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Addressing Sample Inconsistency for Semisupervised
Object Detection in Remote Sensing Images

Yuhao Wang

Abstract—The emergence of semisupervised object detection
(SSOD) techniques has greatly enhanced object detection perfor-
mance. SSOD leverages a limited amount of labeled data along with
a large quantity of unlabeled data. However, there exists a problem
of sample inconsistency in remote sensing images, which manifests
in two ways. First, remote sensing images are diverse and complex.
Conventional random initialization methods for labeled data are
insufficient for training teacher networks to generate high-quality
pseudolabels. Finally, remote sensing images typically exhibit a
long-tailed distribution, where some categories have a significant
number of instances, while others have very few. This distribution
poses significant challenges during model training. In this article,
we propose the utilization of SSOD networks for remote sensing
images characterized by a long-tailed distribution. To address the
issue of sample inconsistency between labeled and unlabeled data,
we employ a labeled data iterative selection strategy based on the
active learning approach. We iteratively filter out high-value sam-
ples through the designed selection criteria. The selected samples
are labeled and used as data for supervised training. This method
filters out valuable labeled data, thereby improving the quality of
pseudolabels. Inspired by transfer learning, we decouple the model
training into the training of the backbone and the detector. We
tackle the problem of sample inconsistency in long-tail distribution
data by training the detector using balanced data across categories.
Our approach exhibits an approximate 1% improvement over the
current state-of-the-art models on both the DOTAv1.0 and DIOR
datasets.

Index Terms—Active learning, long-tailed distribution, remote
sensing, semisupervised object detection (SSOD).

1. INTRODUCTION

bject detection in remote sensing images has under-
O gone substantial advancements in recent years. Numerous
remote sensing object detection datasets and detection meth-
ods have been constructed and studied, resulting in notable
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Fig. 1. In remote sensing images, there exists a significant imbalance in the
number of instances across different classes. Different images contain varying
information and contribute differently to training the network.

achievements. However, the process of instance-level labeling
is resource-intensive, posing a hindrance to the enhancement of
existing detection models. To address this challenge, semisu-
pervised methods have emerged as a potential solution. These
methods enable learning with a limited number of labeled sam-
ples and a large pool of unlabeled samples .

Inspired by the successful application of semisupervised
learning (SSL) in image classification [1], researchers have
extended the teacher—student learning framework to semisu-
pervised object detection (SSOD) and achieved promising out-
comes [2], [3]. These algorithms employ a teacher network to
generate high-quality pseudolabels. These pseudolabels serve as
supervision for training the student network. This self-training
approach proves beneficial in scenarios with limited labeled data
and large amounts of unlabeled data. Tarvainen et al. [4] intro-
duced the exponential moving average (EMA) technique to the
teacher network to alleviate the class imbalance and overfitting
problems. Active teacher [5] proposed a dataset-division method
based on active learning to enhance the utilization of annotation
information.

Although these methods have demonstrated remarkable
achievements in the domain of SSOD, they still have certain
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limitations for remote sensing images. The issue of sample in-
consistency significantly affects the efficacy of semisupervised
methods on remote sensing images, as shown in Fig. 1. First,
there exists inconsistency in the value of the samples. Different
remote sensing images have varying information entropy, object
quantity, and categories, resulting in different contributions to
training the network. Traditional approaches relying on random
initialization of labeled data fail to ensure the maximum contri-
butions. However, the acquisition of knowledge from valuable
samples plays a pivotal role in generating high-quality pseudola-
bels.

Second, the long-tail distribution in remote sensing images is
also a manifestation of the sample inconsistency issue. There is
a notable disparity in the number of instances across different
classes in remote sensing images. Imbalanced categories lead
the network to learn a large amount of biased information.

To tackle the inconsistency in sample values, we adopt an
iterative approach that focuses on selecting samples with the
highest contribution to network learning. This idea originates
from the concept of active learning. We extend the traditional
teacher—student framework [6] into an iterative framework. The
labeled dataset is partially initialized, enhanced, and updated
through an active sampling (AS) strategy. This enables the
network to maximize the utilization of limited label information
and improve the quality of pseudolabels. We employ a com-
prehensive set of metrics to select samples that offer the most
value for SSOD. For the long-tail distribution problem, we use
a transfer-learning-based method to address the long-tail prob-
lem. High-quality representations can be learned using long-tail
datasets. At the same time, we can obtain strong long-tail recog-
nition capabilities by tuning classifiers. Features learned from
head classes with abundant training instances can be transferred
tounder-represented tail classes. We employ a two-stage training
strategy to decouple the learning process into a representation
learning stage and a detector learning stage. It should be noticed
that this article is an extension and improvement of our prior
work [7] presented in IGARSS 2023.

In summary, the main contributions of this article are as
follows.

1) This article introduces an SSOD network specifically
designed for remote sensing images, with a focus on
addressing the challenge of sample inconsistency. The
network tackles the problem of maximizing the value of
samples by incorporating an active data selection strategy.
Furthermore, it mitigates the impact of the long-tail distri-
bution issue through the utilization of a decoupled training
approach.

2) The active selection strategy filters out the most valu-
able samples for annotation based on predefined metrics.
The data initialization approach improves the quality of
pseudolabels. A two-stage training method is adopted
to decouple the learning process into the representation
learning stage and the detection learning stage.

3) The experimental results prove the state-of-the-art perfor-
mance of the proposed method. This article also provides
a new perspective on the application of SSOD in remote
sensing images.
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The rest of this article is organized as follows. Section II
elucidates the relevant literature on object detection, SSOD,
active learning, and long-tail training. Section III presents the
methodology and procedure for active data labeling. It also
expounds on the training strategies employed to address the
long-tail problem. Section IV substantiates the effectiveness
of the proposed methods through extensive experimentation.
Finally, Section VI concludes this article.

II. RELATED WORK

A. Object Detection

The rapid advancement of deep neural networks has led to
remarkable progress in the field of object detection, both in
academic research and industrial applications [8], [9], [10], [11],
[12], [13]. Object detection methods can be broadly categorized
into two genres: one-stage and two-stage detectors. One-stage
approaches, such as YOLO [13] and SSD [12], directly predict
the object’s coordinates and probability distribution from the
feature map. On the other hand, two-stage models, exemplified
by the RCNN series [9], [11] and its variants [14], employ region
proposal networks [15] to sample potential objects, followed by
predicting the probability distribution and coordinate informa-
tion of the objects. In line with prior research efforts [6], [16],
our focus lies in the SSL of two-stage models, and we utilize
Faster-RCNN [15] as our baseline network.

B. Semisupervised Object Detection

In the domain of computer vision, the predominant focus
of current research on SSL is on image classification [17],
[18]. This line of inquiry can be broadly divided into two
categories: consistency-based and pseudolabeling-based ap-
proaches. Consistency-based methods [19], [20], [21], [22] aim
to enhance the model’s resilience to noise by producing consis-
tent prediction outcomes. Pseudo-labeling methods [16], [17],
[22], on the other hand, involve training classifiers with ground-
truth annotations and generating pseudolabels for unlabeled
data, before ultimately retraining models using all available data.

In recent times, a growing number of research efforts [6],
[16], [21], [23] have explored the application of SSL to object
detection. For instance, CSD [21] employs multiple random
image flips to drive the model toward producing consistent
predictions for such flipped images. STAC [16] proposes the
first teacher—student-based framework for SSOD. However, the
static annotation strategy employed by STAC results in fixed
pseudolabels that restrict the final detection performance.

Nevertheless, despite ongoing efforts, the issue of profound
instability during the initial training phase persists, necessitating
the implementation of a stringent confidence score threshold
for the generation of pseudolabels. In an attempt to address
these challenges, unbiased teacher [6] leverages the EMA tech-
nique [4] to progressively optimize the teacher model based
on the knowledge obtained from the student model. Moreover,
unbiased teacher also employs EMA [4] in combination with
focal loss [24] to effectively tackle the problem of pseudolabel
overfitting in the teacher—student learning process.
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Fig. 2. Overall framework of the proposed model.

C. Active Learning

Efforts toward enhancing learning efficiency have garnered
significant attention within the academic community [25], [26].
Moreover, to mitigate the labeling costs associated with object
detection, several active-learning-based approaches have been
introduced [27], [28], [29]. For example, Wang et al. [27]
adopted distinct AS metrics tailored for various stages in the
object detection process. CALD [28] assesses information by
evaluating the data consistency of bounding boxes before and
after augmentation. In addition, MI-AOD [29] employs mul-
tiinstance learning techniques to suppress pseudolabel noises
effectively.

D. Long-Tailed Training

One line of research aimed at addressing the imbalanced
training data is the knowledge transfer from head to tail classes,
which has been explored in the literature [30], [31]. Transfer-
learning approaches in this context seek to leverage the features
learned from head classes, which typically have ample training
instances, to benefit the underrepresented tail classes. Recent
endeavors in this area encompass methods, such as transferring
the intraclass variance [32] and transferring semantic deep fea-
tures [31]. Nonetheless, it is worth noting that devising a dedi-
cated model for effective feature transfer is often a challenging
and intricate task.

In recent studies, it has been demonstrated that the data
distribution does not exert any influence on the representation
learning of networks [33]. Consequently, there has been a shift
toward decoupling the representation and classifier learning
processes, leading to notable performance enhancements on
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long-tailed datasets. In our model, we also adopt and incorporate
this fundamental concept to further improve its efficacy.

III. METHOD
A. Semisupervised Object Detection

The overall framework of our network is illustrated in
Fig. 2. The methodology comprises an iterative teacher—student
framework and a two-stage training strategy. The limited la-
bel set is partially initialized and progressively augmented.
Following each iteration, the expert teacher network assesses
the significance of unlabeled instances utilizing the proposed
metrics, namely, information, diversity, and difficulty. Ac-
tive data augmentation is subsequently executed based on
the evaluation outcomes. For solving the problem of cate-
gory imbalance, a two-stage training strategy is employed
to decouple the learning process into a representation learn-
ing stage of the distribution data and a detector learning
stage.

Provided a collection of annotated data Dy, = {X, Y.},
alongside a collection of unlabeled data Dy = { X/}, where
X refers to the examples and Y represents the label set, the
objective of SSL is to optimize the performance of the model by
leveraging both labeled and unlabeled data.

The proposed SSOD approach incorporates a pair of detection
networks, teacher and student network, which share identical
configurations, as illustrated in Fig. 2. For the baseline detection
network, Faster-RCNN [15] is adopted. Specifically, the teacher
network is responsible for generating pseudolabels, whereas
the student network is optimized using both ground-truth and
pseudolabels.
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Fig. 3.
our semisupervised approach.

The optimization loss for the student network can be defined
as

L= Lsup +A- Lunsup (D

where Lg,, and Ly, represent the losses corresponding to
supervised and unsupervised learning, respectively. A is the
hyperparameter used to balance between Ly, and Lygsup-

For object detection, Lg,, comprises the classification loss
Lqs of RPN and ROI head, in addition to the loss associated
with bounding box regression, denoted as Lio.. Then, Ly, is
defined as

N;

(Lcls (l’;, y}:ls) + Lioc (I;, yéls))

N«
1=1

Lup 2

where x; refers to the labeled example, y.s and yjo. represent
its corresponding classification and bounding box regression
labels, respectively. The variable /V; denotes the number of x;. ¢,
represents the cth coordinate of the output image z;. In terms of
Lioc, the smooth L loss is utilized for bounding box regression,
ie.,

0.522,
|z| — 0.5,

lz] <1
otherwise.

3

Smoothy, (z) =

For Lypsup, we compute the category loss by comparing the
predicted results of the student network with the pseudolabels
generated by the RPN and ROI head of the teacher network. It
is formulated as

N,

1 o
Lunsup = F Z Lis (Jﬂfu géls) 4)
Ui=1

where L is the same as (2), and ¢ is the pseudolabels
generated by the teacher network.

In order to circumvent the problems of overfitting, a technique
proposed in references [6], [23] is employed. The optimization
of the teacher network is frozen during semisupervised training,
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and its parameters are updated using EMA via

0; < ab; "+ (1 —a)0: (5)
where 0; and 6 represent the parameters of the teacher and
student networks, respectively, and ¢ denotes the ith training step.
a is the hyperparameter to determine the speed of parameter
transmission, which is normally close to 1. To enhance the
quality of pseudolabels, we utilize nonmaximum suppression
(NMS) and a confidence threshold to eliminate redundant and
ambiguous pseudolabels.

B. Active Sampling

Within the proposed framework shown in Fig. 3, the label
set is partially initialized and augmented through the use of the
teacher network after each round of semisupervised training.
We investigate which examples are essential for SSOD. Three
AS metrics, including difficulty, information, and diversity, are
employed.

In SSOD, the difficulty score sdiff of an unlabeled example
is calculated based on the category prediction of the teacher
network. This score is defined as

N.

n
: IR
S;hffziﬁ§ ’E p (ck;bj, 0:) logp (ck; by, 0r)
b j=1k=1

(6)

where n! represents the number of predicted bounding boxes
after NMS and confidence filtering. N. denotes number of
object categories, and p(cx; b;, 6;) is the prediction probability
of the k-th category by the teacher network. Referencing (6), the
prediction uncertainty of the teacher network can be utilized to
determine whether an image presents a challenge for SSOD.
Information serves as a metric used to quantify the amount
of information contained in an unlabeled image for SSOD. In
the context of object detection, a higher level of information
richness indicates the presence of an increased number of visual
concepts within the image. It enables the model to learn more
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features for object detection. Thus, we utilize prediction confi-
dence to evaluate this metric as follows:

sinfo Z confidence (bja 0) )

3
j=1

where the confidence(b;, 6;) represents the highest confidence
score among the predicted bounding boxes by the teacher
network.

Diversity serves as a metric for evaluating the distribution of
object categories within an image. The diversity score s%"¢ is
computed by

ste = ek (®)
where c¢; represents the predicted category of the jth bounding
box, and | - | denotes the cardinality.

The proposed metrics have the potential to address the issue of
determining suitable examples for SSOD. However, a practical
challenge emerges due to the fact that models in different states
may require varying levels of label information. In addition,
optimizing the benefits of these metrics without conducting
extensive experimentation presents a significant hurdle. Hence,
we introduce a simple yet effective method to automatically
integrate these metrics.

Prior to the combination, the values are normalized as

m
N st

m o __ 7
5" = o )
max

where m € {difficulty, information, diversity} represents the
metrics. sp, denotes the maximum value of this metric.
Considering that these metrics capture image information
from different perspectives, we proceed to construct a 3-D
sampling space to represent each example, represented by §; =
{diff ginfo_gdivel "The evaluation outcome of each unlabeled
example can be viewed as a point in this space. Then, we apply
L, normalization to the data points, resulting in a single scalar

value SLy» ie.,

3
s, =l () =llslly= (/> _ s (10)

where § = (s?iff, dive

7

info

8§

, S > Empirically, we utilize the L; norm

to combine these three metrics.

C. Long-Tailed Training Strategy

In the remote sensing images, the issue of long-tail dis-
tribution presents a significant challenge. This phenomenon
refers to the occurrence where a large number of classes in
the dataset are represented by a relatively small number of
instances, while a few classes are represented by a large num-
ber of instances. This skewed distribution leads to a scenario
where the majority of classes have insufficient examples, com-
plicating the process of accurate classification and analysis.
The long-tail distribution in remote sensing images hampers
the efficacy of SSOD algorithms, which typically presume a
relatively balanced dataset. It necessitates the development of
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Fig. 5. Experimental results on DOTAv1.0. Experiments were conducted with a setting of 20% labeled data. The red circles, respectively, indicate the missed
objects, falsely detected objects, and low-scoring objects within the image. (a) Ground Truth. (b) EPC. (c) Active Teacher. (d) Soft Teacher. (e) Unbiased Teacher.
(f) Ours.
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Fig. 6.
selected by combination metrics.

specialized approaches that can effectively handle the dispar-
ity in sample sizes across various classes, thereby ensuring a
more robust and comprehensive analysis of the remote sensing
data.

For the class imbalance problem, previous work [34] shows
that high-quality representations can be learned using long-tail
datasets, and at the same time, strong long-tail recognition
capabilities can be obtained by tuning classifiers using only
class-balanced datasets. In remote sensing images, the issue of
long-tail distribution does not hinder the learning of features.
The network can utilize all the data for thorough feature ex-
traction and learning. With a substantial amount of data, the
network is capable of learning both low-level and high-level
features of remote sensing objects. However, in specific clas-
sification and detection processes, the long-tail distribution has
a significant impact on the detector. Therefore, it is necessary
to create a specially balanced subdataset to train the detector
separately. To retain the vast amount of effective and diverse

Samples selected by different metrics. (a) Sample selected by difficulty. (b) Sample selected by information. (c) Sample selected by diversity. (d) Sample

features previously learned by the network, fine-tuning on a
pretrained model presents an ideal solution. This approach
not only maximizes the preservation of knowledge previously
acquired through extensive data but also mitigates the limi-
tations imposed by the long-tail distribution problem on the
detector.

Inspired by this, we employ a two-stage training strategy
to decouple the learning process into a representation learning
stage of the distribution data and a detector learning stage shown
as Fig. 4. In the representation learning phase, neural networks
are trained on a given dataset. During the detector learning
phase, only the detector parameters are updated for retraining by
freezing the backbone parameters on the class-balanced dataset.
We construct these class-balanced datasets from given labeled
data without additional images.

Utilizing data augmentation during the testing phase yields
improved overall performance. Nonetheless, owing to the in-
fluence of the long-tail constraint, the model inclines toward
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TABLE I
EXPERIMENTAL RESULTS ON DOTAV1.0. THE EVALUATION METRIC IS MAP

10% of samples  20% of samples  40% of samples

Supervised 50.21 61.26 67.25
Unbiased teacher [6] 57.85(+7.64) 67.34(+5.88) 71(+3.75)
Soft teacher [40] 62.45(+12.24) 70.78(+9.32) 73.96(+6.71)
Active teacher [5] 64.2(+13.99) 72.3(+11.04) 76.5(+9.25)
EPC [41] 64.7(+14.49) 72.93(+11.67) 76.45(+9.2)
Ours 65.34(+15.13) 73.68(+12.22) 76.87(+9.62)

Bold fonts mean the best performance.

TABLE II
EXPERIMENTAL RESULTS ON DIOR. THE EVALUATION METRIC IS MAP

10% of samples  20% of samples  40% of samples

Supervised 49.35 58.99 66.73
Unbiased teacher [6] 54.75(+6.40) 64.77(+5.78) 69.35(+2.62)
Soft teacher [40] 59.63(+10.28) 66.03(+7.04) 72.30(+5.57)
Active teacher [5] 62.1(+12.75) 68.4(+9.41) 73.72(+6.99)
EPC [41] 63.3(+13.95) 68.98(+9.99) 73.02(+6.29)
Ours 62.47(+13.12) 69.76(+10.77) 73.94(+7.21)

Bold fonts mean the best performance.

TABLE III
EFFECTS OF AS AND LTS ARE STUDIED IN EXPERIMENTS CONDUCTED ON
10% DOTAV1.0 LABELED DATA SETTINGS

AS LTS mAP
57.85

v 64.2
v 63.05
v v 65.34

Bold fonts mean the best performance.

predicting samples as belonging to the dominant class. Con-
sequently, the efficacy of test-time augmentation (TTA) is di-
minished. To address this concern, we employ a nonparametric
postprocessing methodology known as classification with alter-
nating normalization (CAN [35]).

IV. EXPERIMENT
A. Datasets and Evaluation Metrics

In order to demonstrate the practicality and generalization
of the model proposed in this article, experiments were con-
ducted on two datasets, namely, the DIOR dataset [36] and the
DOTAv1.0 [37] dataset.

1) DOTAv1.0: [37] contains 2806 large-scale aerial images
with sizes ranging from 800 x 800 to 4000 x 4000. It con-
sists of 188282 instances, including airplanes (PL), baseball
diamonds (BD), bridges (BR), ground track fields (GTF), small
vehicles (SV), large vehicles (LV), ships (SH), tennis courts
(TC), basketball courts (BC), storage tanks (ST), soccer fields
(SBF), roundabouts (RA), harbors (HA), swimming pools (SP),
and helicopters (HC).

2) DIOR (See [36]): Serves as a substantial and openly
accessible benchmark for object detection tasks in optical
remote sensing images. It comprises 23 463 images and a total of
192472 instances, covering a diverse range of 20 distinct object
classes.
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During our experimental process, the split is further divided
into two subsets: the labeled set and the unlabeled set. This
division follows a similar approach to prior studies in SSOD.
In our practical implementation, we employ various proportions
of labeled data from the DOTAv1.0 and DIOR dataset, namely
10%, 20%, and 40%, for conducting experiments and comparing
the results with other SSOD methods. The remaining examples
are considered as unlabeled data.

For model evaluation, we adhere to the methodologies em-
ployed in previous studies [6], [16], [21], [23] and utilize mean
average precision (mAP) with intersection over union (IoU)
thresholds ranging from 0.5 to 0.95 as the evaluation metric for
our experiments. In addition, the validation sets of DOTAv1.0
and DIOR are employed for evaluation purposes.

B. Implementation Details

In accordance with prior studies [38], [39], a cropping tech-
nique is employed to divide the original images into patches of
size 1024 x 1024, with a stride of 824 pixels. It results in a pixel
overlap of 200 between adjacent patches. In order to augment
the unlabeled data, we utilize an asymmetric data augmentation
approach. All models undergo training for a total of 180000
iterations using 2 GTX2080 GPUs. The stochastic gradient
descent (SGD) optimizer is employed with an initial learning rate
of 0.001, which is reduced by a factor of 10 at iterations 120000
and 160 000. The momentum is set to 0.9, while the weight decay
is set to 0.0001. The EMA is configured with oo = 0.9996, and
the unsupervised loss is assigned a weight parameter of A = 4
for all experiments. In all conducted experiments, half of the
labeled dataset is randomly selected, while the remaining half
is actively chosen after the process of SSL. The batch size is
set to eight, comprising four labeled images and four unlabeled
images selected through random sampling.

C. Results on DOTAvI1.0

Initially, we conducted a comparison between our method and
arange of teacher—student based SSOD methods on DOTAv1.0,
the outcomes of which are presented in Table 1. For a fair
comparison, we reimplemented these methods with the same
settings. We evaluated our method under different labeled data
proportions. The aforementioned table indicates that all the
teacher—student based techniques significantly outperform the
conventional supervised learning approach. Furthermore, we ob-
served that the aforementioned teacher—student methods, such as
active teacher [5], which have been recently proposed, exhibited
marked improvements over the pioneering method, namely, un-
biased teacher [6], owing to their meticulous design frameworks.
This observation underscores the noteworthy advancements in
teacher—student based SSOD. Our method achieves state-of-the-
art performance under all proportions.

The method achieves good performance under all proportions.
Specifically, it obtains 65.34%, 73.68%, and 76.87% mAP on
10%, 20%, and 40% proportions, respectively, surpassing our
supervised baseline by +15.13, +12.22, and 4-9.62 mAP. Fur-
thermore, we outperform the method EPC [41] by 4-0.64, 4-0.75,
and +0.42 under various proportions.
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TABLE IV
ABLATION EXPERIMENTS OF LTS ON DOTAV1.0; EXPERIMENTS ARE PERFORMED USING 10% OF LABELED DATA

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA Sp HC mAP
Without LTS 855 684 479 56.1 594 832 756 941 628 71.8 583 54 75.7 532 167 642
With LTS 86 692 49.1 574 611 845 767 952 632 734 595 556 765 541 18.6 6534

Fig. 7. Experimental results on DIOR were conducted using a 20% labeled
data setting. Each line represents the ground truth on the left side, while the
predicted visualization results are shown on the right side.

TABLE V
EFFECTS OF AS ARE INVESTIGATED IN EXPERIMENTS CONDUCTED ON 10%
DOTAV1.0 LABELED DATA SETTINGS

Method mAP

With difficulty metrics 63.75
With information metrics 63.67
With diversity metrics 63.15
With L1 combination metrics 65.34
With L2 combination metrics 64.25

Bold fonts mean the best performance.

The qualitative results of our method compared with other
networks are shown in Fig. 5. The proposed model in this
article can accurately detect large-scale roundabout targets and
dense small-scale small vehicle targets, while also detecting
swimming pool targets in complex backgrounds. In addition to
achieving high accuracy in category recognition, the regression
of detection boxes is also highly precise. With the help of our AS,
the model is able to exploit more potential semantic information
from the unlabeled data, helping reduce false predictions and
improve the pseudolabel quality. By employing the long-tailed
training strategy, the model can effectively alleviate the problem
of category imbalance. Furthermore, our proposed model can
identify missing annotated instances, which demonstrates that
the model has good generalization and robustness.

D. Results on DIOR

Furthermore, we performed a comparative analysis between
our approach and the SSOD methods on the DIOR dataset.
To ensure a fair and unbiased comparison, we reimplemented
these methods on object detectors using identical augmentation
settings. We evaluated the performance of our method across
different proportions of labeled data. The corresponding results
are presented in Table II.

Our method achieved mAP values of 62.47%, 69.76%, and
73.94% when evaluated on labeled data proportions of 10%,
20%, and 40%, respectively. These results demonstrate an im-
provement of +13.12, +10.77, and +7.21 mAP over our su-
pervised baseline. In addition, our approach outperformed the
active teacher [5] by 4-0.37, +1.36, and +0.22 for the different
data proportions.

Fig. 7 shows that the proposed method achieves precise
bounding box regression and accurate class recognition for
detected objects. Specifically, the network is able to accurately
detect objects such as aircraft targets of various sizes and densely
packed small targets like vehicles. This is attributable to the AS
module, which selects labels that provide the maximum training
assistance. It enhances feature extraction and semantic learn-
ing capabilities and improves the quality of label generation.
In addition, the LTS module helps in balancing the detection
biases among different object categories. Overall, our proposed
method has achieved superior results compared to the baseline
approaches on two well-known remote sensing datasets. These
results effectively demonstrate the effectiveness, robustness, and
practicality of our method.

E. Ablation Study

In this section, we conduct extensive studies to validate each
of our each modules. Unless specified, all ablation experiments
are performed using 10% of labeled data.

1) Ablation Study of Each Component: We have conducted
a study to analyze the effects of the proposed methods, AS and
LTS. As shown in Table III, both methods have been proven
to be effective and complementary. AS and LTS individually
contribute to performance gain. When combined, AS and LTS
synergistically enhance the performance of the baseline model.
It indicates that the active labeled data sampling by AS and the
decoupled training of the backbone and detector by LTS can
benefit the SSL process. These methods facilitate the generation
of high-quality pseudolabels and mitigate the impact of class
imbalance on the detector.

Fig. 8 illustrates that the incorporation of active learning
enables the selection of images that cover a comprehensive
range of difficulties, information content, and class quantities.
This, in turn, enhances the quality of the pseudolabels used for
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Fig. 8.

model training. As a result, the model demonstrates exceptional
performance in detecting dense objects, complex background
objects, and small objects.

In Table IV, we observe that the inclusion of the LTS module
improves the model’s mAP to 65.34, which is a 1.14 improve-
ment. Notably, classes with limited instances, such as baseball-
diamond, ground-track-field, soccer-ball-field, roundabout, and
helicopter, experience an average improvement of 1.2. The
decoupling training approach, based on transfer learning, effec-
tively enhances the learning of rich image features and semantic
information while mitigating the bias caused by imbalanced
instance quantities during the training process. As a result, the
approach significantly improves detection accuracy.

2) Ablation Study of AS: Regarding the selection metrics in
active learning strategies, this article conducted detailed ablation
experiments. The results from the Table V demonstrate that
using the individual metrics of diff, info, and div for image
selection yielded training results of 63.75, 63.67, and 63.15,
respectively. However, the joint selection strategy combining all
three metrics shows an average improvement of 2% points on
mAP. Furthermore, the strategy used L1 norm outperforms the
strategy used L2 norm.

As shown in Fig. 6, the difficulty metric primarily filters
images in which instances are difficult to detect, such as those
with complex backgrounds and small targets. The information
metric filters images with a higher number of instances, often
including densely populated objects such as small vehicles or
ships. The diversity metric selects images that contain rich
category information. Our proposed combined filtering strategy
integrates these three metrics to comprehensively filter images,
initially selecting a subset of images that can provide the maxi-
mum training benefits to the model.

V. DISCUSSION

This article effectively addresses the issue of sample in-
consistency in SSOD in remote sensing images. In remote

Samples selected by active learning. (a) Selected Samples of DOTAv1.0. (b) Selected Samples of DIOR.

sensing images, objects often have specific orientations, which
are overlooked by the horizontal bounding boxes used in
this study. Remote sensing objects are densely arranged
and have specific orientations, which poses significant chal-
lenges to SSOD. However, the angle information of the ob-
jects can also provide richer features and learnable knowl-
edge for SSOD. Considering the characteristics of remote
sensing objects, future research could explore how to de-
sign an effective semisupervised oriented object detection
network.

VI. CONCLUSION

In this article, we propose an SSOD framework for remote
sensing data, addressing the issue of sample inconsistency. We
present a data initialization method in the student network based
on the concept of active learning and conduct extensive exper-
iments to select sampling indices and strategies. Our approach
effectively tackles the problem of maximizing the value of
samples in the context of sample inconsistency. Furthermore,
the issue of sample inconsistency is also manifested in the
category imbalance of remote sensing data. To address this
issue, the teacher—student semisupervised network adopts a
two-stage training strategy, decomposing the learning process
into a representation learning stage and a detector learning
stage. Experimental results demonstrate the state-of-the-art per-
formance of the proposed method and offer a novel design
approach for semisupervised object detection in remote sensing
images.
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