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CMLFormer: CNN and Multiscale Local-Context
Transformer Network for Remote Sensing
Images Semantic Segmentation

Honglin Wu

Abstract—The characteristics of remote sensing images, such as
complex ground objects, rich feature details, large intraclass vari-
ance and small interclass variance, usually require deep learning
semantic segmentation methods to have strong feature learning
representation ability. Due to the limitation of convolutional oper-
ation, convolutional neural networks (CNNs) are good at capturing
local details, but perform poorly at modeling long-range dependen-
cies. Transformers rely on multihead self-attention mechanisms to
extract global contextual information, but it usually leads to high
complexity. Therefore, this article proposes CNN and multiscale
local-context transformer network (CMLFormer), a novel encoder-
decoder structured network for remote sensing image semantic seg-
mentation. Specifically, for the features extracted by the lightweight
ResNet18 encoder, we design a transformer decoder based on
multiscale local-context transform block (MLTB) to enhance the
ability of feature learning. By using a self-attention mechanism
with nonoverlapping windows and with the help of multiscale
horizontal and vertical interactive stripe convolution, MLTB is
able to capture both local feature information and global feature
information at different scales with low complexity. In addition, the
feature enhanced module is introduced into the decoder to further
facilitate the learning of global and local information. Experimental
results show that our proposed CMLFormer exhibits excellent
performance on the Vaihingen and Potsdam datasets.

Index Terms—Convolutional neural network (CNN), multiscale,
remote sensing images, semantic segmentation, transformer.

1. INTRODUCTION

ITH the rapid development of sensor technology and re-

mote sensing platforms, high-resolution remote sensing
images have been widely used in the fields of land cover [1],
[2], city planning [3], change detection [4], [5], and scene clas-
sification [6], [7], [8]. However, high-resolution remote sensing
images generally suffer from large intraclass variance and small
interclass variance, which makes remote sensing image segmen-
tation and detection tasks extremely challenging.
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In recent years, with the development of deep learning, re-
searchers began to apply convolutional neural networks (CNNs)
to semantic segmentation. In this context, Long et al. [9] pro-
posed the fully convolutional network (FCN), which replaces
the traditional fully connected layers with convolutional layers.
This innovative work has had a far-reaching impact on the field of
semantic segmentation of remote sensing images. Subsequently,
Ronneberger et al. [10] proposed a network model with an
encoder-decoder structure, widely known as UNet. The struc-
ture introduces a skip connection, which further improves the
segmentation accuracy. The encoder-decoder architecture shows
great potential in image semantic segmentation tasks and is grad-
ually becoming the dominant architecture of the field. Due to the
influence of complex targets and rich features in remote sensing
images, the pixel-level fine-grained classification tasks in remote
sensing semantic segmentation usually require more compre-
hensive semantic information. Researchers have noticed that
multiscale and attention mechanisms play a very important role
in enhancing semantic representation and improving semantic
segmentation performance [11], [12], [13], [14]. Chenetal. [11]
proposed DeepLabv3+ to enhance multiscale feature representa-
tion by using atrous spatial pyramid pooling module with atrous
convolution. In addition, Cheng et al. [13] proposed context
aggregation network, which combines the attention mechanism
with multiscale features to achieve higher positioning accuracy.
Zhao et al. [14] proposed an end-to-end attention-based semantic
segmentation network (SSAtNet), which introduces an attention
mechanism into a multiscale module to refine the features,
improving the accuracy of semantic segmentation. The introduc-
tion of multiscale and attention mechanisms greatly enhances
feature learning and enables the model to comprehensively deal
with scale changes and complex objects of the image, thereby
improving the accuracy of semantic segmentation.

Despite the outstanding performance of CNNs in image pro-
cessing, their limited receptive fields restrict the capability to
model long-range contextual dependencies. Long-range con-
textual dependencies are particularly crucial for dense classi-
fication tasks, such as semantic segmentation. Recognizing the
importance of context, researchers have begun to investigate
the transformer of computer vision [15], [16], [17]. In 2021,
Dosovitskiy et al. [15] proposed vision transformer (ViT), which
shows potential application prospects in image classification
tasks. Zheng et al. [16] proposed segmentation transformer
(SETR), which uses transformers as the backbone pushing the
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further development of transformers in the field of segmentation.
Transformers rely on multihead self-attention mechanisms to
model long-range dependencies. However, its computational
complexity grows quadratically with the input data size, which
usually imposes heavy computational overhead and limits its
application. To address this issue, Liu et al. [18] proposed swin
transformer based on shifted windows, which restricts attention
computations to local windows and effectively reduces the com-
putational complexity. Wang et al. [19] proposed pyramid vision
transformer (PVT), which reduces the required key-value pairs
in the traditional multihead self-attention mechanism and adopts
pyramid structure to extract image features from multiple scales,
thereby reducing the computational complexity associated with
traditional transformer models.

In semantic segmentation tasks, both global and local infor-
mation are crucial for accurately understanding the semantic
structure of images. Researchers have begun to integrate CNN
and transformer to fully leverage their respective advantages.
Chen et al. [20] proposed TransUNet, a UNet-like architecture
combining CNN and transformer, which showed excellent per-
formance in medical image classification. He etal. [21] proposed
ST-UNet, which uses a parallel dual encoder structure of CNN
and swin transformer to extract local and global features, and in-
tegrates them through the relational aggregation module. Zhang
et al. [22] proposed a segmentation network that combined
the shift window-based swin transformer with a CNN-based
decoder to establish a deep learning framework for semantic
segmentation of remote sensing images.

Inspired by the aforementioned literature, this article proposes
anew semantic segmentation architecture for remote sensing im-
ages called CMLFormer. CMLFormer adopts a hybrid architec-
ture that combines CNN and transformer components. Specifi-
cally, we employ the lightweight ResNet-18 as the encoder and
propose a multiscale local-context transformer block (MLTB).
In contrast to traditional transformers, MLTB integrates atten-
tion mechanisms with multiscale strategies to enhance feature
learning. To be precise, the self-attention mechanism is con-
strained within nonoverlapping windows to efficiently capture
local contextual information with low complexity. In order to
overcome the limitation of window for long-range modeling,
we use different scales of depth-wise separable large convo-
lutions instead of the feed forward network of the traditional
transformer to obtain multiscale contextual information. Due to
the high computational complexity of the large convolutions,
we split the large convolutions into two depth-wise separable
strip convolutions, taking into account that strip convolution has
certain advantages for the recognition of strip targets such as
cars or rivers in remote sensing images. Furthermore, a Feature
Enhancement Module (FEM) is proposed to efficiently integrate
features from global and local information to achieve more
comprehensive information fusion in the channel and spatial
dimensions. The main contributions of this article are as follows.

1) This article proposes a CMLFormer network architecture

that utilizes a lightweight CNN and a multiscale local-
context transformer in the encoder-decoder structure,
effectively exploiting both global and local information
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in remote sensing image segmentation with less compu-
tational overhead.

2) An efficient and flexible MLTB is designed to capture the
global context in remote sensing images with low com-
putational complexity by combining the nonoverlapping
block self-attention and multiscale strategies to establish
long-range dependencies between pixels.

3) We introduce a FEM to mitigate the omission of local
context details during long-range dependencies modeling
in remote sensing image segmentation.

The rest of this article is organized as follows. Section II
analyzes the work related to this article. In Section III, we
describe the research methodology of this article. Section IV
shows the robustness of the proposed model through experimen-
tal comparisons and ablation experiments. Finally, Section V
concludes this article.

II. RELATED WORK
A. Semantic Segmentation Methods Based On CNN

Semantic segmentation of remote sensing images aims to cat-
egorize individual pixels into their respective semantic classes,
thus facilitating the automatic identification and segmentation of
different objects, features or regions. In contrast to conventional
pixel-based classification methods, CNN-based approaches are
able to capture the spatial details and contextual relations within
the images, thus increasing the accuracy and robustness of the
semantic segmentation of remotely sensed imagery.

FCN [9] represents a significant milestone in the realm
of semantic segmentation and lays the foundation for further
model development. For example, UNet [10] introduced skip
connections to recover detailed information at different scales.
Various UNet-based variants followed. Wu et al. [23] proposed
DenseUnet to combine dense connections into the encoder-
decoder structure of UNet, which enables the model to better
capture features. Diakogiannis et al. [24] proposed ResUnet to
add residual connections into the encoder-decoder structure of
UNet, which solves the problems of model training difficulty
and gradient vanishing in order to better capture detailed infor-
mation. To address the challenges posed by objects and scenes
at different scales, ACNet [25] introduced an adaptive context
module that enhances the segmentation of multiscale objects
in remote sensing images by capturing context information at
different scales at different levels. To overcome the limitation
of receptive fields in CNNs, researchers employed attention
mechanisms in the structure to model long-range dependencies.
Fan et al. [26] proposed MA-Net, which adaptively combines
local and global dependencies via positional attention block
and multiscale fusion attention block to capture rich contex-
tual and channel dependencies. Sun et al. [27] proposed a
SPANet, which uses dual-branching to extract global and local
information and fuses multiscale features through a successive
pooling attention module to effectively alleviate the blurring of
object boundary segmentation in remote sensing images. Huang
et al. [28] proposed a CCNet based on a cross-attention mecha-
nism to capture long-range correlations between pixels to more
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accurately identify the semantic information in remote sensing
images.

B. Semantic Segmentation Methods Based On Transformer

Transformer is initially used in the field of natural language
processing (NLP) and has achieved remarkable success in NLP
[29]. Subsequently, transformers have been applied to the field
of computer vision. ViT [15] is the first transformer-based model
for image recognition. It divides the input image into fixed-
sized blocks and then captures contextual information within
the image using self-attention mechanism, ultimately producing
feature representations for tasks, such as classification. ViT has
achieved significant success in the field of computer vision
and has become one of the crucial architectures in computer
vision. With continuous efforts from researchers, the application
of transformers in image processing has gradually matured.
Inspired by ViT, the transformer-based model for semantic
segmentation called SETR [16] was proposed. SETR utilizes
transformers as the encoder in the semantic segmentation model
and can be combined with other decoders to achieve more com-
plex segmentation models. However, the core of the transformer
is the self-attention mechanism, which requires computing sim-
ilarity between each position and all other positions, leading to
a quadratic increase in computational complexity with image
resolution. Consequently, transformer-based models struggle to
handle high-resolution images.

To address the above issues, extensive research has been
conducted. Wang et al. [19] proposed PVT, which combines the
traditional transformer model with a pyramid structure for dense
prediction. Liu et al. [18] proposed swin transformer, which
employs a hierarchical design with shifted windows and local
self-attention confined within windows. Xie et al. [30] proposed
a novel design of positionless coded hierarchical transformer
encoder and lightweight all-MLP decoder named SegFormer.
Dong et al. [31] proposed a Cswin transformer, which paral-
lelly computes self-attention within horizontally and vertically
striped cross-shaped windows, improving the efficiency of cap-
turing global receptive fields.

C. Approach of Combining CNN and Transformer

CNN and transformer possess different advantages in the
fields of image processing and NLP. CNN excels at extracting
local features from images and adapts to objects of different
scales through its translation invariance and feature reuse capa-
bilities. On the other hand, transformer is particularly good at
modeling global dependencies to capture long-range semantic
dependencies in images when dealing with sequential data.
Although CNNs and transformers each have advantages in dif-
ferent areas, recent research has shown that combining CNNs
and transformers in image segmentation can fully exploit their
strengths and improve the performance of the model. Wang et al.
[32] proposed dual-branch hybrid CNN-transformer network
(DBCT-Net), which fully exploits the advantages of CNN in
local specific feature extraction, and achieves the modeling
of global dependencies through transformer. Gao et al. [33]
designed a dual-encoder model that uses independent CNN and
transformer branches to extract features and adaptively fuse
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them to enhance the feature presentation of the model. Guo
et al. [34] proposed CMT, a novel hierarchical transformer
architecture that combines convolutional operations to capture
local and global features, thereby improving performance and
reducing computational cost. We propose a novel network
architecture combining CNN and transformer, which uses a
lightweight CNN and a multiscale local-context transformer in
an encoder-decoder structure. The CMLFormer facilitates the
comprehensive use of the global and local information in the
image and enables the accurate segmentation of high-resolution
remote sensing images at low computational cost.

III. METHODOLOGY
A. Overall Architecture

The CMLFormer is shown in Fig. 1(a), which follows
encoder-decoder architecture. The encoder uses a lightweight
ResNet-18 network architecture to extract image features with
low complexity. ResNet-18 consists of four ResBlock stages,
each of which double downsamples the feature map. The de-
coder consists of MLTB and FEM. The output of ResBlock4
of the encoder is fed into the MLTB. ResBlock3, ResBlock?2,
and ResBlockl outputs are fed into the FEM, respectively.
The MLTB is exploited to capture long-range dependencies
with low complexity by adopting local-context multihead self-
attention (LMSA) in nonoverlapping windows and multiscale
stripe convolution (MSC). The outputs of the MLTB and encoder
stages are simultaneously fed into the FEM, which is utilized
to efficiently fuse global and local information in channel and
spatial dimensions. Finally, the output features of the MLTB
from the three stages are subjected to a summing operation and
concatenated with the final output of the decoder in order to make
full use of the feature information at each level and improve the
accuracy of the semantic segmentation. The concatenated fea-
tures are sent to the segHead for prediction. Specifically, through
3x3 convolution, 1x1 convolution and bilinear interpolation
upsampling to obtain the final feature map.

B. Multiscale Local-Context Transformer Block

Global information is essential for accurate recognition of
complicated categories in remote sensing images, such as build-
ings of different sizes, long stretches of rivers, and cars. Al-
though transformers have great potential for integrating global
information, traditional transformers may lead to degradation of
model performance due to their high complexity. Therefore, we
propose a low-complexity MLTB to efficiently extract global
context information from image regions of different scales, as
shown in Fig. 1(b). The MLTB consists of two key components,
LMSA and MSC. The LMSA restricts attention mechanism to
the local context through window partitioning and computes
the attention matrix from the query, key and value, thus ef-
fectively capturing the relevance of local details in an image.
In order to make up for the potential information loss, we
introduce residual connection and combine 3 x 3 depth-wise
separable convolution to enhance the output features. The MSC
module effectively expands the multiscale perceptual capability
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Architecture of CMLFormer and MLTB. (a) Framework of CMLFormer proposed in this article consists of a ResNet-18 encoder and a decoder consisting

of MLTB and FEM. ResNet-18 consists of four stages Resblock. (b) MLTB consists of LMSA and MSC. The LMSA contains window operations and multiple
self-attention mechanisms. The MSC adopts strip depth convolution at three different scales.

of the model through multiscale horizontal and vertical depth-
wise separable stripe convolution operations to make up for
the potential global information loss in MLTB. This strategy
plays a key role in improving the sensitivity of the model to
multiscale features and helps to improve the performance of
semantic segmentation.

Specifically, in MLTB, the channel dimension of the input
feature image X e R(B*C*H>*W) s first expanded tripled in size
using 1 x 1 convolution, which maps the C' dimension features
into 3 x C' dimensions. Then, we separate the 1D sequence
€ R(BXBx 5 % 5 xheads) x (wsxws) x B into the Query (Q), Key
(K) and Value (V) vectors using window partition operations,
where heads denote the number of attentional heads. We set
both the number of attention heads and the window size ws
to 8. The attention weights are computed based on ), K, and
V. Specifically, @ and K are dot-produced to obtain the raw
attention scores, which are then normalized using the softmax
function. Finally, the attention weights are applied to the V' to
obtain the attention output for each position, as shown in (1). In
order to restore the features to their original size for effectively
extracting multiscale information, we perform a rearrangement
operation on the window-level feature representation followed
by residual and reshape operations. The feature representation
is further enhanced using 3 x 3 convolution before MLTB out-
put. In MSC, multiscale information is obtained using stripe
convolution with three different scale sizes (7,11,21) and a sum
operation is performed to capture the detailed information at dif-
ferent scales. Finally, the multiscale information is nonlinearly
augmented and dimensionally converted by RELU activation
function and 1 x 1 convolution. The flow of MLTB is as (2), (3):

T
Attention = soft max (%{% ) % D
X{=LMSA (BN (X" 1)) + x*! (2)
X' =MSC (BN (X})) + X{ 3)

/]
1x1
Xi Cony
]
Xj
/]
1x1
X‘
3x3
Cony
y Al
<

Fig. 2. Architecture of FEM. FEM contains two branches, the top branch
obtains the spatial features by sum operation, and the bottom branch obtains the
channel features by concatenation operation.

where dj, is the channel dimension of K, X! represents the
input features of LMSA, X? represents the output features of
LMSA, and X represents the output features of MSC.

C. Feature Enhanced Module

Local information and global information complement each
other in semantic segmentation tasks. Local information helps
the model capture local features, such as details, boundaries, and
textures. The global information provides contextual semantic
information and guides the model to consider overall consistency
during the segmentation process. The effective use of local and
global information can improve the segmentation performance
of the model. However, most methods simply concatenate local
information and global information, which can lead to infor-
mation imbalance and impact the performance of model. To
effectively integrate local information and global information,
we construct FEM, as shown in Fig. 2. The FEM consists of
two branches: the first branch obtains the spatial features by sum
operation, and the second branch obtains the channel features by
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concatenation operation. Then, the channel features and spatial
features are summed to effectively fuse global information and
local information. The fused information considers the details
information of the local area and the semantic information of the
global scene to enhance the understanding and inference ability
of the model for the target. By integrating information from both
channel and spatial dimensions, the model can better incorporate
contextual information.

Specifically, in one branch, the local context information
from the encoder stage is added in the spatial dimension to the
global information from the MLTB stage. Then, the sigmoid
activation features are added to the Max pooling features at the
pixel level. Immediately, a 3 x 3 convolution is used to enhance
important contextual information and discard irrelevant features.
In the other branch, the local contextual information from the
encoder stage is concatenated with the global information from
the MLTB stage in the channel dimension, and a 3 x 3 convo-
lution is used to enhance the feature representation. Then, the
enhanced spatial features and the enhanced channel features are
aggregated using an addition operation. The FEM process is as
follows:

X" = Convix1 (X;) + Up (X;) )
X = Convs, 3 (MaxPool (X') + Sigmoid (X)) o)
X = Convzys (Concat (Convyx (X;), Up(Xj)))  (6)

X =Xs+ X¢ @)

where Xj; is the feature output from the encoder, X ; is the feature
output from MLTB, X g denotes the output of the spatial branch,
and X denotes the output of the channel branch.

IV. EXPERIMENTAL RESULTS
A. Datasets

In this section, the superiority of CMLFormer is evaluated on
the Vaihingen and Potsdam datasets.

1) Vaihingen: The Vaihingen dataset, named after the Vai-
hingen region of Stuttgart, Germany, is a publicly available
dataset of high-resolution aerial images. The dataset consists
of high-resolution color aerial images captured by drones and
ground truth labels for each image. Ground truth labels are
usually used to indicate different categories in an image, such
as buildings, roads, and trees. The dataset contains a total of 33
ortho-corrected images. In this article, we selected 16 specified
images for training, while the remaining images were retained
for testing. Each image is cut into small blocks of 256 %256 to
meet the experimental requirements.

2) Potsdam: The Potsdam dataset is constructed from aerial
images located in Potsdam, Germany. It is a public resource
widely used in computer vision and remote sensing image
processing research. The dataset includes high-resolution aerial
images covering different landscapes in urban areas, such
as buildings, roads, and lawns. Each image is accompanied
by a detailed ground truth label, covering different types of
ground object information. In total, the Potsdam dataset contains
38 images that have been orthorectified. In this article, we
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selected 16 specific images for training, while the remaining
17 images were retained for testing. Each image is cropped to
form a small image block with a size of 256x256 to meet the
experimental needs.

B. Experimental Setup

Each experiment is performed on a single NVIDIA Tesla
V100S GPU. We used the SGD optimizer for training. The
weight decay is set to 0.0001. The initial learning rate is set to
0.01, and the learning rate is updated using the “poly” learning
strategy, which is a polynomially decaying learning rate method
commonly used to train deep learning models. Its update rule
can be expressed as follows:

®)

cur_iter \ POV
Ir=base Irx (1—

max_iter

where base_Ir denotes the initial learning rate, cur_iter denotes
the current number of iterations, max_iter denotes the maximum
number of iterations, and power is a power exponent controlling
the decay of the polynomial. In this article, power is set to 0.9.
The training images are randomly flipped and cropped for data
augmentation.

As shown in formula (9), the construction of the loss function
follows the weighted combination of cross-entropy and dice loss
[41]. We set « to 0.4 in this article. To evaluate our results, we
rely on two main evaluation metrics: mean intersection over
union (mloU) and mean F1 score (mF1). The specific formula
can be seen in the following:

Loss = « - CrossEntropyLoss + (1 — «) - DiceLoss (9)

M

.. TP;
Precision = M ; m (10)
M
1 TP,
Recall = — —7 11
ecd M;ij T EN; an
Precisi Recall
Fl = 9 % rec%s%on X Reca (12)
Precision + Recall
M
TP;
IoU = — J 13
moe M;TPjJrFPjJrFNj (13)

where FN;, FP;, and TP; represent false negatives, false pos-
itives, and true positives, respectively, for object indexed as
class j.

C. Semantic Segmentation Results and Analysis

1) Results on the Vaihingen Dataset: The effectiveness of the
CMLFormer on the Vaihingen dataset is illustrated by the quanti-
tative metrics presented in Table I. In particular, the CMLFormer
scores 84.18% for mF1 and 73.07% for mloU. The methods
we compared include CNN-based approaches, such as FCN,
DeeplabV3+, DANet, PSPNet, and MANet. The transformer-
based method we compared is SwinUnet. In addition, to thor-
oughly validate the effectiveness of the CMLFormer, we also
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TABLE I
QUANTITATIVE COMPARISON RESULTS ON THE VAIHINGEN DATASET
Method F1%
Imp.surf.  Building Low.veg.  Tree Car | mloU% mF1% Param/M  FLOPS/G
FCN [9] 85.86 89.34 75.62 83.72 7533 69.84 81.79 19.17 25.54
DeeplabV3+ [11] 87.74 91.55 76.80 85.01  73.99 71.52 83.02 59.34 65.27
DANet [35] 85.92 90.79 75.50 83.57 60.48 66.85 79.25 47.44 13.85
BANet [36] 86.99 91.01 76.05 84.09  72.05 70.14 82.04 3.25 12.73
PSPNet [37] 84.33 88.03 74.50 83.33  58.38 64.71 77.71 52.52 50.51
MANet [38] 86.19 89.67 75.68 84.42 76.44 70.56 82.48 35.86 77.75
SwinUnet [39] 86.27 89.01 76.22 84.30 71.26 69.17 81.41 41.34 68.34
TransUnet [20] 87.75 91.74 77.21 84.56  76.86 72.29 83.62 100.44 35.84
UnetFormer [40] 87.54 91.34 76.43 84.77 77.42 72.10 83.50 11.48 16.99
CMLFormer(ours) 88.01 91.90 77.26 84.87 78.82 73.07 84.18 11.81 21.25
Bold indicates the best results. The category metrics are F1 scores.
O Impervious Surface . Building O Low Vegetation . Tree O Car .Cluller/backglound
o  Fa 7
GroundTruth
W .\
Smenet TransUnet UnetFormer CMLFormer
GroundTruth
PSPNet SwinUnet TransUnet UnetFormer CMLFormer
Fig. 3. Visualization results of the Vaihingen dataset. The main differences are highlighted by the red boxes in the figure.

compared it against some hybrid CNN and transformer methods,
namely, UnetFormer, TransUnet, and BANet. From Table I, it
can be observed the CMLFormer outperforms the majority of
both CNN-based and transformer-based frameworks. As CML-
Former is an architecture combining CNN and transformer, the
comparison results with UnetFormer, TransUnet, and BANet are
more meaningful.

We visualize the comparative results in CNN-based methods
and show that the CMLFormer is effective in alleviating the
problem of high intraclass variance caused by occlusions com-
pared with other models. For example, in the red box areas of the
first and second rows in Fig. 3, the occlusion of light and shadows
creates a gap between the taller building and the neighboring
lower building, leading to inaccurate recognition of the building
by other models. In contrast, CMLFormer makes an accurate
recognition in these cases. In the red box areas of the third and

fourth rows, other models exhibit less significant performance
in obtaining global contextual information, while CMLFormer
effectively mitigates this issue and performs exceptionally well
in extracting large targets.

2) Results on the Potsdam Dataset: CMLFormer is com-
pared with the mainstream segmentation methods, as given
in Table II. CMLFormer achieves excellent performance with
mloU of 80.06% and mF1 of 88.79%. This is a significant im-
provement over the other methods. Among the traditional CNN
models, Deeplabv3 + performed well, and the mIoU and mF1
of CMLFormer increased by 0.99% and 0.64%, respectively.
It is worth noting that the model parameters of CMLFormer
represent only 12% of the TransUnet parameters, but mloU and
mF]1 still exceed TransUnet by 0.3% and 0.21%, achieving the
most advanced performance.This result is clearly shown in the
visual effect in Fig. 4.
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TABLE II
QUANTITATIVE COMPARISON RESULTS ON THE POTSDAM DATASET

Method F1%
Imp.surf. Building Low.veg.  Tree Car mloU% mF1%  Param/M  FLOPS/G
FCN [9] 89.76 93.64 82.95 83.12  89.82 78.60 87.86 19.17 25.54
DeeplabV3+ [11] 90.40 95.01 83.82 84.22 87.32 79.07 88.15 59.34 65.27
DANet [35] 89.35 94.71 82.44 84.18  82.71 76.81 86.68 47.44 13.85
BANet [36] 90.36 94.00 83.39 83.04 89.49 78.92 88.06 3.25 12.73
PSPNet [37] 89.45 93.38 82.13 80.00  89.36 77.12 86.86 52.52 50.51
MANet [38] 90.10 94.38 83.11 8342  89.85 79.12 88.17 35.86 77.75
SwinUnet [39] 90.30 94.41 83.05 82.83  88.84 78.68 87.89 41.34 68.34
TransUnet [20] 90.52 94.68 83.87 83.58  90.24 79.76 88.58 100.44 35.84
UnetFormer [40] 90.14 94.44 83.15 83.16  90.07 79.16 88.19 11.48 16.99
CMLFormer(ours) 90.79 94.96 84.01 8391  90.31 80.06 88.79 11.81 21.25
Bold indicates the best results. The category metrics are F1 scores.
O Impervious Surface . Building O Low Vegetation . Tree O Car .Cluttcr/backgmund
~ N ‘ A '.' \ - g A

- i

GroundTrlith
b

MANet

AN .
MANet

PSPNet SwinUnet

Fig. 4.

On the Potsdam dataset, the visual comparison results in
Fig. 4 show several aspects. In the first two rows, there is some
semantic overlap due to the similarity between low vegetation
and trees, which poses a challenge for accurate classification
by the models. When dealing with such similar and overlapping
categories, CMLFormer excels in the clarity of the segmentation
boundary. In addition, the size and shape of the buildings in the
image vary greatly, increasing the diversity within the building
category. As shown in the third and fourth rows in the red box
area, CMLFormer performs excellently in extracting buildings,
successfully reducing misclassification, boundary blurring, and
omission issues, demonstrating outstanding performance.

3) Ablation Study: Comprehensive experiments are con-
ducted on the Vaihingen dataset to verify the effects of MLTB
and FEM. Since the CMLFormer uses ResNet-18 as the back-
bone network, we choose to connect different stages of ResNet-
18 as the baseline. The mIoU and mF1 scores are used to assess

TransUnet UnetFormer

DeepLabv3+

TransUnet UnetFormer CMLFormer

Visualization results of the Potsdam dataset. The main differences are highlighted by the red boxes in the figure.

the performance of each module, and the parameters are used to

reflect the degree of lightness. As given in Table III, the results

of ResNet-18 + MLTB + FEM verify the effectiveness of each
module.

1) Effectiveness of MLTB: As given in Table III, when MLTB

was incorporated into the CMLFormer framework,

the mloU and mF1 increased by 4.04% and 3.56%,

respectively. Notably, the segmentation accuracy of the

“car” class shows the most significant improvement, with

aremarkable F1 increase of 12.8%. Among the other four

“impervious surface” classes, there are F1 improvements

of 1.6%. The “building” class also exhibits a notable

F1 improvement of 1.45%, while the “low vegetation”

class demonstrated a considerable F1 improvement of

1.32%. In addition, the “tree” class shows a substantial

F1 increase of 0.62%. From the images in the first row

of Fig. 5, it can be seen that the model performed poorly
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TABLE III
QUANTITATIVE COMPARISONS AMONG ABLATION STUDIES ON THE VAIHINGEN DATASET

Method Module _ F1%
SUM Imp.surf. Building Low.veg.  Tree Car mloU% mF1%  Param./M
ResNet-18(baseline) X 85.92 90.30 74.83 83.60 65.20 67.52 79.97 11.42
baseline + MLTB X 87.52 91.75 76.15 84.22  78.01 71.56 83.53 11.65
baseline + MLTB + FEM X 87.63 91.48 76.54 84.60 78.41 72.42 83.73 11.77
baseline + MLTB + FEM v 88.01 91.90 77.26 84.87 78.82 73.07 84.18 11.81

The bold values indicate the best results.

v ) f—

Ground Truth Baseline BaselinetMLTB ~ CMLFormer ~ CMLFormer+SUM

Fig. 5. Ablation experiment on the vaihingen datasets. Main differences are
highlighted by the red boxes in the figure.

in recognizing building edges before the introduction
of MLTB. With the incorporation of MLTB, the model
mitigates the phenomenon of blurry segmentation edges.
Effectiveness of FEM: Table III reflects the joint effect of
studying the two modules under the CMLFormer frame-
work. After incorporating FEM, the mloU and mF1 in-
crease by 0.86% and 0.2%, respectively. In particular,
there was an improvement of 0.4%, 0.11%, 0.4%, and
0.38% in the F1 of “car,” “impervious surface,” “low
vegetation,” and “tree.” From the images in the second
row of Fig. 5, it can be seen that under the influence of
sunlight, the shadows cast by the “building” completely
obscured the cars, posing a significant challenge to model
recognition. In addition, the proximity of cars result in
intraclass shadow occlusion. Before introducing FEM,
the model struggles to recognize buildings and objects
obscured by shadows. The model accurately segments the
edges of small objects in dense areas and effectively miti-
gates the negative impact of shadows on car segmentation
after introducing FEM.

Effectiveness of SUM: The effect of with-SUM-
CMLFormer is seen in Table III. After adding SUM,
mloU and mF1 are improved by 0.65% and 0.45%, respec-
tively. Specifically, the F1 of “car,” “impervious surface,”
“building,” “low vegetation,” and “tree” were improved
by 0.41%, 0.38%, 0.42%, 0.72%, and 0.27%, respectively.
Fig. 5 shows that the model improves the acquisition of
information about building edges. Furthermore, by includ-
ing SUM, the model successfully reduces the negative
effect of shadows on car segmentation.

2)

3)

V. CONCLUSION

In this article, we propose an innovative decoder based
on transformer architecture and construct a CMLFormer for

remote sensing images semantic segmentation. Considering the
importance of global and local information in remote sensing
image segmentation, we design a MLTB that integrates attention
mechanisms with multiscale strategies to effectively exploit
global information with lower computational cost, and develop
a FEM to compensate for the omission of local context details in
the MLTB. Extensive comparison and ablation experiments on
the Vaihingen and Potsdam datasets demonstrate the effective-
ness of CMLFormer. Although CMLFormer achieved excellent
overall performance on both datasets, on the Potsdom dataset
the building class and tree class are not optimal compared with
the other compared methods. We are committed to analyzing the
causes of this problem in future research, including possible data
characteristics, lack of fit in the model structure, and possible
overfitting or underfitting. In the meantime, we will continue to
work on making CMLFormer more lightweight to improve its
segmentation performance on large datasets. This may involve
further simplifying the model structure, optimizing parameter
settings, and adopting advanced light-weighting techniques.
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