
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024 7029

DBW-YOLO: A High-Precision SAR Ship Detection
Method for Complex Environments

Xiao Tang , Jiufeng Zhang , Yunzhi Xia , and Huanlin Xiao

Abstract—Synthetic aperture radar (SAR) is widely used for
ship target detection with the application of deep learning tech-
niques. However, in certain complex environments, such as near
shore or with small ships, the problem of false alarms and missed
detections still exists. To address these issues, a high-precision
ship target detection method named DBW-YOLO, which builds
upon YOLOv7-tiny as its foundational network, is proposed in
this article. The proposed method consists of the following main
steps. First, a feature extraction enhancement network based on
deformable convolution network is introduced to obtain more
comprehensive feature representations across various ship types.
Second, an adaptive feature recognition method based on BiFormer
attention mechanism is proposed to strengthen detection accuracy,
which is more beneficial to capture near shore ships and small ships.
Third, a wise intersection-over-union based on dynamic nonmono-
tonic focusing mechanism is proposed to generate the loss function,
which improves the convergence speed and generalization ability.
Consequently, the DBW-YOLO method trains a more robust model
that better utilizes samples from near shore and small ships. To
verify the effectiveness of this method, two SAR datasets, HRSID
and SSDD, are employed for performance evaluation. Compared to
other widely-used methods, the mAP value of DBW-YOLO reachs
88.84% and 99.18% on the HRSID and SSDD datasets, respectively.
The findings indicate that DBW-YOLO method outperforms other
representative SAR ship detection methods in both accuracy and
overall performance.

Index Terms—Deep learning, synthetic aperture radar (SAR),
target identification, YOLOv7.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) stands as an active
microwave remote sensing device employing virtual array

and pulse compression technologies to acquire high-resolution
two-dimensional images of ground objects. Because of its
unique system and rich polarization information, SAR images
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find extensive use in various civilian and military applica-
tions [1], [2], [3], such as urban planning, environmental and
natural disaster monitoring, and ship target detection. Among
them, ship target detection serves the purpose of identifying
and locating vessels automatically and holds significant
importance in monitoring and ensuring the security of coastal
areas and waterways. However, precisely detection in complex
environments remains a significant challenge, particularly when
it comes to detecting near shore ships and small ships.

Traditional SAR ship detection methods is represented by
constant false alarm rate (CFAR) [4] and its improvements [5].
These methods generally rely on exploiting the distinction be-
tween maritime targets and the background. When the target’s
prior information is unknown, the CFAR detection method can
achieve improved detection outcomes for its stronger scatter-
ing echoes. However, due to their sensitivity to background
complexity and inadequate adaptability to target variations, it
shows poor detection results with the increasing diversity of
radar platform parameters and complexity of the model.

In recent years, due to rapid advancements in deep learn-
ing [6], [7], [8], [9], SAR ship detection has seen significant
improvements. This is because deep learning techniques have
demonstrated excellent performance in extracting complex fea-
tures from SAR images and possess strong generalization ca-
pabilities, which significantly improves the detection accuracy
and overall performance of SAR ship detection. Deep learning
techniques consist of two groups corresponding to the number of
stage: single-stage detectors [10] and two-stage detectors [11].
You only look once (YOLO) [12] and single shot multibox
detector (SSD) [13] stands out as the two most popular single-
stage detectors, while R-CNN [14], Fast R-CNN [15], and Faster
R-CNN [16] are representative of the two-stage detectors. How-
ever, two-stage detectors suffer from the drawback of slower
ship identification, while single-stage detectors offer quicker
detection speeds with moderate accuracy.

As a result, numerous constructive enhancements have been
developed based on single-stage detectors. For example, Wang
et al. [17] introduced an enhanced SAR detection method for
SSD model, which incorporates data augmentation and migra-
tion techniques. Tang et al. [18] exhibited an N-YOLO model to
diminish the effect of noise and coastlines on ship identification.
Sun et al. [19] introduced innovative YOLO-based approach
for arbitrary-oriented SAR ship detection, which named BiFA-
YOLO, to fully use the feature fusion and angular classification.
Li et al. [20] presented a YOLOv5 model combined with con-
fluence algorithm to detect ships in complex environments, such
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Fig. 1. Network architecture of DBW-YOLO.

as near shore or ships are too dense. Yang et al. [21] introduced
an anchor-free detection method named Improved-FCOS to
tackle the issues of target detection in multiresolution and near
shore environments. Bai et al. [22] introduced an FEPS-Net
to optimize ship detection performance with the presence of
significant scattered noise and small ships. Chen et al. [23] intro-
duced a CSD-YOLO model, which integrates shuffle attention
mechanisms and atrous spatial pyramid pooling, to address the
challenge of detecting various ships in intricate environments.
Ren et al. [24] introduced YOLO-Lite, an efficient lightweight
network addressing challenges related to inaccurate target lo-
calization and interference from complex backgrounds in ship
detection.

While exploring numerous promising ideas to improve ship
detection performance, the most advanced algorithm models
still face the challenge of false alarms and missed detections
in environments, such as near shore areas or with small ships.
This is because:

1) for the approaches proposed in [17], [18], [19], [20], the
feature extraction networks of these models fail to generate
pure ship features, making them prone to interference from
the surrounding environment, especially for targets with
complex textures or smaller sizes, leading to a decrease in
detection accuracy;

2) for references [21], [22], [23], [24], these models introduce
a global attention mechanism to the network, resulting
in significant resource consumption and computational
burden, which hinders the deployment and practical ap-
plication of the model;

3) all the models mentioned above do not take into account
the competition between high-quality anchors and the
detrimental gradients from low-quality samples when cal-
culating the bounding box.

In the case of detecting near shore ships and small ships, they
may exhibit suboptimal performance, leading to localization
errors.

To tackle these issues, it is essential and beneficial to design a
balanced SAR ship detection method improves detection accu-
racy while ensure real-time detection and recognition in complex
environments. Therefore, we propose a novel ship detection
method named DBW-YOLO based on YOLOv7-tiny, which
integrates DCNets, BiFormer, and Wise IoU to enhance ship
detection accuracy. The main contributions can be outlined as
follows.

1) To enhance the detection speed, YOLOv7-tiny is chosen
as the foundational network for DBW-YOLO method in
this article, which achieves faster detection speed while
ensuring accuracy requirements.

2) To improve the detection accuracy, DCNets are employed
in D-ELAN downsampling modules, which improve fea-
ture extraction capabilities.

3) To enhance the detection accuracy for near shore and small
ships, a dynamic sparse attention BiFormer with a two-
layer routing mechanism is integrated into the network,
which aids in capturing near shore and small ships.

4) To increase the generalization ability and convergence
speed, WIoU is adopted as the loss function with a dy-
namic nonmonotonic focusing mechanism, which facili-
tates more effective network training.

II. METHOD

This section presents a comprehensive overview of the DBW-
YOLO method, focusing on its network structure and key
components.
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A. Network Structure

The method’s network primarily comprises a backbone, re-
sponsible for extracting image features, and a head, utilized for
identifying object categories and anchor boxes. Fig. 1 provides
an overview of DBW-YOLO network structure, which is estab-
lished step by step as follows:

1) Backbone: The network of DBW-YOLO backbone inte-
grates convolution block (CBL), D-ELAN module, B-ELAN
module, and maxpooling blocks (MP blocks), inspired by
YOLOv7-tiny. Two CBL blocks are employed for initial feature
extraction of the input image, while MP blocks are used for
downsampling operations to decrease the dimension of feature
map. The structure of these two blocks remains unchanged
with that of YOLOv7-tiny. To fully extract ship feature from
the images, we specially designed two novel modules called
D-ELAN and B-ELAN in backbone network. D-ELAN module
is built upon ELAN module from the original YOLOv7-tiny
framework, enhanced with the integration of a DCNet to more
effectively extract ship features. B-ELAN module represents a
further version of D-ELAN module, which incorporates ELAN
module, DcNets and BiFormer attention convolution, enabling a
better focus on the detection of near shore ships and small ships.
The positions of D-ELAN and B-ELAN inserted in backbone
network are shown in Fig. 1.

2) Head: The network of DBW-YOLO head consists of
spatial pyramid block (SP block), feature pyramid network
(FPN) [25] structure and BiFormer block (BBL). SP block is
utilized to extract features more comprehensively, preventing
image distortion and redundant feature extraction. FPN structure
is implemented to enable effective feature fusion, facilitating the
identification of targets across multiple scales. These combined
efforts notably improve the model’s capacity to accurately iden-
tify and locate ships. Three BBL blocks, depicted in Fig. 1 at
positions 3 are strategically added at the end of feature fusion.
These additions improve the feature representation ability and
enhance the overall performance and robustness of our method.
Consequently, the feature maps at various scales are seamlessly
integrated into the detection network.

3) Additional Details: The data augmentation techniques of
mosaic and mixup methods are proposed to effectively improve
the model’s generalization and expand the datasets. WIoU is
utilized as loss function to optimize the network, resulting in
improved convergence speed and detection performance.

B. Components

The DBW-YOLO method is main consists of the following
four components, YOLOv7-tiny, DCNets, BiFormer, and WIoU
as follows.

1) YOLOv7-Tiny: YOLOv7 is one of the latest versions of the
YOLO series detector introduced by Wang et al. [26]. Renowned
for its efficient real-time target detection ability, it exhibits
fast inference speed and low computational complexity, which
makes it ideal for real-time applications and presents excellent
performance with large datasets [27]. According to the different
running environments of the code, including cloud GPU, normal
GPU, and edge GPU, it is categorized into three models, namely

Fig. 2. DCNets mechanism. (a) Standard convolution with a regular sampling
grid and (b) deformable convolution with sparse sampling.

YOLOv7-w6, YOLOv7, and YOLOv7-tiny [26]. Compared
with YOLOv7 and YOLOv7-w6, YOLOv7-tiny possesses a
more compact model size and lower computing requirements,
making it ideal for scenarios where computing resources are lim-
ited. Moreover, YOLOv7-tiny often outperforms its counterparts
in terms of processing speed, rendering it well-suited for scenar-
ios requiring high real-time capabilities. Hence, YOLOv7-tiny
is chosen as the foundational model for DBW-YOLO method in
this article.

2) Deformable Convolution Networks (DCNets): DCNets
were initially introduced by Dai et al. [28]. In contrast to tradi-
tional convolutions, which employ fixed-shaped kernel, DCNets
incorporate a 2-D offset in standard convolution, allowing net-
work to flexibly adjust its shape, as shown in Fig. 2. The latest
version of DCNets were presented by Wang et al. [29].

The feature extraction network of YOLOv7 employs 3 ×
3 standard convolutions, sampling the input feature map at
fixed positions. However, when dealing with near shore ships,
convolutions tend to extract a significant amount of background
information, thereby affecting the network’s ability to recognize
ship targets. In this section, to obtain valuable ship features, two
characterization learning enhancement structure, DBL block and
D-ELAN module are designed with the assistance of DCNets.
This addresses the limitations of traditional convolutions in the
context of near-shore ship targets. Through extensive experi-
mental analysis and validation, this network structure proves to
be more suitable for feature extraction in SAR ship targets.

The structural details of DBL block and D-ELAN module are
illustrated in Fig. 3. By optimizing convolution for various ship
targets, DCNets not only enhance the network’s feature extrac-
tion capabilities but also significantly improve the efficiency and
detection performance of model. The main aspects are given as
follows.

1) To optimize the extraction ability of ship features, a DBL
block is designed, which replaces the original 3×3 stan-
dard convolution in CBL block with DCNets. Then, we
employ batch normalization to establish weight relation-
ships, and Leaky ReLU activation function to capture more
complex features.

2) To strengthen the feature learning capability and robust-
ness of the network, a D-ELAN module is created by
inserting two DBL blocks into the original ELAN module.
These DBL blocks replace the corresponding original
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Fig. 3. Details of DCNets. (a) 3×3 DBL block, and (b) D-ELAN module.

CBL blocks. With this design, three ELAN modules in
backbone network are replaced with D-ELAN modules to
improve the overall performance.

3) To determine the appropriate expansion rate for DCNets,
rigorous comparative experiments is conducted to obtain
the optimal parameters.

3) BiFormer: For SAR target detection method, attention
mechanisms are commonly incorporated into networks to en-
hance feature extraction. However, this often leads to significant
resource consumption and computational burdens, posing chal-
lenges for model deployment and application. In this section,
BiFormer attention mechanism [30], [31] is submitted to effec-
tively extract image features. It utilize bilevel routing attention
as core building blocks, which reduces huge computational
burden and enables flexible calculations. With the applying of
BiFormer attention mechanism, another two characterization
learning enhancement structure, BBL block and B-ELAN mod-
ule, are introduced to fully use the distinctive features of ship
targets. This improves performance in recognizing features of
small targets while simultaneously reducing the computational
load. The main aspects are outlined as follows.

1) To enhance the convolution’s capability to recognize ship
features, a BBL block is introduced with BiFormer at-
tention mechanism. Similar to DBL block, the 3×3 stan-
dard convolution in CBL block is substituted with a 3×3
BiFormer attention convolution in BBL block, and its
detailed structure is shown in Fig. 4(a). As mentioned
earlier, after replacing the original CBL block, this block
is incorporated into head network at position 3 along with
a 1×1 standard convolution.

2) To improve the accuracy of backbone network in recogniz-
ing near shore ships and small ships, a B-ELAN module
is designed based on D-ELAN module and BiFormer
attention convolution, as shown in Fig. 4(b). The last 1×1
standard convolution in D-ELAN module is replaced with
a 1×1 BiFormer attention convolution, which is more
beneficial to capture near shore ships and small ships.

3) B-ELAN module, in conjunction with D-ELAN module,
collectively constitute the core components of backbone
network. These collaborative enhancements notably

Fig. 4. Details of BBL. (a) BBL block, and (b) B-ELAN module.

improve the model’s detection accuracy and overall
performance.

4) WIoU: The bounding box regression (BBR) loss function
holds significant importance in ship detection. Therefore, a
WIoU loss function [32] is introduced to identify ships from
surrounding background in this section. Unlike the traditional
complete-IoU (CIoU) loss function [33], WIoU loss function in-
troduces a dynamic nonmonotonic focusing mechanism, which
improves both convergence speed and generalization capability.
With the WIoU, the competition between high-quality anchors
and the influence of harmful gradients from low-quality samples
are significantly reduced in the calculation of target boxes. In
terms of probability, WIoU improves the model’s generalization.
The BBR loss function LIoU is provided by

LIoU = 1− IoU = 1− WiHi

Si
(1)

where Si represents the area of predicted box that intersected
with the actual box. Hi and Wi represent the height and the
weight of the overlapping area, respectively.

In cases where Hi = 0 or Wi = 0, the existing BBR losses
Li are designed to penalize Ri and is denoted as

Li = 1− IoU +Ri. (2)

To address the issue of gradient vanishing, researchers have
made numerous meaningful explorations in various IoU struc-
tures. For example, the Generalized-IoU [34] structure incorpo-
rates a penalty term based on minimum bounding box structure.
The Distance-IoU (DIoU) [35] structure introduces a penalty
term founded on distance measurements, and the CIoU struc-
ture augments the DIoU structure with length-width ratio mea-
surements. Especially the SCYLLA-IoU (SIoU) structure, as
reported by Gevorgyan [36], exhibits enhanced convergence
speed and superior performance by incorporating considerations
of cost, distance, and shape.

An effective loss function should incorporate suitable geomet-
ric penalties when the predicted bounding box intersects with the
ground truth bounding box. Therefore, minimizing intervention
during training frequently serves as an effective strategy to up-
grade the model’s generalization ability. However, low-quality
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TABLE I
DESCRIPTION OF EXPERIMENTAL SETUP

samples in the dataset are inevitably present during the training
phase. The adverse effects of these samples are compounded
by factors, such as aspect ratio and distance, contributing to
a decline in the model’s generalization capabilities. To tackle
these challenges, Tong et al. [32] introduced a WIoU with a
two-tier distance attention mechanism and the BBR loss function
LWIoUv1

is denoted as

LWIoUv1
= RWIoULWIoU (3)

RWIoU = exp

(
(x− xgt)

2 + (y − ygt)
2

(W 2
g −H2

g )
∗

)
(4)

whereHg andWg represent the height and weight of the smallest
enclosing box, respectively,RWIoU represents the relative weight
of WIoU loss function, which is used to balance the relationship
between the overlap degree of the predicted bounding box and
the ground truth bounding box. To ensure that RWIoU does not
produce gradients hindering convergence, the disentanglement
of Hg , Wg from the computational graph is represented by the
superscript ∗.

To address the slow convergence issue of the loss function
LWIoUv1

during late training stages, a monotonic focus coeffi-
cient Lγ∗

IoU ∈ [0, 1] is introduced. Then, a new BBR loss function
LWIoUv2

, is defined as follows:

LWIoUv2
= Lγ∗

IoULWIoUv1
,Lγ∗

IoU =

(L∗
IoU

LIoU

)γ

(5)

where γ > 0, LIoU is the exponential running average with
momentum m.

By introducing a nonmonotonic focus coefficient β ∈
[0,+∞), the last but most needed BBR loss function LWIoUv3

is
defined as

LWIoUv3
= rLWIoUv1

, r =
β

δαβ−δ
(6)

where hyperparametersα > 0,β > 0, and δ are chosen such that
r = 1 when β = δ. A low outlier degree, indicated by β =

L∗
IoU

LIoU
,

suggests that the anchor box is of high quality.

III. EXPERIMENT AND RESULTS

A. Experimental Environment

Table I provides a comprehensive overview of the experimen-
tal settings utilized in this article.

Fig. 5. Samples of HRSID dataset. (a) Multiscale ship samples, (b) inshore
ship samples, and (c) small ship samples.

Fig. 6. Samples of Official-SSDD dataset. (a) Offshore ship samples, and
(b) inshore ship samples.

B. Datasets

To assess the effectiveness of DBW-YOLO method, two
SAR datasets, HRSID [37] and SSDD [38], are employed for
comparative analysis.

1) HRSID Dataset: The HRSID dataset was presented
by [37]. It consists of 5604 SAR images and 16 951 ships, and
provides a panoramic view of SAR images with a 25% overlap
rate and resolutions ranging from 1 to 5 m. Each image sized
at 800×800 pixels. Due to its diverse representation of ship
targets, the HRSID dataset is often utilized for multiscale SAR
ship detection. Sample images extracted from the HRSID dataset
are depicted in Fig. 5.

2) SSDD Dataset: The SSDD dataset was presented by [38].
It consists of 1160 images and 2456 ships collected from
Sentinel-1, TerraSAR, and RadarSat-2, featuring resolutions
range from 1 to 15 m. Each image has an approximate size
of 600 pixels in length and width. To make full use of SSDD
dataset, Zhang et al. [39] proposed an official version of SSDD,
which includes specific criteria for usage. Sample images from
the Official-SSDD dataset are illustrated in Fig. 6.

C. Performance Metrics

In assessing the effectiveness of the DBW-YOLO method,
the following three key performance metrics are introduced:
precision, recall, and average precision (AP). These metrics
consists of the following four components: True Positive (TP),
false positive (FP), true negative (TN), and false negative (FN).
TP refers to positive sample correctly predicted as ships, while
FP corresponds to the positive sample incorrectly predicted as
ship. TN accounts for the negative sample correctly predicted as
background, while FN refers to the negative sample incorrectly
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Fig. 7. AP curves of different expansion rates for DCNets.

predicted as background. Precision, denoted as P, represents
the ratio of accurately predicted ships and is mathematically
expressed as

P =
TP

TP+FP
. (7)

The metric recall, denoted as R, represents the total number
of retrieved ships and is given by

R =
TP

TP+FN
. (8)

AP is computed based on precision and recall, which is
articulated by the integral expression

AP =

∫ 1

0

P (R) dR. (9)

Here, the function P(R) signifies the precision–recall curve.
For a ship detection method like DBW-YOLO, higher AP values
indicate a superior overall performance of the ship detection
method concerning precision and recall.

D. Experiment Comparison and Analysis

To estimate the performance of DBW-YOLO method, a series
of experiments were carried out involving modifications to the
activation function and various network structures of the com-
parative models. These results can further guide the optimization
of the model.

In this section, we utilize the HRSID dataset for all experi-
ments, maintaining uniform setups throughout: 200 epochs, the
SGD optimizer, an initial learning rate of 0.01, a batch size of
64, and an input size of 640×640 pixels.

1) Effect of DCNets: To enhance the convolution’s capability
in recognizing ship features, we incorporate an improved version
of DCNets into the original ELAN blocks of YOLOv7-tiny. The
performance of DCNets is significantly influenced by diverse
expansion rates, as depicted in the AP curves illustrated in Fig. 7.

In the results shown in Fig. 7, DCNets-0 (represented by
black curve) denotes the baseline model without DCNets, while

TABLE II
EFFECT OF DIFFERENT EXPANSION RATES ON DCNETS

DCNets-1 (represented by red curve) corresponds to an expan-
sion rate of (2, 4, 8, 16). In addition, DCNets-2 (represented by
blue curve) and DCNets-3 (represented by green curve) repre-
sent expansion rates two and four times higher than DCNets-1,
respectively. It is worth noting that DCNets-3+Weights (rep-
resented by purple curve) signifies DCNets-3 with pretrained
weights, which is obtained by training 300 epochs on the
FUSAR-ship dataset [40]. The pretraining weights refer to the
learned weight parameters during the training process, which are
used to adjust the model’s focus on input data. The comparative
analysis reveals that the purple curve, representing DCNets-
3+Weights, encompasses the largest area, indicating superior
detection capability in comparison to other curves.

Table II presents the performance evaluation of DCNets under
various expansion rates. The table displays precision, recall,
mean Average Precision at IoU 0.5 (mAP@0.5), and mean Av-
erage Precision ranging from IoU 0.5 to 0.95 (mAP@0.5:0.95).

The original model, DCNets-0, achieves a precision of
86.31% and a recall of 72.97%, resulting in an mAP@0.5 of
81.21% and an mAP@0.5:0.95 of 51.73%. As we increase
the expansion rate in DCNets-1, a slight improvement in pre-
cision and mAP@0.5 are observed, although the Recall re-
mains similar. DCNets-2 exhibits a similar performance to
DCNets-1. A notable performance enhancement is seen in
DCNets-3, where recall, and mAP value show significant im-
provement over DCNets-0. However, the precision remains
slightly increase. The most remarkable results are observed
in the case of DCNets-3+Weights, where precision, recall,
mAP@0.5, and mAP@0.5:0.95 reach their peak values, 87.93%,
73.61%, 83.79%, and 53.32%, respectively. These findings sug-
gest that higher expansion rates, particularly in conjunction with
pretrained weights, have a substantial positive impact on the
detection performance of DCNets, enhancing both precision and
recall, as indicated by the increased mAP values.

2) Effect of BiFormer: In order to enhance the FPN, the
BiFormer attention mechanism is strategically integrated at
different points within the original YOLOv7-tiny model. These
specific insertion positions for the BiFormer attention mech-
anism are highlighted within dashed boxes in Fig. 1. Fig. 8
illustrates AP curves of the comparative models under different
conditions, and Table III provides their comparative results in
detail.

Results in Fig. 8 reveal that the original YOLOv7-tiny model
(depicted by black curve) exhibits the smallest area under AP
curve, indicating poor detection performance. When attention
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TABLE III
ABLATION EXPERIMENTS FOR BIFORMER

Fig. 8. AP curves of ablation experiments for BiFormer.

mechanisms are introduced at various positions, the area under
AP curve significantly increases for position 1+3 (depicted by
green curve), position 1+2 (depicted by blue curve), position 2+3
(depicted by purple curve), and position 1+2+3 (depicted by red
curve). These findings demonstrate a substantial enhancement
in detection performance achieved by the attention mechanisms.
Notably, the purple curve representing position 2+3 encloses the
largest area, indicating a superior detection capability compared
to the others.

More experimental details are presented in Table III. The
findings reveal that, in comparison with the original model,
the precision of position 2+3 significantly increases to 90.98%,
Recall to 76.31%, mAP@0.5 to 86.58%, and mAP@0.5:0.95
to 56.29%, while the performance of Position 1+2, Position
1+3, and Position 1+2+3 shows slight improvement. These
indicate that excessive use of BiFormer attention mechanism
can potentially diminish the efficacy of feature extraction and
detection capabilities. For the DBW-YOLO method, placing
the BiFormer attention mechanism at position 2+3 produces the
optimal detection performance.

Besides, to assess the effectiveness of BiFormer model
when inserted at position 2+3, a comparative analysis was
performed involving three alternative attentional mechanism
models, squeeze-and-excitation (SE) [41], coordinate atten-
tion (CA) [42], and convolutional block attention module
(CBAM) [43], all integrated at the same positions. Detailed
experimental findings are outlined in Table IV.

The performance analysis showcases the BiFormer model’s
outstanding results, with a precision of 90.98%, a recall

TABLE IV
COMPARATIVE RESULTS OF DIFFERENT ATTENTION MECHANISM MODELS

Fig. 9. AP curves of different BBR loss function.

of 76.31%, an excellent mAP@0.5 of 86.58%, and a high
mAP@0.5:0.95 of 56.29%. The precision of BiFormer model
has witnessed substantial enhancements of 3.66%, 4.87%, and
1.08% in comparison to CBAM, CA, and SE models, respec-
tively. For mAP@0.5, it has been increased by 2.55%, 2.41%,
and 1.64%, respectively. These findings highlight the substantial
improvement in detection performance achieved by BiFormer
attention mechanism compared to other evaluated models. They
emphasize the effectiveness of BiFormer attention mechanism,
which improves the overall performance concerning Precision
and mAP.

3) Effect of Loss Functions: Following the enhancement of
FPN and backbone, this section analyzes the comparison results
of loss functions. We setup three BBR loss functions, CIoU [33],
SIoU [36], and WIoU [32], for comparative analysis with the
established model. Results in Fig. 9 reveal that the measured
mAP@0.5 for WIoU is 88.84%, which is increased by 2.26%
and 1.00%, respectively, compared with that of CIoU and SIoU.
This proves that WIoU exhibits an excellent performance in
terms of detection accuracy.
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Fig. 10. Convergence of different BBR loss function.

TABLE V
PERFORMANCE EVALUATION OF VARIOUS MODELS ON THE HRSID DATASET

TABLE VI
PERFORMANCE EVALUATION OF VARIOUS MODELS ON THE SSDD DATASET

To assess other aspects of the performance of WIoU loss
function, the convergence curve of different BBR loss function is
also studied in this section, as shown in Fig. 10. The findings sug-
gest that WIoU loss function achieves the lowest loss value and
the fastest convergence speed, making DBW-YOLO particularly
effective in ship detection within SAR images. This underlines
the superior detection performance achieved by WIoU in terms
of convergence speed and generalization capability.

4) Comparison With Other Ship Detection Models: For the
purpose of evaluating strong detection capabilities of DBW-
YOLO on SAR images, we conduct a comparative analysis with
four widely-used SAR ship detection models, SSD, Faster R-
CNN, YOLOv5-s, and YOLOv7-tiny, with identical conditions
and parameter settings. Two datasets, HRSID and SSDD, are
utilized to evaluate performance. The comparative outcomes
are presented in Tables V and VI, and a revised performance
comparison of DBW-YOLO and other models on the HRSID
dataset is shown in Fig. 11, and a similar comparison on the
SSDD dataset is presented in Fig. 12.

Fig. 11. Revised comparison chart: Performance of DBW-YOLO and other
models on the HRSID dataset. (a) Original label image, (b) SSD visualization
results, (c) Faster R-CNN visualization results, (d) YOLOv5-s visualization re-
sults, (e) YOLOv7-tiny visualization results, and (f) DBW-YOLO visualization
results.

Fig. 12. Revised comparison chart: Performance of DBW-YOLO and other
models on the SSDD dataset. (a) Original label image. (b) SSD visualiza-
tion results. (c) Faster R-CNN visualization results. (d) YOLOv5-s visualizat-
ion results. (e) YOLOv7-tiny visualization results. (f) DBW-YOLO visualization
results.
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Table V provides performance comparison of various models
on the HRSID dataset. The results reveal that DBW-YOLO
model exhibits the highest precision (90.04%), while SSD shows
the highest recall (64.31%). DBW-YOLO also achieves the best
mAP@0.5 performance, with a value of 88.84%. Notably, it ex-
hibits superior performance in terms of precision and mAP@0.5.

Table VI presents a performance comparison of the same
models on the SSDD dataset. On this dataset, DBW-YOLO
achieves the highest precision (98.41%), recall (97.64%), and
mAP@0.5 (99.18%), surpassing the other models. This result
highlights the superior performance of DBW-YOLO in detecting
ships on the SSDD dataset.

The findings presented in Tables V and VI highlight the
superior performance of our method across both the HRSID and
SSDD datasets, surpassing that of other models. This can be
attributed to its improved backbone and well-suited FPN, which
allows for the efficient extraction of ship characteristics, thereby
improving the model’s prediction performance. Furthermore,
the utilization of WIoU loss function enhances the accuracy of
target box predictions, which leads to improved performance of
generalization ability and robustness.

In order to better demonstrate the performance of each model
on various datasets, the accuracy performance of the same model
on different datasets can be obtained by comparing the results in
Tables V and VI. It indicates that the precision, recall, and mAP
values of all five models on the SSDD dataset surpass those on
the HRSID dataset. The discrepancy between two datasets can be
attributed to the SSDD dataset’s reputation for high-quality ship
annotations, which ensures accurate ship labeling. Moreover,
the dataset usually comprises a balanced distribution of positive
and negative examples, where the number of ship and nonship
instances is relatively equal, which contributes to improved
model training and performance. Conversely, the HRSID dataset
presents heightened challenges as it includes high-resolution
SAR images containing finer details and potential noise.

Fig. 11 presents a revised performance comparison of DBW-
YOLO and other models on the HRSID dataset, where Fig. 11(a)
depicts the original ground truth image, Fig. 11(b) illustrates
SSD visualization results, Fig. 11(c) displays Faster R-CNN
visualization results, Fig. 11(d) exhibits YOLOv5-s visualiza-
tion results, Fig. 11(e) demonstrates YOLOv7-tiny visualization
results, and Fig. 11(f) showcases DBW-YOLO visualization
results. In the label image, ten ship targets are visible, including
three small ships. The Faster R-CNN model correctly detected
seven ships (indicated by green rectangle) but produced two
FP detections (indicated by yellow circles) and missed two
ships (indicated by yellow triangles). The YOLOv7-tiny model
correctly detected eight ships, but had one FP detection and
missed two ships. These two models exhibited the lowest de-
tection accuracy, as they failed to identify near shore ships
and misclassified non-ship objects. The SSD model correctly
detected eight ships but had one FP detection and one missed
detection. The YOLOv5-s model correctly detected nine ships
but had one FP detection and one missed detection. Overall, these
two models achieved slightly higher detection accuracy than the
previous two. However, small targets were incorrectly labeled
in all four of the preceding models. The model presented in this
paper effectively detected and correctly labeled all nine ship

targets, with only one ship missed. Consequently, the proposed
model demonstrated superior capabilities in detecting near shore
and small ships compared to the other four comparison models,
indicating its suitability for ship detection in HRSID dataset.

Fig. 12 presents a revised performance comparison of DBW-
YOLO and other models on the SSDD dataset, where Fig. 12(a)
depicts the original ground truth image, and Fig. 12(b)–(f),
respectively, showcases the visualization results of SSD, Faster
R-CNN, YOLOv5-s, YOLOv7-tiny, and DBW-YOLO. In the
label image, seven ship targets are visible, and all of them are
inshore ships. The results show that despite occasional FPs
detections (illustrated by yellow circles), all models correctly
identified seven actual ships (illustrated by green rectangles),
this also shows that the SSDD dataset has better adaptability
and recognition accuracy compared to HRSID dataset. Among
them, the Faster R-CNN model correctly detected seven ships
but produced two FP detections. The YOLOv7-tiny model had
the same detection results as the Faster R-CNN model. These
two models exhibited the lowest detection accuracy for mis-
classifying non-ship targets near the shore as ships. The SSD
model precisely identified seven ships but registered one FP
detection. Similarly, the YOLOv5-s model demonstrated detec-
tion results equivalent to those of the SSD model. Overall, these
two models achieved slightly higher detection accuracy than
their predecessors. The model presented in this paper effectively
detected and labeled seven ship targets, with no ship missed
or false detections. Consequently, the proposed model displays
superior capabilities in near shore detection compared to the
other four models, underscoring its suitability for SAR-based
ship detection in SSDD dataset.

In summary, the performance of the DBW-YOLO is note-
worthy, as it consistently outperforms other models on both the
HRSID and SSDD datasets for complex environments, which
demonstrates its effectiveness in SAR ship detection.

IV. CONCLUSION

This paper introduces DBW-YOLO, a detection method de-
signed for SAR ship detection. It exhibits good performance in
the detection of complex environments such as near shore ships
and small ships. The performance of DBW-YOLO was com-
pared with other widely-used ship detection methods, namely
SSD, Faster R-CNN, YOLOv5-s, and YOLOv7-tiny, using the
HRSID and SSDD datasets. Specifically, the mAP of DBW-
YOLO reached 88.84% on the HRSID dataset, and 99.18% on
the SSDD dataset, respectively, which proves the superiority
of the DBW-YOLO method in terms of detection accuracy.
Additionally, the Precision and Recall of DBW-YOLO show
significantly improvements compared to the other models, which
proves that our method obtains superior performance in terms of
robustness. Overall, DBW-YOLO exhibits strong performance,
particularly in detecting ships near the shore and small vessels
in SAR images, making it highly suitable for tasks demanding
high-precision detection capabilities. However, we also recog-
nize that DBW-YOLO method suffers from the issue of exces-
sive computational burden and insufficient detection accuracy
in resource-constrained environments. Therefore, we will pay
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more attention to the lightweight design of the model and the
anchor free algorithm in future work.
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