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Adaptive Multiscale Reversible Column
Network for SAR Ship Detection

Tianxiang Wang and Zhangfan Zeng

Abstract—Ship detection via synthetic aperture radar (SAR) is
widely used in maritime safety and maritime traffic control, etc.
Recently, deep learning methods are employed to improve the
performance of SAR ship detection to a large extent. However,
the presence of clutter in SAR images and the large-scale differ-
ence of ships result in the diminished detection performance in
complex environments. As such, in this article, a novel adaptive
multiscale reversible column network is proposed. First, the idea
of disentangled feature learning is applied to construct reversible
column networks with a C2f module to alleviate the problem of
large-scale differences and the loss of ship information. Second, the
multiplexed adaptive spatial pyramid pooling module is proposed
to alleviate the impact of complex background clutter through
multiplexed pooling operations and adaptive fusion. Finally, a novel
feature pyramid network with an adaptive downsampling module
is designed to reduce the information loss caused by downsampling
while enhancing the multiscale ship detection capability. The effec-
tiveness of the proposed method is validated on two public datasets:
1) SAR ship detection dataset and 2) high-resolution SAR images
dataset. The experimental results show that the proposed method is
able to achieve better results than current state-of-the-art methods
for SAR ship detection in complex environments and large-scale
differences of ships.

Index Terms—Adaptive downsampling, feature extraction,
reversible column network, ship detection, synthetic aperture
radar (SAR).

I. INTRODUCTION

THE development of synthetic aperture radar (SAR) tech-
nology has significantly advanced the field of remote-

sensing target detection, particularly demonstrating outstanding
potential in maritime monitoring [1], [2], [3]. Unlike optical
sensors, which are suboptimal in stringent conditions due to
sensitivity to weather and lighting conditions, SAR exceeds
in various weather conditions and offers higher data rates and
larger processing capacities [4]. Furthermore, SAR benefits from
the unique ability to penetrate challenging environments for
imaging and to continuously acquire geographical information
even in complex weather conditions. These advantages make
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SAR valuable for applications in various fields, such as target
detection and recognition [5], [6], geomorphology and terrain
mapping [7], and segmentation and classification [8], [9], [10].

Maritime ship detection is a crucial task in the fields of
maritime traffic control, maritime resource exploitation, and
maritime environmental protection [11], [12], [13]. Recent stud-
ies [1], [2], [3] have shown that SAR also plays an important role
in ship detection due to its unique imaging mechanism. However,
SAR data can be subject to various degradation factors, noise
effects, and variabilities during the imaging process. Unlike
spectral variability [14], SAR images mainly suffer from topol-
ogy and adverse changes in environments, leading to variations
in the microwave signals of targets. Topology in SAR imaging
typically refers to the geometric arrangement of land features,
including their spatial relationships and characteristics. More
specifically, the variation in the incidence angle affects the
interaction between the radar signal and the terrain. In areas with
complex topography, radar signals may cast shadows or result in
layover effects. This can lead to distorted or ambiguous represen-
tations in the SAR image. Speckle is a common artifact in SAR
imaging, resulting from the interference of radar signals with
multiple scattering centers on the ground. Consequently, SAR
ship detection faces significant challenges in complex coastal en-
vironments and harsh marine conditions. For instance, in coastal
environments, SAR microwave signals can encounter reflection,
scattering, and refraction from ships, coastal constructions, and
inshore constructions, which can result in false detection. In off-
shore scenarios, complex marine conditions such as sea surface
turbulence and ship wakes introduce intricate background clutter
in SAR images. Moreover, the large-scale difference in SAR
images, often influenced by different observation geometries,
poses challenges for SAR ship detection.

Recent methods can be broadly categorized into traditional
methods and deep-learning-based methods [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36]. Most of the traditional
methods are designed from the perspective of signal processing.
Among them, constant false alarm rate (CFAR)-based meth-
ods are widely used in SAR ship detection, as explored in
related research papers [15], [16], [17], [18], [19]. The CFAR
method is a statistically based signal processing technique that
adaptively estimates the statistical properties of the background
clutter and determines an appropriate threshold to suppress the
background clutter and detect the target signal. However, in
complex environments with strong clutter, multiple targets, and
inhomogeneous noise, the CFAR algorithm may not be able to
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accurately estimate the statistical properties of the background,
resulting in missed or false alarms.

In recent years, deep learning technology has been widely ap-
plied to SAR ship detection [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33], [34], [35], [36]. Compared
to the CFAR method, deep learning methods exhibit stronger
automatic feature learning ability and robustness, avoiding the
tediousness and uncertainty associated with manual design pro-
cesses. However, deep learning methods in the fields of object
detection, such as Faster R-CNN [37], FoveaBox [38], etc., and
remote-sensing object detection of optical sensors [39], [40],
when directly applied to SAR ship detection, are susceptible to
the influence of clutter, significant scattering of target informa-
tion, and large-scale differences, leading to a degradation in de-
tection performance. As such, numerous improvement methods
applicable to SAR ship detection have been proposed. Specifi-
cally, to enhance the performance of multiscale ship detection
in SAR images, feature pyramid network (FPN)-based methods
have been largely proposed [20]. Jiao et al. [21] proposed an
end-to-end dense join to extract features at different scales. Cui
et al. [22] reported a novel DAPN-based multiscale extraction
method with a CBAM attention mechanism module. Zhang
et al. [23] presented a novel quad FPN for integrating feature
maps in SAR ship detection. Li et al. [24] proposed a multidi-
mensional domain deep learning network with complementary
features in spatial and frequency domains. Zhou et al. [25] used
a novel Res2-based idea embedded into the backbone network
to further extract multiscale ship information. Based on the
bidirectional convolutional structure, Yu et al. [26] proposed the
two-way convolutional network and utilized multiscale feature
mapping to process SAR images. To mitigate the influence
of complex background clutter, Zhao et al. [27] designed a
dual-feature fusion attention mechanism that combines shallow
features and denoised features, effectively reducing clutter from
complex backgrounds. Zhang et al. [28] employed a one-stage
detector with a frequency attention module, which can process
frequency-domain information adaptively and suppress the sea
cluster in the SAR images. Wang et al. [29] presented a multi-
feature fusion network, which reduced the interference of com-
plex backgrounds by extracting frequency-domain features and
combining spatial, high-frequency, and low-frequency texture
information. Bai et al. [30] introduced the feature enhancement
pyramid and the shallow feature reconstruction module to ad-
dress scattered spots and noises. Furthermore, the significance
of sidelobes is amplified by the weak scattering from small
ships and the clutter of background clutter. To alleviate the
impact of sidelobes, Zhou et al. [31] proposed feature extraction
with sidelobe awareness (FESA), which addresses the sidelobe
effect by incorporating maximum pooling and minimum pooling
operations along theX and Y axes, respectively. Zhou et al. [32]
integrate the respective advantages of a convolutional neural
network (CNN) and self-attention to enhance the extraction of
scattering information from small targets. Compared to anchor-
based methods, researchers have observed advantages in anchor-
free methods such as flexibility, simplified designs, adaptabil-
ity to complex scenes, and lower computational complexity.
Jiang et al. [33] constructed an anchor-free detector, which is

designed with a foreground enhancement module to reduce the
impact of complex backgrounds. Hu et al. [34] constructed an
anchor-free balanced attention network, which introduced dy-
namic convolution to construct a local attention module to obtain
local information and designed a nonlocal attention module to
extract nonlocal features. To address effectively sparse labeled
samples and imbalanced categories, Gao et al. [35] proposed
an attention-dense-CycleGAN method for ship automatic target
recognition, specifically designed for the optical to SAR trans-
fer learning task. The transformer is also employed for SAR
ship detection tasks due to its capability to capture long-term
dependencies. A vision transformer architecture named CR-
TransSar was proposed by Xia et al. [36], combining trans-
former and CNN to enhance context learning. However, the
lack of utilization of local information and multilevel feature
representation in transformer-based methods makes multiscale
ship detection more challenging, especially for small-scale
ships.

Despite progress in SAR ship detection with various meth-
ods, the challenges posed by environmental clutter and scale
differences need to be further addressed. Specifically, due to
the presence of environmental clutter, ship features are similar
to surrounding noise features, which results in the masking
or obscuring of semantically weaker ship features. Moreover,
the prevalence of small-scale ships in SAR images leads to
deterioration in the performance of multiscale ship detection.
The previous methods, which entirely adopt the strategy based
on FPN, alleviate the challenge of significant scale differences
among ships to some extent. However, owing to the structural
and available pixel constraints of small-scale ships and the
unique imaging mechanism of SAR, feature information for
small-scale ships will be lost or erroneously identified as back-
ground during the feature extraction process. It can be attributed
to the fact that deep learning methods widely used in SAR
ship detection usually follow the information bottleneck (IB)
principle [41], [42], where the information will be compressed
or even discarded. Therefore, from the perspective of feature
learning, the application of the IB will be inappropriate for SAR
image ship detection. The disentangled feature learning [43],
[44] is widely used in the area of computer vision, especially
for target detection. This method involves the embedding of
task-relevant semantic and positional information into separate
decoupling dimensions while maintaining the same amount
of information as the input. Revcol is the most representative
network based on disentangled feature learning, proposed by
Cai et al. [45]. In Revcol, a multiplexed subcolumn network is
utilized for information extraction, where the information from
different layers in different subcolumns is embedded into the
next subcolumn using a reversible transformation. Thanks to the
reversible transformation, information partially lost in one sub-
column network can be acquired in another subcolumn network.
It is proved that the disentangled feature learning is effective for
multiscale ship detection, particularly for small-scale ships.

Based on the analysis provided, in order to enhance the per-
formance of multiscale ship detection, especially for small-scale
ships, as well as to address the impact of complex background
clutters in SAR images, an adaptive multiscale reversible column
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Fig. 1. General architecture of the AMRCNet network. It consists of three main parts: 1) The feature extraction part with Revcol-C2f as the backbone and
MASPPF as the feature enhancement layer; 2) the neck combined by ADM and RepGFPN; and 3) the parallel detection head.

network for SAR ship detection (AMRCNet) is proposed in this
article. The main contributions of this article are as follows.

1) A novel ship detection network, AMRCNet, is proposed,
which demonstrates superior multiscale ship detection
performance in complex environments and mitigates the
negative effects of complex background clutters, improv-
ing the detection accuracy of ships in SAR images.

2) To address the degraded SAR multiscale ship detection
caused by the loss of partial information due to the IB
principle, Revcol is applied to reconstruct the backbone
network of YOLOv8s [46], resulting in the reversible col-
umn networks with a C2f module (Revcol-C2f) backbone
network for feature extraction.

3) To mitigate complex background clutter in SAR ship de-
tection, this article proposes a novel multiplexed adaptive
spatial pyramid pooling layer (MASPPF). In MASPPF,
multiplexed large kernel pooling operations and adaptive
fusion are utilized to improve the target perception ca-
pabilities of the network and mitigate the influence of
background clutter in environments of all scales.

4) To further enhance the detection capabilities of multiscale
ships, especially small ships, in SAR images, this article
constructs an adaptive sampling FPN (SAFPN). Within
SAFPN, an adaptive downsampling module (ADM) is
devised to address issues related to acquiring irrelevant
information and information loss during feature pyramid
downsampling (DS). The ADM facilitates the extraction
of semantic information and precise spatial localization.
Furthermore, a bidirectional fusion of shallow and deep

features at different scales is implemented to merge feature
information.

In order to validate the effectiveness of our method, a
large number of ablation experiments and comparative exper-
iments have been implemented on the SAR ship detection
dataset (SSDD) [47] and high-resolution SAR images dataset
(HRSID) [48].

The rest of the article is structured as follows: Section II de-
scribes the proposed method. Section III validates the proposed
method. Section IV offers a comprehensive discussion on the
experimental results. Finally, Section V concludes this article.

II. PROPOSED METHOD

The general architecture of the proposed method is shown
in Fig. 1 and consists of three parts: 1) the backbone, 2) the
neck, and 3) the head. The implementation details of each
module in the proposed method are described. First, the general
architecture of the network is described. Following that, the
Revcol-C2f feature extraction network, the MASPPF module,
and the ASFPN structure will be detailed, respectively.

A. General Architecture of AMRCNet

AMRCNet is the proposed adaptive multiscale reversible col-
umn network, where YOLOv8s is used as a baseline. The overall
structure of the AMRCNet is illustrated in Fig. 1. AMRCNet
consists of three parts: 1) the backbone, 2) the neck, and 3)
the detection head. The Revcol-C2f backbone is proposed to
alleviate information loss and acquire comprehensive multiscale
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Fig. 2. (a) Revcol-C2f module (b) C2f module. (c) Fusion module. Red arrows represent reversible transformations, blue arrows denote feature extraction within
the current subnetwork, and green arrows signify cross-subnetwork multiscale information embedding.

ship information in a complex environment, where Revcol is
leveraged to reconstruct the YOLOv8 backbone network. The
MASPPF module is introduced to augment the receptive field
and mitigate the influence of background clutter after Revcol-
C2f. The ASFPN neck is reconstructed by adding an ADM to
obtain more adaptive multiscale ship information, which is based
on the FPN and PAN [49] network structures. The detection head
utilizes the decoupled head of YOLOv8, which processes classi-
fication and regression separately. In particular, the Revcol-C2f
backbone is composed of four feature extraction layers denoted
as Ln (where n ranges from 1 to 4), playing a pivotal role in
extracting discriminative features. Thanks to the hierarchical
feature extraction process, multiscale feature maps are obtained
for each layer, where C2, C3, and C4 represent the outputs of the
first three stages in the Revcol-C2f backbone. C5 is the feature
maps obtained by MASPPF enhancement of the final output of
Revcol-C2f. During the FPN fusion, intermediate feature maps,
denoted as F1, F2, F3, and F4, are generated. These feature
maps result from the fusion of intermediate levels within the
feature pyramid, enabling the integration of information across
different scales. Finally, the fused multilevel feature maps are
generated, denoted as P1, P2, P3, and P4, which is beneficial to
detect multiscale ships.

B. Features Extraction Backbone Revcol-C2f

In conventional SAR ship detection methods, the IB principle
was widely applied. However, this approach can cause small and

medium ship information to be lost or recognized as background
in complex environments. On the contrary, disentangled feature
learning may be more favorable for preserving this informa-
tion. In this article, to obtain rich multiscale ship information
in SAR images and mitigate the information loss, Revcol is
utilized to reconstruct the YOLOv8s backbone, named Revcol-
C2f backbone, as shown in Fig. 2(a). The multilevel feature
extraction structure of YOLOv8s, specifically the C2f structure
attributed to the CSPs structure, facilitates an improved capture
of target information across various scales of ships. The use of
reversible transformations is helpful in retaining large amounts
of extracted information while mitigating information conflicts.
In particular, the Revcol-C2f backbone combines embeddings
from different layers and employs disentanglement mechanisms
to address the potential information loss encountered when
using a single-column network to extract features from deeper
layers. In addition, Revcol-C2f promotes the fusion of deeper
semantic information with shallow features, resulting in a more
comprehensive and informative representation of the input data.
Reversible transformation can be explained by the following
formula:

Forward : xt = Ft(xt−1, xt−m+1) + γxt−m (1)

Inverse : xt−m = γ−1 [xt − Ft(xt−1, xt−m+1)] (2)

where t represents each subnetwork as the tth layer (n≥1), m
represents the number of subnetworks (m≥2), Ft represents the
n×C2f module at the tth layer, γ denotes a fixed parameter set
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to 0.5 in this article, and xt represents the feature map of the tth
layer in the network.

The detailed implementation process of Revcol-C2f is as
follows:

1) To achieve consistent tensor dimensions with the down-
sampled dimensions in YOLOv8s, a convolutional layer
with a 4×4 kernel, a stride of 4, and no padding is em-
ployed.

2) According to the implementation of Revcol, the downsam-
pled feature maps are subjected to an extraction network
consisting of three subnetworks with reversible transfor-
mations.

3) The C2f module is introduced to extract the feature of the
current subnetwork and the previous subnetwork, and the
structure of the C2f module is shown in Fig. 2(b).

4) The first subnetwork is equivalent to the original feature
extraction network in YOLOv8. In the second and third
subnetworks, a fusion module is employed to combine the
features from the previous subnetworks with the features
of the current subnetwork, where features are extracted by
C2f. This fusion process is illustrated in Fig. 2(c).

5) The information from the same layer in the previous sub-
network is embedded through reversible transformations.

6) To address the problem of information collapse, the in-
termediate supervision method proposed by RevCol is
incorporated into the second subnetwork. Through this
approach, the network receives feedback and gradients not
only at the final output but also at multiple intermediate
layers.

Feature fusion is accomplished by the fusion module through
the upsampling of low-resolution features and the DS of high-
resolution features, followed by a sum operation. DS refers to
the process of reducing the spatial resolution of features using
regular convolutional operations.

C. Multiplexed Adaptive Spatial Pyramid Pooling Layer

Due to the unique imaging mechanism of SAR, the effec-
tive feature information of ships can be affected by the clutter
dispersed around the ship, leading to excessive semantic differ-
ences, especially for small-scale ships. According to attention
mechanisms such as FESA [31], coordinate attention [50], and
EMA [51], it can be demonstrated that pooling operations can
effectively extract more relevant feature information in a local
region. Moreover, the receptive field can be greatly enhanced
by successive multiple identical kernel pooling operations in
SPPF [52]. It is believed that utilizing different receptive fields to
obtain a wider range of feature information can help mitigate the
effects of scattered clutter, noise, and complex environments on
the detection of ships in SAR images. However, the use of several
fixed receptive fields in SPPF is prone to introducing background
clutter. This approach potentially leads to the mixture of back-
ground noise features with ship features, resulting in blurred ship
details. Therefore, multiple pooling layers with different kernels
are added to obtain various scales of the receptive field. Subse-
quently, the receptive fields are enhanced by using multiplexed
parallel pooling. Ultimately, the adaptive fusion of different

Fig. 3. Structure of MASPPF.

receptive fields is conducted to obtain more suitable features.
The overall structure is referred to as the MASPPF, illustrated in
Fig. 3. In particular, pooling operations with kernel sizes 5 and
7 are utilized for local feature extraction. The receptive fields
of size 9 × 9 and 13 × 13 are acquired by the right branch
after successive 5 × 5 pooling while the left branch acquires
receptive fields of size 11 × 11 and 17 × 17, respectively, after
successive 7 × 7 pooling. The process for the implementation
of the adaptive fusion consists of three steps.

First, a learnable parameter wn (1 ≤ n ≤ 6) is assigned for
each feature map from the pooling layers. Second, the scoring
scores are adaptively obtained by these learnable parameters.
Finally, the scores are passed through the ReLU function to
obtain the final adaptive scores, as shown in

εk = Relu

(
wk

μ+
∑6

n=1 wn

)
(3)

where wn represents the learnable parameters, εk the adaptive
score for the kth layer of the feature map, and k specifies the
layer. μ represent a constant value of 0.0001, which is added
to prevent a score of 1. Relu represents the activation function
Relu.

The feature map of MASPPF for each layer can be described
as follows:

X1 = CBS(x) (4)

X2 = MaxPool2d5(X1) (5)

X3 = MaxPool2d5(X2) (6)

X4 = MaxPool2d5(X3) (7)

X5 = MaxPool2d7(X2) (8)

X6 = MaxPool2d7(X5) (9)

Xout = CBS (Cat (ε1 X1, ε2 X2, ε3 X3, ε4 X4, ε5 X5, ε6 X6))
(10)

where X is the input feature map, and the CBS consists of a
full convolutional layer, BatchNorm2d, and the SiLU activation
function. MaxPool2d5(.) and MaxPool2d7(.) represent the max-
imum pooling layers with kernel size 5, stride 1, padding 2 and
kernel size 7, stride 1, padding 3, respectively. X1 represents the
output of CBS(.), and X2, X3, X4, X5, and X6 represent the
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Fig. 4. Structure of ADM.

output of different pooling layers, respectively. Xout represents
the final output of the MASPPF module.

D. Adaptive Sampling FPN

In SAR images, the scale difference of ship poses difficulty
for existing feature fusion networks to effectively fuse multi-
scale ship features. In most existing FPNs, upsampling and DS
operations are employed to modify the resolution of feature
maps at different levels. However, as the number of upsam-
pling and DS operations increases, the risk of losing valuable
feature information rises, thereby diminishing the effectiveness
of information fusion. Furthermore, the deficient correlation
among features in individual layers subsequent to the fusion of
shallow and deep feature maps through concatenation followed
by convolutional processing hampers the detection performance
of ships in SAR images. In order to alleviate these problems,
an adaptive sampling feature pyramid network (ASFPN) is
introduced, as shown in Fig. 1, to help the detection of multiscale
ships in SAR images. In ASFPN, an ADM is introduced to
alleviate information loss during the DS process. Furthermore,
to address the introduction of irrelevant information resulting
from upsampling, multiple bidirectional fusions are employed to
effectively integrate the abundant shallow acquired from ADM
and deep feature information from upsampling.

The implementation process of ADM is shown in Fig. 4 and
the specific implementation process is as follows.

The ADM is divided into two components: 1) adaptive feature
score acquisition and 2) sampling information fusion. In the
first component, a kernel with a size of 3, stride of 1, and
padding of 1 is applied to perform average pooling, which

helps alleviate the influence of the background. Subsequently, a
fully convolutional layer is applied to capture the relationships
between different channels and spatial locations. The generated
feature maps are then divided into nonoverlapping regions of
size 2×2. Furthermore, each region is transformed to increase
its channel dimension by a factor of 4. Finally, applying the
Softmax function to these transformed regions yields scores
for each feature within the 2×2 kernel region, indicating their
respective importance or relevance. In the second component,
group convolution is first utilized (with the number of groups
equal to the input channels divided by 16) to perform DS. The
downsampled feature map is then resized to match the feature
map obtained in the first component. Next, information weights
are re-established by multiplying the obtained scores with the
corresponding feature values from the downsampled feature
map. Finally, the most relevant information is aggregated by
summing the scores within each 2×2 window. By following
the aforementioned steps, information loss during DS can be
effectively reduced.

The feature map for each layer of the ADM can be described
as follows:

P1 = Rearrange
(
Conv1×1

(
AvgPool3×3(Xin)

))
(11)

P2 = Rearrange (GConv3×3,2(Xin)) (12)

Xout = Sum (Reweight (Softmax(P1), P2)) (13)

where AvgPool3×3 represents the average pooling operation
with kernel size 3, stride 1, padding 1, and Conv1×1 represents
the full convolutional layer. GConv3×3,2 represents a group
convolution operation with a kernel size of 3 and a stride of 2. The
number of groups in the group convolution is equal to Cin/16,
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TABLE I
OVERVIEW OF MULTISCALE SSDD DATASET INFORMATION

where Cin represents the number of input feature map channels.
Rearrange represents the special feature map adjustment opera-
tion, Softmax is the Softmax function, Reweight represents the
multiplication to recapture the score weights, and Sum sums the
obtained scores.

The feature map of each layer of ASFPN can be described as
follows:

F4 = f (Cat (ADM(C4),MASPPF(C5))) (14)

F3 = f (Cat (ADM(C3),Ups(F4), C4)) (15)

F2 = f (Cat (ADM(C2),Ups(F3), C3)) (16)

P1 = F1 = f (Cat (UpS(F2), C2)) (17)

P2 = f (Cat (Conv3×3,2(P1), F2)) (18)

P3 = f (Cat (ADM(F2),Conv3×3,2(P2), F3)) (19)

P4 = f (Cat (ADM(F3),Conv3×3,2(P3), F4)) (20)

where C2, C3, C4, and C5 represent the feature maps ex-
tracted from different layers of the backbone network,
F1, F2, F3, and F4 represent intermediate features obtained
from top-down and bottom-up paths, UpS represents the up-
sampling operation, Conv3×3,2 represents the full DS operation
of a convolutional layer with convolutional kernel 3×3 and a
step of 2, and ADM represents the adaptive sampling module.
f(.) represents 3 C2f feature fusion operations.

III. EXPERIMENT

The proposed method is validated on two public datasets:
1) the SSDD [47] and 2) HRSID [48]. In this section, the two
datasets, along with the experimental setup, are briefly described
in the first place. Then, evaluation metrics are presented. Fi-
nally, ablation experiments and comparison experiments are
conducted.

A. Dataset Description

The two public datasets, SSDD and HRSID, include the data
of nearshore and ocean-going ships from complex environments.

The overview of the SSDD dataset is presented in Table I.
As shown in the table, the multiscale SSDD dataset provides
1160 SAR image samples from Radarsat-2, TerraSAR-X, and
Sentinel-1 satellites. The average size of the images is about

Fig. 5. Sample images from two experimental datasets. (a) SSDD. (b) HRSID.

TABLE II
OVERVIEW OF COMPLEX HRSID DATASET INFORMATION

500 × 500 pixels. Polarizations are HH, VV, VH, and HV. The
resolution ranges from about 1 to 15 m. The environments of
the ships in the dataset range from good to poor sea state, and
from complex docking scenarios to simple offshore scenarios, as
shown in Fig. 5(a). According to the statistics, the SSDD dataset
comprises 2587 ships, with the smallest ship measuring 5 pixels
in width and 4 pixels in height, occupying only 20 pixels. In
contrast, the largest ship has dimensions of 180 × 308 pixels,
occupying 55 440 pixels. It is clear that the largest size ship is
2772 times larger than the smallest ship, which indicates that the
ship scales in the SSDD dataset vary greatly. Therefore, SSDD
is very suitable for measuring the multiscale SAR ship detection
performance of the network.

The HRSID dataset was published by Wei et al. [48] and
the overview of information is shown in Table II. The HRSID
dataset provides 5604 SAR image samples from Sentinel-1,
TerraSAR-X, and TanDEM. These images have an average size
of 800 × 800 pixels, polarization modes of HH, HV, and VV,
and resolutions of 0.5 m, 1 m, and 3 m, and locations including
Houston, São Paulo, Barcelona, Chittagong, Bangladesh, and
other important international shipping lanes. The environments
of the ships in the dataset range from good to poor sea state, and
from complex docking scenarios to simple offshore scenarios,
as revealed in Fig. 5(b). Compared with the multiscale SSDD
dataset, the HRSID dataset contains a wider variety of complex
scenarios, which makes the dataset suitable for measuring the
model’s performance in detecting SAR ships in complex sce-
narios.
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TABLE III
MEANINGS OF COCO METRICS

B. Hyperparameters and Environment Settings

The images in the SSDD and HRSID datasets are resized to
640×640 during input. All the experiments are implemented
using PyTorch with hyperparameters fine-tuned based on the
YOLO series. The network is trained using the stochastic gradi-
ent descent method with a learning rate of 0.01. The momentum
is set to 0.937, and the weight decay is set to 0.0005. The model
is trained for 300 epochs.

The software environment includes PyTorch 1.11.0, Python
3.8 (Ubuntu 20.04), and CUDA 11.3. The hardware environment
consists of an Intel(R) Xeon(R) Gold 6330 CPU and an RTX
3090 with 24 GB memory. To enhance the diversity of the
training dataset, mosaic augmentation is utilized during the
training phase. In addition, the proposed model is trained from
scratch rather than using pretrained models.

C. Evaluation Metrics

The object detection evaluation metrics in the COCO [53]
dataset are utilized and detailed in Table III. It is summarized as
follows.

AP: The primary metric for measuring the accuracy of al-
gorithmic detection results. It is the average precision
(AP) across different IoU thresholds ranging from 0.5
to 0.95. A higher AP indicates more accurate detection
results.

AP50: The AP at an IoU threshold of 0.5. In many applications,
0.5 is a commonly used IoU threshold.

AP75: The AP at an IoU threshold of 0.75. In more stringent
applications, a higher IoU threshold can better measure
algorithm performance.

APs: The AP for small objects (area smaller than 322 pixels).
Since small objects are usually more challenging to
detect, this metric helps evaluate algorithm performance
in such cases.

APm: The AP for medium objects (area between 322 and
962 pixels). This metric helps to evaluate algorithm
performance in detecting medium objects.

APl: The AP for large objects (area larger than 962 pixels).
This metric helps to evaluate algorithm performance in
detecting large objects.

Precision and recall are defined as

Precision =
TP

TP + FP
(21)

TABLE IV
IMPACT OF INDIVIDUAL MODULES ON HRSID DATASET

TABLE V
IMPACT OF INDIVIDUAL MODULES ON SSDD DATASET

Recall =
TP

TP + FN
(22)

where TP (true positives), FP (false positives), and FN (false
negatives) refer to the number of correct detections, false alarms,
and missed targets, respectively.

AP is defined as

AP =

∫ 1

0

P (R) dR (23)

where P (R) is denoted as the curve of precision and recall,
which can be defined as the area AP values contained in the
P (R) curve and axes will be calculated separately in this article
depending on the IoU threshold.

D. Evaluations of the Proposed Method

In this section, the YOLOv8s is used as the baseline network,
and ablation experiments are implemented to verify the effec-
tiveness of the proposed modules. Comparison experiments are
then conducted with the representative classical deep learning
networks to verify the superiority of the proposed network.

1) Ablation Study: In AMRCNet, three methods (Revcol-
C2f, ASFPN, and MASPPF) are proposed to enhance ship detec-
tion performance in SAR images. To validate the performance
of AMRCNet, the experimental results of the designed modules
are compared with the baseline. For the sake of objectivity
and fairness, identical hyperparameters are used in the ablation
experiment. The ablation experiment is divided into two parts. In
the first part, the modules in the baseline network are replaced by
the designed modules. In the second part, the designed modules
incrementally are added to the baseline network.

Part 1. (a) Analysis of the effectiveness of Revcol-C2f: Revcol-
C2f utilizes the hierarchical CSP structure in C2f to acquire rich
multiscale ship information in various gradients. Subsequently,
the ship information supplemented by Revcol is embedded with
reversible transformation. Experiments are conducted to confirm
the effectiveness of the proposed Revcol-C2f, and the results are
shown in Tables IV and V. It is noteworthy that on the HRSID
dataset, AP, AP50, AP75, APs, APm, and APl are improved by
3%, 1.6%, 3.9%, 2%, 1.6%, and 24.3%, respectively. On the



6902 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 6. Presentation of heat map for different spatial pyramid methods on
HRSID dataset. (a) SPPF. (b) SPPCSPC. (c) SPPFCSPC. (d) MASPPF.

SSDD dataset, the gains in the AP, AP75, APs, APm, and APl
are reaching 1.4%, 2%, 1.4%, 1.6%, and 6.6%, respectively.
From the gains brought by APs, APm, and APl, it can be
confirmed that Revcol-C2f captures information about ships at
different scales. The improvements are mainly due to the fact that
Revcol-C2f, which includes multiple subnetworks, enables the
extraction of features at different hierarchical levels. Meanwhile,
the improvements in AP, AP50, and AP75 can be attributed to
the application of reversible transformation with a disentangled
feature learning concept. This mechanism effectively alleviates
the challenge of ship information loss, thereby contributing
to the overall improvement in performance. To illustrate the
experimental effect, the visualization results of Revcol-C2f are

TABLE VI
DETECTION RESULTS OF DIFFERENT SPATIAL PYRAMID METHODS ON HRSID

DATASET

shown in Figs. 7(c), 8(c), and 9(c). It is observed that the missed
detection of ships has decreased.

(b) Analysis of the effectiveness of MASPPF: To validate the
effectiveness of MASPPF, ablation experiments are conducted
for analysis, and the results are presented in Tables IV and V.
It can be observed that various metrics of the network exhibit
effective improvements. AP75, being a more stringent object
detection metric, reveals a notable increase in both SSDD and
HRSID datasets, with improvements of 2.7% and 2.5%, respec-
tively, compared to the baseline. This demonstrates MASPPFs
ability to suppress the impact of clutter around ships. This
is attributed to MASPPF employing multiplexed large-kernel
pooling operations to capture comprehensive information about
the ship hull within a region. Moreover, adaptive fusion is able
to obtain receptive fields suitable for ships of different scales.
This ultimately contributes to mitigating the impact of clutter. To
verify the superior performance of MASPPF over similar meth-
ods, comparative experiments were conducted, introducing the
most effective spatial pyramid methods, including SPPF [52],
SPPCSPC [54], and SPPFCSPC [55]. Features were extracted
by the YOLOv8s backbone network, and all experiments were
conducted on the HRSID dataset. The results of the comparative
experiments are shown in Table VI. It is evident that MASPPF
achieves better results with minimal increase in parameters.
In particular, MASPPF achieved a 1.6% AP75 improvement
compared to the suboptimal SPPFCSPC. Furthermore, Grad-
CAM [56] is used to display the heat map results of different
methods, as revealed in Fig. 6. It is clearly shown that MASPPF
is more sensitive to the specific location of ships and is able to
obtain more valuable information, thereby mitigating the impact
of clutters.

(c) Analysis of the effectiveness of ASFPN: ASFPN is an
improved FPN, which is used to further enhance the perfor-
mance of multiscale ships detection. Ablation experiments were
conducted to demonstrate the effectiveness and superiority of
ASFPN, and the results are presented in Tables V and VI. Com-
pared to the FPN-PAN used in the baseline, there is a significant
improvement in the HRSID dataset, with the evaluation metrics
of AP, AP50, AP75, and APs increasing by 3.6%, 2.1%, 5.7%,
and 7%, respectively. Likewise, for the SSDD dataset, the AP,
AP50, AP75, APs, and APm increase by 2.2%, 3.7%, 2.6%,
2.5%, and 1.7%, respectively. The visual results of ASFPN are
shown in Figs. 7(d) and 8(d), where the accuracy of detecting the
small ships can be clearly observed. The previous experimental
and visual results adequately demonstrate the effectiveness of
ASFPN in multiscale ship detection. Within ASFPN, the ADM
plays a crucial role in alleviating the acquisition of irrelevant
information and mitigating information loss, leading to the
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Fig. 7. Detection results for different methods in complex marine environments on the HRSID dataset. Green, blue, and red boxes represent TP, FP, and FN,
respectively. (a), (b), (c), (d), (e), and (f) represent real boxes, YOLOv8s, Revcol, ASFPN, Revcol+ASFPN, and AMRCNet, respectively.

TABLE VII
DETECTION RESULTS OF DIFFERENT FPN-BASED METHODS ON HRSID

DATASET

improvement of AP75. This is due to ADM that employs an
attention-based DS operation, ensuring the preservation of in-
formation from ships. Furthermore, the combination of ADM
and bidirectional information fusion operations effectively inte-
grates feature information from ships at different scales, result-
ing in the improvement in APs, APm, and APl. To verify the
effectiveness of ADM, experiments were conducted by adding
ADM to RepGFPN. Comparison experiments were performed
on the HRSID dataset with PAN-FPN [49] and RepGFPN [57].
The results, shown in Table VII, show that the AP75 metrics
are improved by 5.7% and 1.3%, respectively, compared to
SPPF and RepGFPN. This proves that ADM can capture more
relevant information during DS, which enables it to achieve
better performance in more demanding environments.

TABLE VIII
DETECTION RESULTS OF MULTIPLE METHODS MIXED ON HRSID DATASET

TABLE IX
DETECTION RESULTS OF MULTIPLE METHODS MIXED ON SSDD DATASET

Part 2: For the purpose of verifying the effect of fusing
several modules, Revcol-C2f, MASPPF, and SAFPN are added
to the network in the order of the backbone network, neck, and
MASPPF sequentially, and the results are shown in Tables VIII
and IX. By incorporating both Revcol-C2f and ASFPN into
the network simultaneously, improvements are observed in
experimental results. Specifically, on the HRSID dataset, the
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Fig. 8. Detection results for different methods in complex inland environments on the HRSID dataset. Green, blue, and red boxes represent TP, FP, and
FN,respectively. (a), (b), (c), (d), (e), and (f) represent real boxes, YOLOv8s, Revcol, ASFPN, Revcol+ASFPN, and AMRCNet, respectively.

Fig. 9. Detection results of harsh inshore noise environments on the SSDD dataset. (a), (b), (c), (d), (e), and (f) represent real boxes, YOLOv8s, Revcol, ASFPN,
Revcol+ASFPN, and AMRCNet, respectively.
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Fig. 10. AP50 curves of ablation experiments on the SSDD dataset.

metrics for AP, AP50, AP75, and APs reach 68.9%, 91.9%,
79.6%, and 59.7%, respectively. The overall performance is
superior, especially in small-object detection, compared to using
the Revcol-C2f module alone. Furthermore, improvements can
be found when switching to the SSDD dataset. When MASPPF
is added to complete AMRCNet, AP, AP50, AP75, APs, APm,
and APl are improved by 0.9%, 0.8%, 1.1%, 0.9%, 0.2%,
and 13.6%, respectively, on the HRSID dataset. For a more
intuitive illustration of the effect of each proposed module, the
ship detection results of different combinations are separately
displayed on the HRSID dataset, which encounters complex ma-
rine environments, as shown in Figs. 7 and 8. It is shown that the
leakage detection rate is significantly reduced after the addition
of each module compared to the baseline. On the SSDD dataset,
the visualization of the detection results for various methods is
also shown in Fig. 9. As can be seen from the visualized images,
the proposed combination of different modules results in higher
ship scores. Moreover, based on the experimental results,
Figs. 10 and 11 were plotted to show the comparison of ablation
experiments on AP50 and AP in each epoch. It can be seen
that the proposed methods significantly outperform the baseline
in the assessment criteria. Furthermore, a comparison of the
precision–recall curves of the two datasets used in the ablation
experiments is shown in Figs. 12 and 13. The curves show that
stacking the three methods also leads to increases in the included
area of the curves. These experiments validate the effectiveness
of the proposed modules in mitigating various challenges.

2) Comparative Experiment: This section presents a com-
parative performance evaluation of the proposed AMRCNet
against several state-of-the-art methods. Target detection meth-
ods with excellent performance have been selected. These se-
lected methods include one-stage network, two-stage network,

Fig. 11. AP curves of ablation experiments on the HRSID dataset.

Fig. 12. PR curves of ablation experiments on the SSDD dataset.

transformer-based target detection network, and anchor-free
network to ensure coverage of different types. On the SSDD
dataset, the selected include Faster R-CNN [20], FoveaBox [21],
MSSDNet [27], FEPS-Net [30], HRSDNet [48], YOLOv5s [52],
FCOS [58], and Deformable DETR [59]. It is obvious to observe
that AMRCNets AP, AP50, AP75, APs, and APm have surpassed
other methods, as revealed in Table X.

Specifically, the AP(71.1%) and AP75(84.3%) for AMRC-
Net are superior to other methods. This indicates that even in
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TABLE X
RESULTS OF DIFFERENT METHODS ON THE SSDD DATASET

Fig. 13. PR curves of ablation experiments on the HRSID dataset.

more challenging evaluation environments, AMRCNet is able
to accurately locate and detect ships in SAR images. Despite
the fact that the SSDD dataset itself has a wide range of SAR
ship scales, the method achieves better multiscale detection
results than other methods in terms of APs, APm, and APl. The
improvement indicates that AMRCNet is more applicable to the
task of multiscale SAR ship target detection.

In order to measure the model’s performance for SAR ship
detection under complex scenarios as well as to validate the
robustness and generalization ability, comparative experiments
with other state-of-the-art methods are conducted on the HRSID
dataset. The experimental results are shown in Table XI. Ex-
perimental methods include Faster R-CNN, FoveaBox, Libra
R-CNN [60], Deformable DETR, HRSDNet, FCOS, Cascade
R-CNN [61], and FEPS-Net. The results consistently demon-
strate that the proposed method outperforms other state-of-the-
art methods across various evaluation metrics. On the HRSID
dataset, the proposed method achieves the highest AP (69.8%)
and AP75 (80.7%) among the compared methods, indicating

its superior robustness and generalization capabilities in com-
plex scenarios. Moreover, the proposed method achieves a
well-balanced performance in terms of APs, APm, and APl,
showcasing its strong detection ability across ships of different
scales. Notably, APm and APl reach 81.0% and 52.5% respec-
tively. Although APs are slightly lower compared to suboptimal
FEPS-Net, the overall improvements in AP and other metrics
are significant, especially in inference Time. In Tables X and
XI, it can be clearly observed that the proposed method out-
performs Deformable DETR, which is based on the transformer
architecture, across various evaluation metrics. This is primarily
attributed to the proposed modules, which aim to mitigate the
impact of background clutter and make effective use of local
information and multilevel feature representation. Typically,
anchor-free networks, such as FoveaBox and FCOS in Tables X
and XI, face difficulties in achieving precise target localization.
However, it is noteworthy that the AP of the proposed method
much is higher than that of FoveaBox and FCOS, which means
that the shortcomings of the traditional anchor-free methods
for reduced localization accuracy can be effectively addressed.
In addition, compared to traditional two-stage networks such
as Faster R-CNN, Libra R-CNN, and Cascade R-CNN, the
proposed uses only half the number of parameters and achieves
better performance. YOLOv5s serves as a lightweight model
with a short inference time (10.9 ms) and a relatively small
number of parameters (7.12 million), but the proposed method
outperforms across all key metrics. These experimental results
emphasize that the proposed method strikes a commendable bal-
ance between speed and parameter efficiency while maintaining
superior detection performance.

IV. DISCUSSION

In this section, the analysis of the performance of Revcol-
C2f, MASPPF, ASFPN, and the overall network are provided
with the aid of experimental results mentioned before.

A. Reversible Column Network With C2f for Backbone
Extraction (Revcol-C2f)

The proposed Revcol-C2f is primarily designed to alleviate
the issue of information loss during feature extraction and en-
hance the extraction capability of multiscale target information.
The experimental results in Tables V and VI demonstrate the
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TABLE XI
RESULTS OF DIFFERENT METHODS ON HRSID DATASET

superiority of Revcol-C2f over the IB-based method for feature
extraction backbone. Furthermore, Figs. 7(c), 8(c), and 9(c)
show more accurate detection results for targets of different
scales in different environments. The improvement is attributed
to the adoption of the disentangled feature learning concept and
multisubnetworks for feature extraction. The reversible transfor-
mation in Revcol with the disentangled feature learning concept
preserves more target information and mitigates the issue of
information loss. Moreover, multisubnetwork feature extraction
is able to capture richer feature information for multiscale ships
with the help of reversible transformation.

B. Multiplexed Adaptive Spatial Pyramid Pooling

MASPPF has proved to be an effective solution for back-
ground clutters through ablation analysis presented in Fig. 4
and Table V. It is primarily attributed to the implementation
of multiplexed large-kernel pooling operations and adaptive fu-
sion. Multiplexed large-kernel pooling operations capture richer
receptive fields of different sizes, catering to different scales
of ships. Meanwhile, the adaptive fusion process selects more
suitable receptive fields for targets, effectively excluding back-
ground clutter. Compared to other similar methods, MASPPF
demonstrates outstanding performance, as shown in Table VI
and Fig. 6.

C. Adaptive Sampling FPN

This method is specifically designed to further meet the re-
quirements of multiscale target feature fusion. In SAR images,
the presence of significant noise and weak semantic information
makes it challenging to perform effective information extraction
through ordinary DS operations and information fusion without
losing small-scale information and introducing noise. ASFPN
addresses these challenges by first utilizing ADM to mitigate
the loss of accurate target information. Subsequently, multiple
bidirectional information fusion operations are employed to
overcome scale differences. The effectiveness of ASFPN is
demonstrated by ablation experiment results, as revealed in
Tables IV and V. In comparison to other FPN-based methods,
the proposed methods emphasize the detection of small and
medium targets. The improvements in APs, APm, and AP75 in
Table VII further attest to the effectiveness of ADM in reducing

information loss during the DS. Visual results in Figs. 7(d), 8(d),
and 9(d) support these conclusions.

D. Overall Network

The overall experimental results in Tables X and XI demon-
strate the effectiveness of the proposed method for ship detection
in SAR images comprehensively. In comparison to anchor-based
methods, such as YOLOv5s, MSSDNet, and HRSDNet, the
proposed methods achieve superior overall detection results.
When compared to anchor-free methods such as FCOS and
FoveaBox, the issues of target omission and inaccurate position-
ing caused by the absence of predefined anchors are mitigated
through the use of the disentangled feature learning concept
and ASFPN. Compared to traditional two-stage methods such
as Faster R-CNN, Libra R-CNN, and Cascade R-CNN, the pro-
posed method is more lightweight and exhibits better detection
performance. Relative to transformer-based methods such as
Deformable DETR, the proposed method is more effective for
multiscale ship detection, especially small-scale ships. Overall,
the proposed method achieves a more effective balance between
computational complexity and detection performance.

V. CONCLUSION

In this article, an integrated approach enclosing Revcol-C2f,
MASPPF, and ASFPN is proposed to address challenges related
to the information loss caused by sampling, impact of complex
background clutter, and multiscale ship detection from SAR
images. Specifically, the Revcol-C2f module reconfigures the
YOLOv8 backbone using a reversible column network, effec-
tively preserving target information and improving ship detec-
tion accuracy. Subsequently, the proposed MASPPF module
mitigates the influence of background clutter. In addition, to
address the issues of scale difference and semantic information
loss, the ASFPN module fuses shallow and deep feature maps to
enhance multiscale target detection capability at different stages.
Ultimately, these modules are integrated into the AMRCNet
architecture, demonstrating excellent SAR ship detection per-
formance in complex environments, and mitigating the negative
impact of scattering noise. Experimental results validate the ef-
fectiveness of the proposed method, showing improved detection
performance for multiscale ship targets and reduced false and
missed alarms in complex background clutter. In particular, the
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AP reaches 71.1% and 69.8% on the SSDD and HRSID datasets,
respectively.

Future work in SAR ship detection can prioritize real-time
implementation, explore multimodal fusion techniques, and ex-
pand the application of transfer learning to enhance overall
detection performance and promote generalization across radar
domains.
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