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Abstract—With the widespread popularity of deep learning,
various neural network models are extensively employed in the
recognition, classification, and segmentation of remote sensing im-
ages. Convolutional neural networks (CNNs), fully convolutional
networks, including their variants like Unet, have demonstrated
significant results within this particular domain. Nevertheless,
CNNs exhibit limitations when it comes to grasping extended global
dependencies. Conversely, transformers exhibit exceptional ability
in effectively dealing with long-range dependencies. Considering
this, we have introduced the efficient channel attention-enhanced
dual-stream neural network (ECA-DSNN) to improve the identifi-
cation of buildings across various scenes. Specifically, we developed
a dual-stream network that incorporates the Unet and transformer
framework in order to capture both the local and global context.
In addition, we introduced an attention mechanism module to
augment the model’s generalization capability. With the advanced
identification and generalization capability of ECA-DSNN, only
fine-tuning and data augmentation are needed to achieve superior
performance in cross-scene transfer, even with limited samples
in the target domain. The outcomes indicated that the ECA-
DSNN proposed achieved superior performance in comparison to
the state-of-the-art methodologies, particularly in the experiment
transferring from the source domain Beijing to the target domain
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Shanghai. In this scenario, the overall accuracy surpassed 96.3%
and an F1 score exceeded 78.6%.

Index Terms—Attention mechanism, building identification,
cross-scene transfer, data enhancement transformer, limited
samples, Unet.

I. INTRODUCTION

THE interpretation of high-resolution remote sensing im-
ages is currently a focal point of research in the field of

remote sensing processing. However, existing remote sensing
information processing techniques lag behind the pace of remote
sensing image acquisition, and there is a limited capacity to
acquire and transfer knowledge between remote sensing im-
ages [1].

As spatial resolution increases, spectral heterogeneity also
increases significantly. The phenomena of “same object presents
a different spectrum” and “different object preserves the same
spectrum” frequently occur. Moreover, the complexity of back-
ground in high-spatial resolution images leads to considerable
interference in the extraction and identification of buildings.
Given the characteristics of high-resolution images and build-
ings, the focus of research in remote sensing image interpretation
lies in how to identify buildings from such images. Build-
ing identification (BI), a crucial component of high-definition
remote sensing image interpretation [2], is widely employed
in urban planning, population estimation, land utilization, and
numerous other fields. Traditional BI methods rely on manually
designed features (such as image element features, corner point
features, spectral features, etc.) for extraction [3]. These methods
are influenced by subjective factors, making it challenging to
extract optimal features and imposing significant limitations.
Before the widespread adoption of deep learning, approaches
involving semiautomatic learning and active learning for ex-
tracting building footprint information from high-spatial reso-
lution remote sensing images were proposed. Nevertheless, both
active learning and semiautomatic learning excessively depend
on expert knowledge, often overlook contextual information in
images, and encounter challenges with limited annotated data
that hinders generalization.

In recent years, deep learning has been widely applied in
building recognition. By constructing numerous hidden layers
and utilizing a substantial quantity of labeled data, deep learning
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efficiently achieves a greater understanding of building features
for the purpose of building zone recognition. When compared to
traditional manual feature extraction methods, deep learning ex-
cels at extracting profound building features, showcasing supe-
rior generalization ability in comparison to traditional building
recognition. Convolutional neural networks (CNNs), a pivotal
component of deep learning, are composed of multiple convolu-
tional layers [4]. Unlike other deep learning architectures, CNNs
are particularly well-suited for feature extraction and transfer,
ensuring robust classification performance. The FCNs [5] along
with its variations Unet and Resnet, which are developed based
on CNNs, have made significant advancements in deep learning
feature extraction. They are extensively employed in high-score
image detection, scene classification, building footprint recogni-
tion, and other domains. The FCN utilizes an end-to-end network
structure that harnesses image information comprehensively for
feature extraction and hierarchical information modeling, lead-
ing to accurate predictions of buildings, in contrast to previous
methods.

However, FCN and its variants are limited by the recep-
tive field and demonstrate a lack of proficiency in handling
spatial global context information. Many scholars have pro-
posed diverse solutions to address this issue. These solutions
primarily stem from two perspectives: One involves integrat-
ing the attention mechanism into the convolutional network
to enhance global context understanding [6], while the other
entails combining convolutional networks with transformers to
convert 2-D data into a 1-D format [7], [8], facilitating ro-
bust sequence-to-sequence model predictions. For instance, the
Swin-Transformer with sliding windows [9], A-GCRNN [10],
and the TMUnet [11]. In BI tasks, a considerable quantity of
labels from the source domain are adequate for classifying
buildings within the same scene. Nonetheless, collecting a sig-
nificant amount of labeled building data proves challenging,
particularly when dealing with unlabeled data. With recently
gathered data, achieving satisfactory accuracy remains difficult
without a sufficiently large number of labels. Hence, cross-scene
classification becomes imperative.

To address the issue of sparse annotation labels, cross-scene
classification is proposed [12]. Transfer learning serves as a
cross-scene classification method capable of addressing the
challenge posed by insufficient labeled data [13]. In the scenario
depicted in this article, both the source and target feature spaces
align with each other, as well as the label space [14], giving rise
to homogeneous migration learning. A relevant homogeneous
transfer learning method was summarized by Wessi et al. in
2016 [15]. Transfer learning finds extensive application in object
recognition, numerical classification, natural scene recognition,
and similar domains [16]. Nonetheless, transfer learning encoun-
ters certain challenges due to the susceptibility of deep learning
to noise. Ensuring the positivity of migrated features can be
arduous, and there exists the possibility of negative feature mi-
gration. Embedding attentional mechanisms can help alleviate
or even prevent the adverse effects of negative migration [17].

The attention mechanism has garnered significant popularity
in deep learning due to its capacity to selectively focus on
the most informative features while disregarding noise and

irrelevant information [18]. In BI tasks, attention-based models
have demonstrated promising outcomes by effectively capturing
key building characteristics and enhancing recognition accuracy.
By dynamically assigning distinct weights to input features,
attention-based models have the capability to adaptively con-
centrate on the most pertinent image segments and incorporate
highly informative details into the recognition process. Con-
sequently, the attention mechanism has evolved into an indis-
pensable tool for building recognition tasks, making significant
contributions to the advancement of the field. As models grow
in complexity, the volume of information stored within the
model increases, potentially leading to information overload and
feature selection bias.

To address this, we constructed a dual-stream feature extrac-
tion network based on the parallelism of Unet and Transformer.
This approach compensates for the limitation of single-channel
information extraction by employing dual information flow ex-
traction. We improved the main feature information through
feature fusion with multiple attention mechanisms to prevent
noise and irrelevant information interference. Subsequently, we
enhance building information in the target domain data using
various data enhancement techniques to optimize data migration
performance. Ultimately, we accomplish swift training and pre-
diction in the target domain with minimal labeled data through
migration fine-tuning. The primary contributions of this article
are as follows.

1) We have designed a dual-stream neural network-supported
framework for building identification, combining Trans-
former, and neural networks techniques for source domain
feature learning.

2) We introduce an efficient channel attention (ECA)-based
feature fusion module to achieve feature complementar-
ity between different streams and improve classification
performance.

3) We evaluate the ECA-DSNN method in cross-scene and
verify its robustness and effectiveness. Through regular-
ization, we enhance both shallow and primary features,
thereby bolstering the model’s feature learning capabil-
ities. To address the issue of blurred outlines, we have
modified common activation functions in CNNs to miti-
gate the appearance of jagged prediction outcomes. This
modification partially rectifies the problem of blurred
edges in building recognition.

II. RELATED WORKS

In recent years, three techniques have gained increasing pop-
ularity: transformer-based image recognition, attention mecha-
nisms, and cross-scene object recognition migration. The subse-
quent three sections focus on the application of these techniques
within the field of image processing.

A. Transformer-Based Image Recognition Methods

Traditional CNN model structures primarily emphasize local
information aggregation, often struggling to effectively mod-
eling long-range contextual information. With the emergence
of transformers in the field of NLP, there is a growing interest
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Fig. 1. Structure of ViT network encoder.

in its application to computer vision. The introduction of ViT
marked a successful foray into applying transformer architecture
from natural language to image-related challenges [7]. The
transformer embodies a distinctive end-to-end network struc-
ture, encompassing two key components: an encoder and a
decoder. The encoding facet incorporates multiple encoders,
each comprising two sublayers: 1) an attention layer; and 2)
a feed-forward network. Similarly, the decoding facet com-
prises several encoders, with each encoder layer composed of a
self-attention layer and a feedforward network. Refer to Fig. 1
for an illustration depicting the structure, where each encoder
contains a multiheaded attention mechanism and a feedforward
network [19]. Numerous scholars have put forth a series of
effective enhancement techniques to bolster the efficiency and
effectiveness of ViT model training.

Han et al. [20] introduced the transformer in transformer
model to improve model generalization and accuracy by refin-
ing each patch within the ViT framework. Nevertheless, while
this model demonstrates improved performance on large-scale
datasets, its results often remain unsatisfactory for small and
medium-sized datasets. Yuan et al. [21] proposed the Tokens-to-
Token VIT(T2T-ViT) model, which partially addresses this con-
cern and achieves superior outcomes compared to the ViT model
on medium-sized datasets. Liu et al. [9] pursued an approach of
segmenting images into finer batches and progressively merging
them at different layers, subsequently reducing resolution. This
method enabled interaction among local information from dis-
tinct windows through the sliding window technique. However,
the aforementioned methods only partially address the issue of
the Transformer’s overemphasis on global information, resulting
in the neglect of local information. Enhancing the ViT model,
as mentioned above, necessitates a substantial dataset; without
it, achieving more efficient and accurate results compared to
traditional building recognition methods becomes challenging.

B. Attention Mechanisms

Attentional mechanisms, fundamentally constituted by au-
tonomously learned sets of weighting parameters within the
network structure, employ “dynamic weighting” to highlight
significant regions while reducing the influence of irrelevant
background regions [22]. Recent strides in attentional mech-
anisms reveal substantial promise in the domains of computer
vision and remote sensing. They offer avenues for accentuating
meaningful data and diminishing the impact of distracting infor-
mation, ultimately facilitating the extraction of representative
features. In the realm of computer vision [23], [24], [25] and
remote sensing image processing [26], [27], [28], [29], the
attenuation of undesired information is pivotal for the extraction
of representative features. The essence of these approaches can
be summarized as follows.

1) Channel Attention Mechanism: It primarily focuses on
interchannel relationships within the feature map, automatically
determining the significance of each feature channel by learn-
ing channel-specific weights. These learned weights are subse-
quently utilized to amplify relevant features while suppressing
less relevant ones for the current task. In contemporary times, the
channel attention mechanism has found extensive application
within the field of remote sensing images. For instance, Ge
et al. [30] harnessed the channel attention mechanism to aug-
ment the retrieval capability of remote sensing images. In their
article [31], SENet [23] was fused with the semantic pyramidal
attention module to establish a global attention mechanism. This
mechanism facilitates the extraction of high-level features and
the enhancement of change-related information. Furthermore,
variants like the ECANet attention mechanisms [32], enhanced
by SENet attention mechanisms, have also emerged.

2) Spatial Attention Mechanism: The transformation of var-
ious spatial deformation data and the automatic capturing of
crucial regional features ensure that an image can be cropped,
panned, or rotated while retaining the original image’s out-
come after the operation [33]. Spatial attention mechanisms
find widespread application in the realm of computer vision to
recover more representative spatial objects. Currently, multiple
approaches to spatial attention mechanisms exist, including
spatial alteration neural networks [33], dynamic capability net-
works [34], and CBAM networks, which amalgamate channel
and spatial attention mechanisms [25].

Given the attention mechanism’s role, it frequently serves as
a module within neural networks to extract more representa-
tive and essential features through the fusion of channels and
positional information. Consequently, this article constructs a
spatial contextual attention module to enhance the robustness
and transfer-ability of acquired information by introducing an
attention mechanism.

C. Cross-Scene Object Recognition Migration

Remote sensing image scene understanding (RSISU) has
emerged as a crucial task within the field of remote sensing,
garnering attention from diverse research domains in recent
years. In the context of RSISU, scene recognition within remote
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sensing image analysis has also gained significant traction.
Leveraging the widespread adoption of deep learning, the field
of scene recognition has witnessed extensive integration of
these techniques [35]. CNNs [36] have demonstrated remarkable
achievements in natural image scene classification, and their
application to remote sensing image scene classification holds
great promise, bolstered by the migration of training models
from datasets. Scene-oriented feature representation has been
widely acknowledged as an effective strategy for interpreting
high-resolution remote sensing images, with scene classifica-
tion [27], [37], retrieval, and object detection holding substantial
value for various critical applications [38]. However, scene
recognition often grapples with the challenges of insufficient
labeling. In this context, cross-scene migration provides a viable
solution.

Cross-scene migration learning can be categorized into homo-
geneous migration learning and heterogeneous migration learn-
ing. When the target feature space and label space exhibit con-
sistency, if Xs = Xt, Ys = Yt, then it is deemed homogeneous
migration learning [39]. By adopting migration learning, we can
address issues such as data scarcity and labeling limitations [40],
computational constraints with abundant data, conflicts between
ubiquitous models and individualized requirements, and the
challenge of a cold start.

The pretrain+fine-tune approach, a classical migration learn-
ing model, belongs to the network migration-based category.
While simplistic, it proves highly effective across numerous
problems, sometimes rivaling domain adaptive and metalearning
approaches. For example, Hossain et al. [41] proposed transfer
learning fine-tuned on a deep convolutional neural network-
based ResNet50 model to classify COVID-19 patients from a
COVID-19 radiography database. However, relying solely on
fine-tuning migration often leads to incomplete boundary and
contextual information. To rectify this, scholars have proposed
various strategies to enhance source domain feature extraction
and bridge the gap between source and target domains. Zhu
et al. [42] introduced the attention-based multiscale residual
adaptation network to address cross-scene classification tasks. In
a similar vein, Lu et al. [43] presented the multisource compensa-
tion network to tackle distribution discrepancies and incomplete
categories within source and target domains in domain adapta-
tion. In addition, an adversarial fine-grained adaptation network
was developed to capture the intricate structures underlying data,
improving discriminability and reducing domain disparities in
class distributions [44]. Zhang et al. [45] developed a Single-
source Domain Expansion Network to ensure the reliability and
effectiveness of domain expansion. Tong et al. [46] proposed a
channel attention-based DenseNet network for scene classifica-
tion. This addresses the limitations of traditional stacked net-
work structures in effectively extracting multiscale and pivotal
features, thereby enhancing the overall feature representation
capability.

III. SCENARIO APPLICATION AND PROBLEM DESCRIPTION

A. Scenario Application

The emergence of large-scale annotated data, the increase in
computer computing power, and the development of advanced

machine algorithms have all contributed to the prominence of
deep learning. Within the field of deep learning, two primary
methods are commonly utilized: 1) semantic segmentation; and
2) instance segmentation. Among these, semantic segmentation
takes precedence, involving the classification of each pixel into
distinct categories based on its value. Recognition of building
areas in remote sensing images often grapples with challenges
stemming from varying building scales and significant intraclass
variability in buildings. Traditional CNNs exhibit limitations in
comprehensively capturing overall building features due to their
inherent structural constraints, making it challenging to grasp
contextual dependencies between image patches. Consequently,
this often results in subpar migration accuracy and undesirable
model migration from source domain training to the target
domain. To address this, a combined approach harnessing both
Transformers and CNNs is employed. This amalgamation facili-
tates the extraction of global and local building features, enabling
the recognition of building areas across different geographical
regions and the identification of building areas in the target
domain using limited samples through feature migration.

B. Problem Description

1) Building Classification: Deep learning can be described
as a multistep procedure that leverages human mathematical
insights and computer algorithms to construct a comprehensive
framework. This architecture is then coupled with an extensive
training dataset and the substantial computational capabilities of
computers to iteratively fine-tune internal parameters towards
achieving the desired problem objective. This process can be
characterized as a semitheoretical and semiempirical modeling
strategy. Suppose the input space is T, the training dataset T =
{xi, yi}Ni=1, where xi ∈ x, yi ∈ y = {0, 255}, i = 1, 2, . . ., N ;
Prediction function See formula (1), loss function See formula
(2)

ypred = f(x, θ), (1)

Loss = −y log ypred − (1− y) log(1− ypred) (2)

where ypred is the predicted probability vector of the model. The
goal of the training process is to find the optimal parameter θ so
that the loss function Loss reaches the minimum value.

2) Cross Scene Classification: Suppose a pretrained model
with parameter θpre. This model has undergone training on the
source task, which can be represented as shown in formula (3)

θpre∗ = argmin
θpre∗

(Lpre(θpre, Ds)) (3)

where θpre∗ is the optimal parameter of the pretrained model on
the source task, and Lpre is the loss function of the source task.
The training data for the source task is denoted as Ds = (x1,
y1), (x2, y2), (xi, yi), ..., (xm, ym), i = 1, 2, . . .,m, where xi is
an input sample for the source task, and yi is the corresponding
label.

The goal of the whole cross-scene migration problem is to
find an optimal model parameter θpre∗ on the target scene, and
to improve the learning performance of the target scene by
minimizing the loss functionLoss on the data of the target scene,
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Fig. 2. Illustration of Combining attention mechanism and feature enhancement with Transformer and convolutional neural network model.

so that the knowledge of the source scene is effectively applied
to the target scene.

The process of freezing plus fine-tuning in cross-transfer
learning encompasses the following steps:

Step 1: Freezing Network Layers
First, certain layers within the pretrained model are frozen.

Typically, this involves freezing the parameters of underlying or
intermediate layers, preventing them from being updated during
the subsequent fine-tuning phase. The frozen parameters can be
represented as θfrozen.

Step 2: Defining the fine-tuning model
Next, a fine-tuning model is defined based on the pre-

trained model. This fine-tuning model, represented by param-
eter θfinetuned, is designed to cater to the requirements of the
target task. In addition, a fine-tuning loss function, denoted as
Lt(θfinetuned, Dt), is defined. This loss function is derived from
the training data of the target task and the structure of the defined
fine-tuning model.

Step 3: Conducting fine-tuning
During this step, the parameters of the fine-tuned model

are updated. The objective is to minimize the fine-tuning loss
function on the training data of the target task. This process can
be mathematically expressed as in formula (4)

θfinetuned∗ = argmin
θfinetuned

(Lt(θfinetuned, Dt)) (4)

where θfinetuned∗ is the optimal parameters of the fine-tuned model
for the target task, the training data for the target task is denoted
as Dt = (x′

1, y′1), (x′
2, y′2), (x′

j , y′j),..., (x′
n, y′n), j = 1, 2, . . ., n,

where x′
j is an input sample for the target task, and y′j is the

corresponding label.

IV. METHODOLOGY

A. Preliminary and Overview

In this section, we present the ECA-DSNN model, which
incorporates both a dual-stream Network based on CNNs and
Transformer, ECA-based feature fusion module, and a regular-
ized data enhancement module into the decoder module. These
additions aim to enhance the connectivity between building
features. The model architecture is illustrated in Fig. 2. The
essence of this approach can be summarized as follows.

1) Feature extraction based on dual-stream neural network:
The method’s core strategy involves complementing the
local features derived from the CNN with the local feature
information from the Transformer. This fusion amplifies
the building recognition capabilities.

2) ECA Attention Mechanism: The utilization of the ECA
serves to bolster interimage connection. This mechanism
accentuates valuable image information while downplay-
ing less relevant details. This integration contributes to
achieving improved experimental outcomes, particularly
with limited datasets.

3) Image regularization: Image regularization is employed
to expand inherent image information. It proves adept
at facilitating cross-domain migration within the target
domain, even when dealing with constrained samples.
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4) The proposed model further leverages dual parallel chan-
nels to augment building semantic features. By combining
features extracted from both the Unet model and Trans-
former, the model’s capability for recognizing buildings
is further enhanced.

In addition, the spatial attention mechanism module is har-
nessed to capture attention across both channel and spatial
dimensions. This module bolsters the model’s ability to identify
key features, and the data enhancement module is also incorpo-
rated to reinforce primary data features, effectively addressing
issues of overfitting and subpar outcomes attributed to noise
interference stemming from limited data. These enhancements
collectively foster improved generalizability of the model.

B. Dual-Stream Feature Extraction Based on Dual-Stream
Network Module

As depicted in Fig. 2, our model comprises two channels.
In the upper channel, we execute pixel-level segmentation and
modeling using the Unet structure. The given high-resolution
image is characterized by three dimensions: X ∈ Rh×w×c,
where h signifies the image height, w denotes the image
width, and c denotes the image’s channel count. In the lower
channel, we initiate the process by chunking and flattening
the image. For the input image, we divide the h× w × c
image into patches of uniform size, denoted as Xp, Xp =

[X1p, X2p, . . ., Xnp] ∈ RP 2×c. Subsequently, each patch is fed
into the transformer as a token, accompanied by positional
embedding information denoted as Jpos ∈ RN×k, where k de-
notes the dimensionality of the space. The positional informa-
tion, Jpos, is added to the embedding to establish patch order
distinct, yielding d0 = [x1pj ;x2pj ; . . .;xnpj ]. Post this step,
we apply dimensional scaling to the input data through the
employment of the multihead attention (MSA) mechanism and
MLP networks during patch embedding, feature learning, and
classification. In the MSA layer, d′l = MSA(LN(dl − 1)) +
dl − 1, l = 1, 2, . . ., L. Subsequently, in the MLP layer, dl =
MSA(LN(d′l)) + d′l, l = 1, 2, . . ., L. Here, LN() represents
layer normalization, culminating in the categorization informa-
tion, y = LN(X0

L).
Beyond feature encoding, we shape the image-level con-

textual representation (ICR) by reshaping the (Re) features,
followed by a 1×1 convolution operation (ConvI) : ICR =
(Conv(Re(tL))), yielding ICR ∈ Rh×w×1. The ICR compo-
nent is instrumental in constructing spatially dependent map-
pings at the image level, subsequently employed for normaliza-
tion of the feature set generated by the CNN module.

C. ECA-Based Feature Fusion Module

To effectively extract building features and facilitate the ag-
gregation of these extracted features, we implemented two key
steps. First, we recalibrated the Unet building feature extrac-
tion module in the upper channel. Subsequently, we introduced
spatial regularization to align the input features with the re-
quirements for global feature extraction within the Transformer
framework. In detail, we devised an attention mechanism mod-
ule and introduced the channel feature parameter denoted as

Fig. 3. Computational flow of Weca.

Weca. The calculation of Weca is governed by the formula (5)

Weca = Sigmoid(conv(AV G(leakyrelu(bn(conv(x))))))
(5)

where x represents the input features meant for the global pool-
ing by b× c× h× w. These input features possess dimensions
b, c, h, and w correspond to the dimensions of the input image.
This operation transforms the input features into a sequence
format of b× c× 1× 1. Through dimension adjustments and
convolutional operations, this sequence is further moulded into
a 1-D convolution pattern of b× 1× c. A normalization step
using Sigmoid is then applied to the resulting weights, facilitat-
ing dimensionality alignment to b× c× 1× 1. Ultimately, the
obtained feature map is multiplied by the channel weights Weca.
The computational workflow is visually elucidated in Fig. 3.

We perform fusion between the output of the upper channel
and that of the lower channel, thereby optimizing the features
derived from the CNN using the outcomes of the lower chan-
nel. To incorporate spatial contextual information, we integrate
the image-level ICR produced by the lower channel with the
architectural features extracted by the upper channel. Before
performing ECA dual-channel feature enhancement, we need to
fuse the global feature Tglobal obtained from the dual-channel
with the local feature Ulocal for feature fusion. This fusion
serves to complement both spatial global and local information.
By channeling the information from the upper channel Unet’s
extracted features into the spatial regularization, we enhance
and supplement the information, yielding an output denoted as
Ulocal. This Ulocal is then combined with the globally extracted
spatial informationTglobal from the lower Transformer layer. This
concatenation, symbolized asXout = cat [Ulocal, Tglobal], realizes
the fusion process and generates the spliced output, which serves
as the recognition results for ECA-based feature enhancement
module’s input.

D. Cross-Scenario Migration Module

Migration learning has proven effective in addressing limited
labeled data in the target domain, enhancing convergence speed
and training efficiency. To achieve this, we extend the model
in the source domain using a combination of freezing and fine-
tuning, coupled with regularization for feature enhancement.
This approach aims to improve accuracy and expedite training
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with a constrained sample size in the target domain. In the
target domain datasetDt = (x′

1, y
′
1), (x

′
2, y

′
2), . . ., (x

′
m, y′m), we

define the fine-tuned model, consolidating the parameters θpre

and θfrozen from the pretrained model into the unified parameter
θfinetuned for the fine-tuned model. We then establish the fine-
tuning loss function Lt(θfinetuned, Dt). To enhance the dataset,
we leverage the Mixup method for data augmentation: (xaug,
yaug) = mixup(x, y, x′, y′). The exact calculation process can
be represented by the Formula (6) and Formula (7)

xaug = λx+ (1− λ)x′, (6)

yaug = λy + (1− λ)y′. (7)

Here, (x, y) and (x′, y′) represent two randomly selected sam-
ples along their respective labels from the original training data.
The resulting augmented samples and labels, denoted as (xaug,
yaug) are generated through the MixUp process. Subsequently,
we employ a suitable optimization algorithm, such as stochastic
gradient descent (SGD). During the training phase, gradients are
calculated, and the parameter θfinetuned of the fine-tuned model is
updated to minimize the fine-tuning loss function. This process
is iterated multiple times until convergence is achieved or the
predefined stopping condition is met.

V. IMPLEMENTATION

A. Datasets

Currently, commonly utilized public datasets for building
extraction encompass the WHU building dataset, AIRS dataset,
and Inria dataset. While these datasets serve as valuable re-
sources, their foreign origins can lead to suboptimal results when
employed for transfer learning to identify domestic buildings.
To mitigate this, we leverage the Chinese typical urban building
instance dataset [47] curated by Wu Kaishun et al., tailor-made
for deep learning. Subsequently, the acquired model is subjected
to transfer. Comprising 7260 region samples, this dataset is
divided into three components: 1) images in.tif format; 2) .json
format annotation files; and 3) .png format semantic segmen-
tation labels. The image recognition model is trained using
label compositions from.tif images and.png files. It encom-
passes four representative Chinese cities like Beijing, Shanghai,
Wuhan, and Shenzhen. The dataset is standardized at a size of
500×500, subsequently cropped to 256×256 for the experiment.
For our study, we have chosen to treat the Beijing dataset as the
source domain, and a limited selection of Shanghai datasets as
the target domain. Similarly, the Shanghai dataset is used as
the source domain, while the Beijing dataset is employed as the
target domain, thus facilitating our experimental analyses.

B. Evaluation Metrics

The experiment employs the following evaluation indicators:
Accuracy, Precision, Recall, and F1 score. Each of these in-
dicators is explained in detail below. In a binary classification
scenario, instances are categorized into positive and negative
classes, leading to four possible outcomes when classified by
the classifier: True Positive (TP): Positive class correctly pre-
dicted as positive. False Negative (FN): Positive class incor-
rectly predicted as negative. False Positive (FP): Negative class

incorrectly predicted as positive. True Negative (TN): Negative
class correctly predicted as negative. These outcomes form the
basis of the confusion matrix for evaluation metrics. Accuracy,
Precision, Recall, and F1 are based on the above four situations
predicted by the classifier

Accuracy = (TP + FP)/(TP + TN + FN + FP), (8)

Precision = TP/(TP + FP), (9)

Recall = TP/(TP + FN), (10)

F1 = 2× precision × recall/(precision + recall).
(11)

C. Implementation Details

The deep learning framework used in this article is the Pytorch
framework, which has good support for deep learning, so it is
often used in machine learning and deep learning fields such as
image recognition or speech recognition. The lab configuration
of transferring is GPU: RTX3090, CPU 6 x Xeon Gold 6142,
CUDA v11.2, Pytorch v1.10.

We randomly crop each image region into 256 × 256 size,
effectively reducing the size of each image, increasing the speed
of operation and facilitating subsequent processing. Our chosen
optimizer is the Adam optimizer, which has a smoother gradient
drop and can effectively prevent problems such as the SGD
optimizer gradient plunge. The learning rate of the optimizer
is 0.0001, and the training epoch is set to 50.

VI. EXPERIMENTAL RESULTS

In this section, we merge the advanced transformers with
CNNs to facilitate the identification of distinctive urban struc-
tures in China. By integrating various attention mechanisms
and data enhancement modules, we introduce the ECA-DSNN
model. Our analysis includes a comparison with existing models,
further substantiating the excellence of the proposed approach
in the field of building classification.

Baseline: For comparison, we selected several models in-
cluding Unet, Transnet, Swin-Unet, and TMUnet, with TMUnet
serving as the baseline. We evaluated both the original models
and their augmented versions featuring attention mechanisms
and mixup data augmentation, which is commonly employed
in computer vision. This comparison aimed to confirm the
enhanced effectiveness of our proposed mode.

The combination of Transformer and CNNs is predominantly
used for feature classification in hyperspectral images within
the remote sensing domain. However, its application to building
classification in high-resolution images, particularly for domes-
tic high-resolution images, remains limited. Thus, our initial
focus is on validating the efficacy of integrating Transformer
and CNN architectures for this purpose.

Pre-training: For the source domain model pretraining phase,
we partitioned the Beijing dataset into training, test, and val-
idation sets in a 7:2:1 ratio. We employed Unet, TMUnet,
Transnet, and Swin-Unet for comparison purposes to assess
the effectiveness and superiority of our proposed ECA-DSNN
model. We conducted pretraining in the source domain using
both the Beijing and Shanghai datasets. The outcomes for the
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TABLE I
BEIJING SOURCE DOMAIN TEST SET

TABLE II
SHANGHAI SOURCE DOMAIN TEST SET

TABLE III
BEIJING SOURCE DOMAIN TEST SET TO SHANGHAI TARGET DOMAIN TEST SET

TABLE IV
SHANGHAI SOURCE DOMAIN TESTSET TO BEIJING TARGET DOMAIN TESTSET

test sets in both cities are presented in Tables II and III for
reference.

Transfer learning: Utilizing the pretrained model Pk and
Sh obtained from the aforementioned training, we conducted
feature migration to the target domains of the Shanghai and
Beijing datasets. The migration test outcomes were subsequently
acquired and are presented in Tables IV and V for the Shanghai
and Beijing datasets, respectively.

A. Pretraining

1) Beijing Source Domain: From Table I, it is evident that
ECA-DSNN exhibits notable improvements compared to the
benchmark TMUnet. Specifically, ECA-DSNN showcases a
0.39% enhancement in Accuracy, an impressive 7.69% improve-
ment in Recall, and a noteworthy 2.85% boost in F1 score. Fur-
thermore, compared with other commonly employed models,

TABLE V
COMPLEXITY OF THE MODELS

as well as CNNs combined with Transformers, ECA-DSNN
emerges as the frontrunner in terms of both Accuracy and
F1 score. These results effectively validate the efficacy of our
ECA-DSNN model for building recognition within the Beijing
dataset. A visual inspection of Fig. 4 underscores this advantage,
as ECA-DSNN notably surpasses other models trained on the
Beijing dataset, excelling in building integrity, contour edge
clarity, and the recognition of block and strip buildings.

2) Shanghai Source Domain: Observing the results in
Table II, in comparison to the Baseline TMUnet, ECA-DSNN
demonstrates substantial improvements. Specifically, ECA-
DSNN exhibits a 2.11% advancement in Accuracy, an impres-
sive 5.39% boost in Precision, a significant 6.84% enhancement
in Recall, and a notable 6.07% increase in F1 score. When
compared to the Unet model, ECA-DSNN boasts a 4.77%
higher F1 score and only a marginal decrease in accuracy by
approximately 1%. These experiments effectively validate ECA-
DSNN’s efficacy across both the Beijing and Shanghai datasets,
highlighting its adaptability and generalizability. As depicted
in Fig. 5, concerning building zone identification, ECA-DSNN,
TMUnet, and Unet all exhibit commendable results. However,
upon closer examination, the Unet model presents a higher
number of false positive and false negative predictions, while
the TMUnet model’s performance in predicting the contours of
small-block buildings falls short of our proposed model. In terms
of overall prediction efficacy, ECA-DSNN’s predictions tend to
align more closely with the true outcomes.

B. Cross-Scenario Migration

1) Beijing to Shanghai: Upon scrutinizing the accuracy of
the migration from the Beijing dataset’s source domain to the
Shanghai dataset’s target domain, as evaluated in Table III,
ECA-DSNN demonstrates noticeable improvements. Specif-
ically, ECA-DSNN showcases a 0.4% enhancement in Ac-
curacy, a remarkable 9.4% surge in Recall, and an impres-
sive 3.69% advancement in F1 score compared to the other
comparative models. Furthermore, in contrast to the baseline
model, ECA-DSNN’s Accuracy registers a 0.59% rise, and
its F1 score achieves a remarkable 4.47% boost. As illus-
trated in Fig. 6, it becomes evident that ECA-DSNN excels
in the comprehensive recognition of building areas. Never-
theless, for contours and edges delineating small blocks of
buildings, TMUnet encounters excessive misclassifications, fail-
ing to predict the edges’ contours effectively. On the other
hand, Unet exhibits a high incidence of misidentifications per-
taining to small building blocks and displays subpar overall
contour predictions. In a balanced evaluation, the predictions
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Fig. 4. Comparison of the real labels of Unet, Transnet, Swin-Unet, TMUnet, ECA-DSNN source domains with the prediction results in Beijing Source domain.
(a) Sample. (b) Label. (c) Unet. (d) Transnet. (e) Swin-Unet. (f) TMUnet. (g) ECA-DSNN.

Fig. 5. Comparison of the real labels of Unet, Transnet, Swin-Unet, TMUnet, ECA-DSNN source domains with the prediction results in Shanghai source domain.
(a) Sample. (b) Label. (c) Unet. (d) Transnet. (e) Swin-Unet. (f) TMUnet. (g) ECA-DSNN.

from ECA-DSNN tend to align more closely with the true
outcomes.

2) Shanghai to Beijing: Examining the results of migrating
from the Shanghai source domain dataset to the Beijing tar-
get domain dataset, as presented in Table IV, our innovative
ECA-DSNN model demonstrates significant improvements.

Specifically, ECA-DSNN showcases an impressive 5.29% in-
crease in Accuracy and a remarkable 11.58% advancement in the
F1 score compared to the benchmark model TMUnet. Among
the comparative models, ECA-DSNN emerges as the most suc-
cessful, yielding the finest outcomes. Fig. 7 vividly illustrates the
outcomes across different models, revealing that ECA-DSNN,
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Fig. 6. Comparison of the real labels of Unet, Transnet, Swin-Unet, TMUnet, ECA-DSNN in Shanghai target domain and Beijing source domain with the
prediction results. (a) Sample. (b) Label. (c) Unet. (d) Transnet. (e) Swin-Unet. (f) TMUnet. (g) ECA-DSNN.

Fig. 7. Comparison of the real labels of Unet, Transnet, Swin-Unet, TMUnet, ECA-DSNN in Beijing target domain and Shanghai source domain with the
prediction results. (a) Sample. (b) Label. (c) Unet. (d) Transnet. (e) Swin-Unet. (f) TMUnet. (g) ECA-DSNN.
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TABLE VI
IMPACT OF THE DIFFERENT MODULES ADDED ON THE PROPOSED MODEL

fortified by the incorporation of the data enhancement module
and the contextual relationship module, emerges as the top
performer.

Furthermore, we undertook a calculation to determine the
computational complexity of the theoretical model and com-
pared it with the aforementioned alternative methods, as ex-
emplified in Table V. FLoating point OPerations per second
(FLOPs) represents the total number of accumulations of the
model’s floating-point calculations. It can be used to measure
the complexity of the model. Model inference time is the time
it takes for the model to process a picture or a sample.

From the table, it can be found that the FLOPs of ECA-DSNN
is greater compared to Unet, Transnet, Swin-Unet, and lower
than that of TMUnet. It is also found that the inference time of
the model is not only related to FLOPs, but also to the number of
parameters. For instance, although the complexity of Unet and
Transnet models are similar, the number of parameters of the
Unet is much smaller than that of Transnet, and thus the inference
time of the model Unet is also lower than Transnet. Moreover, in
terms of inference time, the proposed method takes longer time
for theoretical reasoning compared to Unet, Transnet, and Swin-
Unet. Although the FLOPs of the ECA-DSNN are not much
different from those of the TMUnet, the model parameters of the
ECA-DSNN are slightly smaller than those of the TMUnet, and
thus the inference time of the proposed model is a little bit faster.

C. Ablation Experiments

The additional network incorporates the attention mechanism
module and the data enhancement module. We chose to remove
each of these modules to assess the impact of each module on
the model’s performance improvement. As shown in Table VI,
we can observe that the removal of any of these modules has a
noticeable impact on the model’s performance. The elimination
of the ECA-based feature fusion module significantly reduces
the model’s contextualization capability, making it more suscep-
tible to noise and negatively impacting the learning of negative
example samples. Consequently, this leads to a reduction in
performance and an increase in instability. On the other hand, the
omission of the Mixup module results in the model learning the
key features of the dataset with less prominence. This weakens
the model’s convolutional mapping ability, ultimately causing a
decrease in performance.

The accuracy improved by 0.37% and F1 score improved
by 2.37% when compared to the results before and after not
adding the data enhancement module. In addition, the accuracy

improved by 0.83% and F1 score improved by 4.47% when
compared to the results before and after adding the attention
mechanism module. These comparisons underscore the utility
of the different modules in enhancing model performance and
highlight their essential role.

VII. CONCLUSION

In this article, a novel dual-stream feature extraction module,
ECA-based feature fusion module and a regularization mod-
ule are introduced, which are integrated into the benchmark
model TMUnet, and applied to the problem of finite-sample
cross-scene migration. Upon these, the ECA-DSNN model is
proposed. These added modules in the model aim to address
the shortcomings of the model’s lack of spatial context learning
capability and insufficient shallow data feature learning, thereby
significantly improving the accuracy of the pretrained model.

Compared to the benchmark model, the proposed model
shows excellent generalization ability when migrating across
different data domains. The trained model proved to be more
adaptable to different data domains. Comparing different models
with ECA-DSNN in terms of learning building detail features
and recognizing building edges. The proposed model demon-
strates proficient performance in recognizing detail features and
building edge contours. This achievement can be attributed to
the combination of contextual spatial relationships and sample
feature enhancement.

However, there are still specific limitations with our method.
Due to the relatively enlarged model parameters, the duration for
training is extended, consequently leading to higher costs com-
pared to some simpler deep learning models with fewer layers.
Despite the higher accuracy achievable with similar computing
power, shortening the training time remains a challenge. Further-
more, although the model achieves relatively excellent accuracy
with a limited number of samples, a relatively substantial amount
of source domain data is still required. Therefore, training a more
generalized model with limited source domain data remains a
future consideration.
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