-
rithm for aircraft based on mutual attention and adaptive wide-
band and narrowband fusion called MAAF. We employ a novel
dual-branch CNN network structure for feature extraction, inte-
grating a mutual channel attention mechanism that supports self-
supervision and mutual supervision at the feature level. By em-
ploying adaptive weighting decision fusion, MAAF addresses
the challenge of strong and weak modal imbalance, further
optimizing the network and enhancing its performance. Our al-
gorithm fully leverages the inherent relationship between HRRP
and JEM, effectively utilizing information from these modali-
ties to significantly enhance the classification performance of
radar aircraft targets compared with traditional methods and
single-modal CNNs. In addition, our algorithm demonstrates
strong robustness and maintains high performance even at low
SNR. The nonaligned azimuth of the HRRP and JEM data pairs
used in this study enhances their compatibility with real-world
radar target identification scenarios. We plan to conduct future
research on real-world data as in [63], which focuses on the
issues such as uneven data quality and cross-scene challenges.
Drawing from the spectral foundation large model described
in [63], we aim to develop our own foundational large model for
RATR to address the challenges encountered in real-world data.
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