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HyCloudX: A Multibranch Hybrid Segmentation
Network With Band Fusion for Cloud/Shadow

Ziwei Hu , Liguo Weng , Min Xia , Member, IEEE, Kai Hu , and Haifeng Lin

Abstract—Semantic segmentation of cloud and shadow is an im-
portant task in remote sensing and atmospheric science. However,
the complexity of cloud/shadow shapes, and noise disturbances
(such as snow and ice, buildings, complex backgrounds, and at-
mospheric optics) make this task challenging. The traditional deep
network has good details and generalization due to its local feature
extraction ability and spatial invariance, but it is relatively weak in
dealing with global context information, which leads to misjudg-
ment and missed judgment in complex scenes. The transformer
can effectively capture long-distance dependencies through the
self-attention mechanism, but it may have challenges in extracting
local image features and maintaining spatial consistency, resulting
in loss of detail information and insufficient generalization. This
article proposes a hybrid branch semantic segmentation network
composed of convolutional network and transformer in parallel.
A series of modules are designed to solve the problems of lack
of multiscale feature extraction and insufficient fusion in some of
the convolution–transformer hybrid networks. In particular, the
network utilizes the rich information in auxiliary bands, such as
near-infrared to improve the segmentation performance, so that
the network can process a wider range of data and improve gen-
eralization. Experimental results on CloudSEN-12, 38-Cloud, and
SPRCS-Val show that our network outperforms existing methods.
After introducing the band fusion branch (HyCloudX), the net-
work improves the segmentation performance and generalization,
especially in the case of complex noise interference.

Index Terms—Band fusion, cloud and cloud-shadow, deep
learning, hybrid structure, image segmentation, multibranch.

I. INTRODUCTION

C LOUD and cloud shadow detection is a crucial problem in
remote sensing image processing. As an important part of

meteorology, cloud changes are of key significance for analyzing
climate change, forecasting, and studying disastrous weather.
Many applications based on remote sensing technology, such as
land cover classification [1], change detection [2], and water
area segmentation [3], must also overcome the influence of
cloud cover to ensure the accuracy and reliability of detection.
Therefore, it is necessary to accurately identify clouds and cloud
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shadows to ensure the accuracy and reliability of remote sensing
technology applications.

Before the introduction of deep learning, traditional methods
based on machine learning are mainly used. Mainly includes:
based on image processing methods [4], [5], using texture fea-
tures, edge detection, and other computer vision technology to
extract features, and then use the classifier to classify pixels;
based on the image segmentation method [6], the cloud and
cloud shadow are divided into different regions by using the
pixel-based segmentation method, and then each region is clas-
sified. Based on the pixel classification method [7], semantic
segmentation is achieved by using machine learning algorithms
such as support vector machines to classify each pixel. Although
machine learning-based methods may also achieve good results
when dealing with simple cloud and cloud shadow images, due
to the large changes in the shape and texture of clouds and cloud
shadows, machine learning-based methods often perform poorly
in more complex scenes [8].

In 2012, Krizhevsky et al. [9] proposed AlexNet, which
proved the potential of deep convolution networks in the field of
computer vision and promoted the development of deep learning
in the fields of semantic segmentation and object detection.
In 2014, Long et al. [10] proposed a fully convolutional net-
work (FCN) for semantic segmentation. This network uses a
convolution layer instead of a fully connected layer to achieve
end-to-end pixel-level prediction of input of any size. However,
this network has an obvious problem, due to the substitution of
pooling layer and convolution layer, the output resolution is low,
and the context information of the image is not considered. To
solve the problem of FCN, in 2015, Ronneberger et al. [11]
proposed U-Net, which adopts the structure of encoder and
decoder. The encoder can transform the image into a feature
representation, and the decoder can map the features back to the
pixel-level prediction results. Since then, a series of codec-based
networks have emerged, such as SegNet [12] and ENet [13]. In
order to make better use of the context information of images,
in 2016, Zhao et al. [14] proposed the spatial pyramid pooling
network (PSPNet) to solve the problem of context information
in semantic segmentation. Subsequently, DeepLab series mod-
els introduced dilated convolution and atrous spatial pyramid
pooling (ASPP) modules [15], [16] to improve the accuracy of
segmentation results. In 2018, Li et al. [17] proposed the pyramid
attention network (PAN), which introduces an attention mech-
anism to increase the importance of regions of interest. With
the introduction of transformer [18], it has been successfully
tried in computer vision tasks [19], [20]. This model, which was
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originally used for natural language processing tasks, brings new
possibilities to DCNN, which was originally difficult to break
through in the field of computer vision, because of its advan-
tages of long-range dependence and location independence. To
introduce transformer into dense prediction tasks, such as object
detection and semantic segmentation, Wang et al. [21] proposed
pyramid vision transformer (PVT), which uses pure transformer
as the backbone and introduces pyramid structure into trans-
former, reducing feature maps and thus reducing computational
overhead. Swin transformer introduces windowed self-attention
mechanism and cascade structure, which can greatly reduce the
computational complexity, effectively alleviate the problem of
gradient disappearance, and improve the performance of the
model [22]. Some cutting-edge research has begun to explore
strategies for combining these two network structures. These
studies try to use the powerful local feature extraction ability
of deep convolution networks and the excellent global context
awareness of transformer to achieve better performance on var-
ious tasks. Convolutional vision transformer (CvT) proposed
by Wu et al. [23] applied convolution to vision transformer
to improve spatial information. Lee et al. [24] proposed mul-
tipath vision transformer (MPViT), explored multiscale path
embedding and multipath structure, and introduced convolution
branches to extract local feature information.

With the development of deep learning in the field of computer
vision, networks used for semantic segmentation of remote
sensing images of clouds and cloud shadows have also made
significant progress. Guo et al. [25] proposed a lightweight
fully convolutional neural network (ClouDet), which uses atrous
separable convolution to improve the efficiency and accuracy of
the network, and introduces multiscale feature fusion to deal
with cloud shadows of different scales. Yan et al. [26] used the
pyramid pooling module to extract context information. They
proposed a multilevel feature fusion structure that combines
semantic information with spatial information from different
levels. There are also explorations to do more efficient con-
volutional features extraction of cloud and cloud shadow fea-
tures by strip convolution [27], multisupervised feature fusion
attention [28], multiscale feature extraction [29], [30], and other
methods [31], [32], [33]. Through the introduction of adversarial
learning, efforts are made to bridge the significant differences in
the representation of remote sensing images between different
cities to enhance generalization [34]. Hong et al. [35] applied the
generative pretrained transformer structure to classification and
segmentation tasks of remote sensing images, enabling progres-
sive training to handle inputs of different sizes, resolutions, time
series, and regions, thus making full use of extensive remote
sensing big data. DBNet proposed by Lu et al. [36] decodes by
combining different features extracted by transformer branch
and convolution branch, and repairs the rough segmentation
boundary in the decoding part. Wang et al. [37] proposed the
multihead feature extraction module to strengthen the recogni-
tion ability of the target boundary and effectively avoid interclass
ambiguity.

Nevertheless, existing networks still have limited ability in
the semantic segmentation task of cloud and cloud shadow,
especially since the cloud and cloud shadow segmentation
boundaries are rough. Under the interference of surface objects,

noise and other factors, false detection and missed detection
are easy to occur. Based on deep convolutional neural network
(DCNN) learning methods, which excel at extracting local image
feature information and possess characteristics, such as param-
eter sharing and translational invariance [38], the network’s
parameter count and computational load can be significantly
reduced, thereby enhancing its robustness and generalization
performance. However, DCNNs struggle to capture long-range
dependencies. Although this issue can be alleviated by enlarging
the receptive field, it still fails to capture global features. Trans-
former, as a sequence modeling approach, although capable of
handling long-range dependencies, cannot fully exploit spatial
relationships between pixels, which traditional CNN structures
can handle better. Existing convolutional–transformer hybrid
network structures offer overly simplistic and rudimentary fu-
sion of features extracted by these two structures, failing to
fully utilize this feature information, resulting in no significant
improvement in performance in cloud and cloud shadow seman-
tic segmentation tasks. Furthermore, existing networks suffer
a significant drop in performance in some complex scenarios,
such as cloud and cloud shadow occlusions, interference from
surface objects (e.g., ice and snow), variations in cloud, and
cloud shadow reflectance due to lighting conditions. This is
because they rely solely on visible light channels, making it
difficult to differentiate boundaries and regions between clouds
and cloud shadows with very similar reflectance within the
visible spectrum. They are also highly sensitive to variations
in cloud and cloud shadow reflectance. These common factors
collectively affect the accuracy of segmentation. These networks
exclusively use visible light channels for image segmentation,
ignoring the potential value of other spectral bands. For instance,
compared to the visible light spectrum, the infrared spectrum
offers higher penetration capabilities and better discrimination,
providing rich additional information, such as cloud thickness.
Infrared bands are less affected by factors, such as lighting,
shadows, complex atmospheric optical noise, and can provide
more stable data. These capabilities can significantly aid in the
semantic segmentation of remote sensing images of clouds and
cloud shadows.

The multibranch network proposed in this article is composed
of convolution and transformer and adopts the encoder–decoder
structure. In the encoder, we use ResNet-50 and lightweight
swin transformer as the backbone. On the one hand, convolution
structure has transform scaling and distortion invariance, and
can effectively extract local and low-level information, which is
lacking in transformer structure. On the other hand, transformer
has dynamic attention, global context and better generalization
ability, which can effectively extract global and high-level se-
mantic information [18], which is weak in convolution structure.
The proposed method effectively combines the advantages of
the two branches, so that the two branches can exert their
respective advantages and help the model extract features more
effectively. Studies have shown that for semantic segmentation
tasks, it is significant to have a large receptive field [10] and
extract multiscale feature information [39]. Therefore, in terms
of feature fusion, we design cross feature fusion (CFF) module to
fuse the global and local features extracted by the transformer
branch and ResNet branch of each stage to guide each other
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for feature mining. In order to expand the receptive field and
better extract multiscale context information, we design cross
layer fusion (CLF) module. In the decoder, we design cross
hierarchy fusion (CHF) module to make full use of the different
levels of features extracted by the two branches to guide the
decoding, so as to effectively fuse the semantic information and
spatial location information, so that the position of cloud and
cloud shadow is more accurate, and the segmentation boundary
contains more details. In particular, we design cross band fusion
(CBF) in a branching form, which integrates multiple auxiliary
spectral information into the visible light channel through the
attention mechanisms, fully leveraging the abundant informa-
tion provided by the auxiliary spectrum. We name the network
based on the dual-branch structure with CFF, CLF, and CHF
modules as HyCloud. On this basis, the multibranch network
with auxiliary band branch and band fusion module CBF is
named HyCloudX.

Our work has made the following contributions.
1) By adopting a convolution–transformer hybrid structure

network, we successfully integrated the advantages of
both convolution and transformer architectures. Through
the synergistic utilization of convolution’s local detailed
features and transformer’s global semantic information,
we enhanced the semantic segmentation performance for
clouds, cloud shadows, and backgrounds. This approach
resulted in more precise and detailed segmentation out-
comes.

2) It is different from the simple processing of the dual-
branch feature in the same type of network with mixed
structure, in the coding stage, we design CFF module and
CLF module to fuse the multiscale feature information
of each branch, which improves the performance of ex-
tracting semantic information and spatial information at
different scales. In the decoding phase, the CHF module
is designed to make full use of features extracted from
multiple branches for upsampling, gradually guiding the
restoration of the feature maps. By extensively leveraging
features extracted from both branches, we achieve a more
effective extraction of semantic and spatial information
at different scales, resulting in clearer and more accurate
segmentation boundaries.

3) We exploratively attempted to introduce auxiliary bands to
assist in guiding semantic segmentation within the visible
light channel. Through experiments, we demonstrated the
feasibility of this approach. Furthermore, we observed that
employing the CBF module, which separately processes
and fuses bands for multimodal band extraction, leads to
a more significant improvement in segmentation perfor-
mance compared to directly concatenating these bands as
a unified input into the network. This improvement is par-
ticularly notable in the precision of boundary delineation,
thereby enhancing the overall segmentation performance
and generalization of the network. This exploration sug-
gests that incorporating additional auxiliary bands to com-
plement the information in the visible light channel and
effectively fusing features from these multimodal bands
can greatly enhance the final segmentation performance.
This has profound implications for cloud detection-related

work and various downstream applications in atmospheric
science, opening up new possibilities for segmentation
models in atmospheric science applications.

II. METHODOLOGY

This article proposes a multibranch architecture network com-
posed of convolution and transformer, which can effectively
identify clouds and cloud shadows and generate clear and ac-
curate segmentation boundaries. The overall architecture of the
network is shown in Fig. 1, which is divided into two parts:
encoder and decoder. We first use a dual-branch structure com-
posed of convolution and transformer to extract features at dif-
ferent levels. Some previous studies [10], [11] simply combined
high-level features and low-level features. This fusion is too
simple, and there are still problems, such as false detection and
rough segmentation edges, resulting in unsatisfactory segmenta-
tion results. The proposed network can combine the advantages
of convolution network and transformer, effectively fuse local
features and global features, and perform multiscale feature
extraction and fusion. The proposed method also introduces and
integrates infrared band information to assist the network in
identifying clouds and cloud shadows. In the decoding stage,
for the coarse segmentation boundary caused by the loss of
high-level semantic information and spatial detail information
after upsampling, we use the multiscale features in the encoder
to fuse, and realize the precise positioning and fine segmentation
of cloud and cloud shadow.

A. Backbone

After experimental comparisons and considering tradeoffs be-
tween segmentation performance and computation complexity
(refer to Section III-C), we use ResNet-50 as the convolution
branch. Convolution structure inherently possess advantages,
such as local perception and translation invariance. The in-
troduction of residual connections by ResNet addresses the
problem of gradient vanishing, enabling the construction of
deeper networks and thus improving performance [40]. For
the transformer branch, we employed modules from the swin
transformer. Swin transformer introduces window-based self-
attention mechanisms and a cascading structure, which can sig-
nificantly reduce computational complexity and improve model
performance. Transformer structure have the advantage of cap-
turing long-range dependencies through dynamic self-attention
mechanisms. The modules of the two structures of convolution
and transformer form a dual-branch backbone as the basis of the
network, which can form complementary advantages to obtain
different levels of features and enhance the feature extraction
ability of the network in the process of feature extraction. Table I
gives the specific parameters of the backbone, where win.size
denotes the size of shifted window in swin transformer.

Transformer branch first partitions the input image into mul-
tiple small patches, each considered as a token. These tokens are
then fed into the swin transformer block for processing. Each
swin transformer block consists of two consecutive blocks. The
local self-attention mechanism is applied to these tokens through
the shifted window mechanism within each stage, and then these
local features are integrated through cross-window connections
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Fig. 1. Network structure of HyCloudX. CFF represents cross feature fusion module, CLF represents cross layer fusion module, CHF represents cross hierarchy
fusion module, CBF represents cross band fusion module. HyCloud excludes the auxiliary band branch. ⊕ is the addition operation and Conv is the convolution
operation.

TABLE I
BACKBONE STRUCTURE OF PROPOSED NETWORK

and interlayer connections to form a global view. The expression
of swin transformer block is as follows:

ẑl = W − MSA
(
LN

(
zl−1

))
+ zl−1 (1)

zl = MLP
(
LN

(
ẑl
))

+ ẑl (2)

ẑl+1 = SW − MSA
(
LN

(
zl
))

+ zl (3)

zl+1 = MLP
(
LN

(
ẑl+1

))
+ ẑl+1 (4)

where ẑl and zl denote the output features of the (S)WMSA
module and the MLP module for block l, respectively. W-MSA
and SW-MSA denote window-based multihead self-attention
using regular and shifted window partitioning configurations,

respectively. LN represents lay normalization. Compared with
pure transformer, the swin transformer module optimizes the
balance between local self-attention and global self-attention,
greatly reduces the amount of calculation and exhibits better
performance.

B. Cross Feature Fusion

The shape of cloud and cloud shadow is similar, which often
leads to misjudgment in the detection process. In addition, the
interference of ground objects (such as waters, ice, and snow,
and other objects with similar attributes to clouds and cloud
shadows) and noise can also cause misclassification. In order
to obtain more accurate results, we use CFF (see Fig. 2) to
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Fig. 2. Structure of CFF. Conv represents the convolution operation. BN
represents batch normalization and GELU represents activation function GELU.
σ is the sigmoid activation function. ©denotes concat operation.

combine the low-level features extracted by the convolution
branch with the high-level features extracted by the transformer
branch. Compared with the high-level features, the low-level
features extracted by convolution branches retain more spatial
information. Therefore, the convolution branch can provide
location information guidance for the deep semantic feature
mining of the transformer branch. The module consists of two
parallel branches, one of which applies attention to the features
extracted by the convolution branch on the channel and space,
respectively. By adaptively adjusting the weights on the channel
and space, the network can better focus on the important features
and regions in the input data and improve the expression ability
of the convolution branch. Specifically, channel attention is to
generate a channel weight vector by averaging and max pooling
the spatial dimension of the feature map, and then sending it to a
shared multilayer perceptron. Spatial attention performs average
pooling and maximum pooling on the channel dimension of the
feature map, then concatenates the processed features, and then
uses a convolution layer to generate a spatial weight matrix.
Multiply these weights with the original input feature map to
achieve channel and spatial attention. The other branch uses
bilinear interpolation to upsample the high-level feature to the
same size of convolution branch at same stage, then concat the
two features, and then adjusts the concatenated features to the
same size as the input of each branch through 1× 1 convolution,
and feeds them to the subsequent network.

Fig. 3. Structure of CLF. Conv represents the convolution operation. DConv
represents the atrous convolution operation, and r is the atrous rate. BN represents
batch normalization, and GELU represents the activation function GELU. σ is
the sigmoid activation function. ©denotes concat operation.

It can be seen from Fig. 7 that CFF can well fuse the fea-
ture information of convolution branch and transformer branch.
Specifically, compared with Fig. 7(b)–(d), it can be seen that
only using the convolution branch or using the convolution
branch and transformer branch to extract features and simple
stacking and upsampling are performed at the final stage, the
internal attention to clouds and cloud shadows is not enough. For
example, by comparing the (b), (c), and (d) of sample (1), it can
be found that the convolution branch pays more attention to the
cloud than to the cloud shadow. After adding transformer branch,
the attention to cloud shadows has been improved, but the area
inside the cloud has been ignored. After adding CFF, the feature
information of the two branches is fused and enhanced, and the
attention to cloud and cloud shadow is significantly improved,
which shows that CFF has a positive effect on the feature fusion
of the dual branches.

C. Cross Layer Fusion

Feature fusion can integrate multiple features to improve
classification accuracy. However, if the feature extraction is not
comprehensive enough, the fusion result will also be limited.
For the semantic segmentation task of cloud and cloud shadow,
its shape, scale, intensity, and spatial changes are extremely
complex. It is difficult to capture these subtle differences only
through single-scale feature extraction. Therefore, it is necessary
to introduce multiscale feature extraction and fusion. We use
CLF (see Fig. 3) to capture and analyze the complex character-
istics of clouds and cloud shadows from different perspectives
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TABLE II
COMPARISON OF DIFFERENT ATROUS KERNEL SIZE AND RATE

and levels to obtain more comprehensive and in-depth feature
information.

Inspired by PSPNet and DeepLab, we use an improved atrous
pyramid for low-dimensional features that contain more spatial
and detailed information. In PSPNet, the pyramid module (PPM)
obtains global context features at different scales by perform-
ing maximum pooling operations at multiple different scales.
However, some important local details may be ignored or lost
due to the simple pooling operation, especially for the complex
edge segmentation tasks, such as cloud and cloud shadow. It can
be seen from Table VI that the performance of the network is
reduced after using the PPM module. DeepLab V3 has improved
this by introducing hole convolution so that the convolution
kernel can effectively obtain context information at different
scales by adjusting the size of the hole without increasing the
parameters. From Table II, we can see that the use of ASPP has
improved the segmentation performance compared to PPM, but
the increase is limited. This is because the ASPP in DeepLab
V3 uses the 3 × 3 dilated convolution, and the atrous rate is
set to (6,12,18). Simply increasing the atrous rate of the dilated
convolution without changing the size of the convolution kernel
may produce the so-called “grid effect.” This is because although
increasing the atrous ratio allows the convolution kernel to have
a larger receptive field, in fact, the effective pixels perceived
by the convolution kernel are not increased, which makes the
model unable to accurately capture the local characteristics of
the image. In order to solve this problem, we adjust the size
of the convolution kernel and the void rate at the same time to
explore the parameters that are most suitable for cloud and cloud
shadow segmentation tasks. It can be seen from Table II that the
most suitable convolution kernel size is 3 × 3, 5 × 5, 7 × 7, and
the atrous rate is 2.

The results after each dilated convolution kernel are con-
catenated and multiplied by the features extracted by global
pooling to complete the multiscale information extraction of
low-dimensional features. For high-dimensional features, due
to its multiple convolutions and attention operations, it has rich
global semantic information, but loses some spatial context
information. We restore it by introducing a coordinate attention
mechanism. Then, we fuse the processed low-dimensional fea-
tures and high-dimensional features and feed them to the back

Fig. 4. Structure of CHF. Conv represents the convolution operation, and
TConv represents the transposed convolution operation. BN represents batch
normalization and LN represents layer normalization. GELU represents the
activation function GELU.σ is the sigmoid activation function. ©denotes concat
operation.

network. By comparing Fig. 7(d) and (e), it can be seen that
after adding the CLF structure, the network pays more attention
to the inside of the cloud and cloud shadow. This shows that
CLF can effectively extract multiscale feature information and
fuse low-dimensional and high-dimensional features.

D. Cross Hierarchy Fusion

The size and shape of clouds and cloud shadows are variable,
which makes it very difficult to detect their boundaries. In the
existing methods, the segmentation boundary of the feature
map after multiple downsamplings and upsamplings is very
rough and the detailed information is insufficient. The network
proposed in this article uses CHF (see Fig. 4) in the decoding
progress to gradually recover the segmentation boundary infor-
mation.

The CHF utilizes encoder outputs, features from CFF modules
by using skip connections and features from the convolution
branch of certain stages to guide the model to repair the details
of the segmented boundary, reducing the problem of serious loss
of boundary details after deep downsampling. For the features
from the convolution branch, CHF first uses context modeling
to obtain the global information relationship vector, and then
uses two layers of 1 × 1 convolution to further extract the
information. The obtained attention map is applied to all the
original feature maps to capture the global context information
and integrate it into the original feature map. For features from
the encoder output, or from the previous CHF module, trans-
posed convolution is used to upsample to the same size as the
other two input features. Then, the three feature inputs are fused
and concatenated, respectively, and then 1 × 1 convolution is
used to enhance the feature expression ability and feed it to the
subsequent network. The calculation formula is as follows:

XCNN
′ = σ{BN [Conv (XCNN)]} (5)

XCFF
′ = σ{BN [Conv (XCFF)]} (6)

XCHF
′ = TConv (σ{BN [Conv (XCHF)]}) (7)

Transform(X) = Conv(δ{LN [Conv(X)]}) (8)
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CM(X) = �[Conv(XCNN
′)]×XCNN

′ (9)

̂XCNN = Transform[CM(XCNN
′)] +XCNN

′ (10)

FCHF = Conv
[
Concat

(
̂XCNN +XCFF

′, XCFF
′ +XCHF

′
)]
(11)

where Conv (·) represents convolution operation, TConv (·)
represents transposed convolution operation, BN (·) represents
batch normalization operation, LN (·) represents layer normal-
ization operation, σ (·) represents GELU activation function, δ
(·) represents RELU activation function, � represents softmax
operation.

By comparing Fig. 7(e) and (f), it can be seen that the use of
CHF further strengthens the model’s attention to the segmen-
tation edges and details, such as small area clouds and cloud
shadows on the previous basis. This shows that CHF improves
the network’s ability to perceive edge details. By channel fusion
of features, it can provide more accurate context information,
help the model better locate and restore edges and other details,
thereby improving the accuracy of segmentation results and
detail restoration ability.

E. Cross Band Fusion

In the early stages of exploring the integration of auxiliary
bands into the network, we attempted to directly overlay data
from the visible light bands and auxiliary bands and input
them into HyCloud for unified processing. As indicated by
the ※ entry in Table VI, the experiments showed improvement
compared to inputting only the visible light bands, but there was
a certain gap from the anticipated effects. We attribute this to
the fact that visible light bands and auxiliary bands typically
contain different types of information. The visible light bands
are more sensitive to details, such as color and shape, while
auxiliary bands, such as the infrared band, provide information
related to temperature, surface reflectance, and other factors.
Therefore, we designed the CBF module, as illustrated in Fig. 5.
By separately processing them, the network can focus more
attentively on learning specific features from different channels.
Subsequently, through the attention mechanism within the mod-
ule, the network adaptively fuses information from these two
types of bands. Ablation experiments demonstrated a further
enhancement in the network’s performance with the introduction
of the CBF module. It also confirmed that separately processing
the visible light and auxiliary bands, as opposed to a unified
approach, has performance advantages.

Specifically, the CBF module processes the RGB channels
and infrared auxiliary bands through convolution operations to
form two key matrices Wq and Wk. The product of these two
matrices generates a weight matrix. Then, the RGB channels
and the infrared auxiliary bands are concatenated together to
form Wv , which is equivalent to fusing the information of two
different bands. Then, the weight matrix after softmax is mul-
tiplied by Wq to realize the weighted mixing of RGB channels
and infrared auxiliary bands. Finally, the obtained results are
residually connected with the original RGB channel to retain
the original information of the RGB channel while fusing the

Fig. 5. Structure of CBF. Conv represents the convolution operation. BN
represents batch normalization, and GELU represents the activation function
GELU. ©denotes concat operation.

Fig. 6. Presentation of RGB channels and auxiliary bands of CloudSEN-12.
(a) RGB channels. (b) B8 NIR band. (c) B11 SWIR band.

infrared information. The calculation formula is as follows:

XRGB
′ = σ{BN [Conv (XRGB)]} (12)

XAux
′ = σ{BN [Conv (XAux)]} (13)

Wq = Conv (XRGB
′) (14)

Wk = Conv (XAux
′) (15)

Wv = Conv [Concat (XRGB
′, XAux

′)] (16)

FCBF = Conv{Conv [� (Wq ×Wk)×Wv] +Wq} (17)

where Conv (·) represents convolution operation, BN (·) repre-
sents batch normalization operation, and σ (·) represents GELU
activation function. � represents softmax operation.

By comparing Fig. 7(b) and (g), we can clearly see that after
using the CBF module to integrate the infrared band informa-
tion, the model’s ability to identify and distinguish clouds and
cloud shadows has been significantly improved. Specifically,
this process strengthens the network’s attention to cloud shadow
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Fig. 7. Heat map representation. The first line of each sample is the attention
to the cloud, and the second line is the attention to the cloud shadow. (a) Test
image. (b) Convolution branch. (c) Convolution branch + transformer branch.
(d) Convolution branch + transformer branch + CFF. (e) Convolution branch +
transformer branch + CFF + CLF. (f) Convolution branch + transformer branch
+ CFF + CLF + CHF. (g) Convolution branch + transformer branch + CFF +
CLF + CHF + CBF.

features, making the model more effective in capturing and
processing important environmental information, and can have
a deeper understanding of more subtle texture and shape differ-
ences, especially in complex meteorological conditions. This not
only improves the network’s ability to perceive local details, but
also improves the generalization and robustness of the network.
The design of CBF fully considers the complementarity of two
different band information, which can effectively improve the
expression ability of the network and provide a new possibility
for high-quality processing multimodal image data.

III. EXPERIMENTS

A. Datasets

1) CloudSEN-12: This is a large dataset for semantic seg-
mentation of cloud and cloud shadow [41]. The dataset consists
of 49 400 image patches (IPs), each IP covers 5090 × 5090
m, and is evenly distributed on all continents except Antarctica,
covering multiple time points. The dataset contains data from
Sentinel-2 1 C and 2 A levels, as well as manually labeled
high-quality, scribble, and no-annotation three types of thick,
thin clouds, and cloud shadow annotations. Table III shows the
information of all channels and bands of the dataset.

We selected high-quality manually labeled data items with
few, medium, cloudy and almost cloudless from the original
dataset, a total of 9999 samples, and we selected 5633 samples.
We choose the TCI_R, TCI_G, TCI_B of these samples as the
visible light channels, stacked into a three-channel 24-bit image.
We chose the B8 near-infrared (NIR) band and the B11 short-
wave infrared (SWIR) band as the auxiliary band, because the
wavelength of the B8 band covers the infrared band, and the
clouds and cloud shadows have obvious reflectivity changes in
the infrared band, so the B8 band can better detect clouds and
cloud shadows. High clouds have obvious reflectivity changes
in the wavelength range of about 1.6 microns, and the B11 band
just covers this wavelength range, so the B11 band is suitable
for detecting high clouds. Fig. 6 shows that these two bands can
provide additional information different from the visible light

TABLE III
CLOUDSEN-12 DATASET

band. We extract the data of these two bands and map them into 8-
bit grayscale images, respectively. So far, we have a total of 5633
samples, each of which contains an RGB channel image and
two grayscale images with a size of 509 × 509 pixels. Then we
divided each image into nine subimages with 224 × 224 pixels,
and obtained a total of 50 697 samples. We divided it into training
set and validation set according to the ratio of 9:1, and finally
obtained 45621 training sets and 5076 validation sets.

2) 38-Cloud: The dataset is derived from 38 Landsat 8 scene
images and their manually extracted pixel-level ground truths for
cloud detection [42]. The dataset contains four channels: red,
green, blue, and NIR. We cut the image into subimages with
224 × 224 pixels. After removing the subimages which contain
20% or more of the black edge region, the training set and the
test set are divided according to the ratio of 9:1. Finally, we
obtained 4639 datasets and 515 training sets.

3) SPARCS-Val: The dataset contains 80 Landsat 8 scenes
with a size of 1000 × 1000 pixels and manually labeled mask
labels. It includes seven categories: cloud, cloud shadow, cloud
shadow over the water, water, ice and snow, land and flooded
areas. The dataset contains all bands from the original Landsat
Level-1 data product as shown in Table IV. We selected B1, B6,
and B9 as auxiliary bands. We cut each image into subimages
with a size of 224× 224, and a total of 2000 images are obtained.
In order to enhance the generalization ability of the model, we
expanded the dataset by horizontal flipping, vertical flipping, and
random rotation, and then divided the training set and test set
according to the ratio of 9:1. Finally, we obtained 7200 training
sets and 800 training sets.

B. Experiment Details

1) Basic Information: The experiment was performed on the
NVIDIA RTX 4090 GPU using PyTorch. Because most of the
networks in this experiment converge after 250 iterations, we
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TABLE IV
SPARCS-VAL DATASET

fixed the epoch number to 300 with the batch size of 16. We
used cross entropy loss as the loss function and AdamW as the
optimizer, and the weight attenuation coefficient is 0.0001. We
used the poly LR strategy in training progress. The initial LR is
set to 0.0001, and the poly power is set to 2. The learning rate
(LR) of each round of training is described as follows, where
epoch is the number of current iteration:

LR = 0.0001×
(
1− epoch

300

)2

. (18)

2) Metrics: We choose precision (P), recall (R), F1 score,
pixel accuracy (PA), average pixel accuracy (MPA), and average
intersection–union ratio (MIoU) to evaluate the performance of
the method in cloud and cloud shadow segmentation tasks. The
calculation formula of each evaluation metric is as follows:

P =
TP

TP + FP
(19)

R =
TP

TP + FN
(20)

F1 = 2× P ×R

P +R
(21)

PA =

∑k
i=0 ρi,j∑k

i=0

∑k
j=0 ρi,j

(22)

MPA =
1

k

k∑
i=0

ρi,j∑k
j=0 ρi,j

(23)

MIoU =
1

k + 1

k∑
i=0

ρi,j∑k
j=0 ρi,j +

∑k
j=0 ρj,i − ρi,i

(24)

where true positive (TP) represents the number of correctly
predicted cloud (cloud shadow) pixels, the false positive (FP)
represents the number of incorrectly predicted cloud (cloud
shadow) pixels, the true negative (TN) represents the number
of correctly classified noncloud pixels, and the false negative
(FN) represents the incorrectly classified cloud (cloud shadow).
k denotes the number of categories (excluding background), pi,i
denotes the number of TP, pi,j denotes the number of categories
belonging to category i but predicted as category j.

TABLE V
COMPARISON OF DIFFERENT CONVOLUTION NETWORKS

TABLE VI
ABLATION FOR DIFFERENT MODULES IN THE NETWORK

C. Ablation Experiments on CloudSEN-12 Dataset

First, we compared the performance of various convolution
networks and different versions to determine the network struc-
ture for the convolution branch in the backbone. We employed
cascaded upsampling (CUP) as the fundamental decoder, which
consists of multiple upsampling steps, to decode hidden features
for producing the final segmentation output. Table V shows
the results. We ultimately chose ResNet-50 as the convolution
branch.

Then, we progressively added the transformer branch and the
proposed modules to the network to verify the performance of
each module and the entire network. The research in this section
mainly uses MIoU metric to evaluate. Table VI shows the results,
and it can be seen that our proposed network contains all the
modules that achieve the best results.

1) Dual-branch ablation: The convolution structure can ef-
fectively capture local features when processing images,
while the transformer structure can better capture global
context information. By combining convolution and trans-
former into a dual-branch structure, their advantages can
be used at the same time to obtain rich feature representa-
tion, thereby improving the accuracy of semantic segmen-
tation. Experiments show that the MIoU is increased from
73.22% to 75.28% by using the dual-branch model, which
indicates that the dual-branch structure is very effective in
extracting spatial and semantic information.
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TABLE VII
COMPARISON OF DIFFERENT NETWORKS ON CLOUDSEN-12 DATASET

2) Ablation of CFF: This module is used to fuse the
spatial location information obtained by the convolu-
tion branch and the global context information extracted
by the transformer branch, combine the high-level fea-
tures and the low-level features with rich information,
thereby improving the recognition accuracy. The results of
Table VI show that the CFF module is an effective
module, which can increase the MIoU of the model by
1.34%.

3) Ablation of CLF: Since clouds and cloud shadows have
different shapes, sizes, and complex edges, the bound-
aries generated by the existing networks are relatively
rough, so it is necessary to introduce multiscale feature
extraction. The ASPP module in DeepLab and the PPM
module in PSPNet are also known to extract multiscale
information. We compare the proposed CLF module with
the PPM module and the ASPP module. It can be seen from
Table VI that the proposed CLF module is an effective
module that can increase the MIoU of the network by
0.7%.

4) Ablation of CHF: After the encoding stage, the network
obtains deep features containing global semantic informa-
tion, but it loses some spatial details, particularly boundary
information. To enhance the segmentation accuracy of
the boundary details, we replaced the CUP module with
the CHF module. This module can increase the MIoU of
the model from 77.32% to 77.85%.

5) Ablation of CBF: The introduction of infrared bands into
the semantic segmentation of clouds and cloud shadows
can provide rich information, such as temperature, ab-
sorptivity, and reflectivity. We conducted experiments,

comparing the direct concatenate of all bands as input into
the network (denoted by ※) with the separate processing of
auxiliary bands using the CBF module. We found that the
latter further improves segmentation performance. From
Table VI, we can see that the CBF module we proposed is
an effective module, which can further increase the MIoU
of the network from 77.85% to 78.86%.

D. Comparison Experiments on CloudSEN-12

In this section, our proposed network is compared with various
state-of-the-art networks. These networks are mainly divided
into three categories according to their architecture: based on
convolution structure, such as FCN, DeepLab, and OCRNet.
Based on transformer structure, such as SETR, PVT, and Swi-
nUNet. Based on convolution–transformer hybrid architecture,
such as CvT, MPViT, and DBNet.

Table VII is the comparison result of different networks.
According to the overall ranking of MIoU metric, FCN-32S and
DANet have the worst performance, and then according to the
MIoU metric, they are SETR, CvT, BiSeNet V2, PAN, CGNet,
LinkNet, DenseASPP, DeepLab V3, HRNet, PVT, OCRNet,
Se-gNet, MPViT, DBNet, and SwinUNet, among which DBNet
and SwinUNet performed better. According to the structure
of the network, the transformer network usually has better
performance than the CNN network. However, the network
using the convolution-transformer hybrid structure has not been
further improved on the basis of transformer. This is because
the previous hybrid structure networks are too simple in dealing
with the features extracted by different structural branches, or
lack effective multiscale feature extraction capabilities, resulting
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Fig. 8. Comparison of networks in different scenarios. (a) Test images. (b) Label. (c) Segmentation results of HyCloudX. (d) Segmentation results of HyCloud.
(e) Segmentation results of SwinUNet. (f) Segmentation results of DBNet. (g) Segmentation results of SegNet. (h) Segmentation results of OCRNet. (i) Segmentation
results of DenseASPP.

in not making full use of the advantages of this architecture.
Our HyCloud is ahead of CNN structure, transformer structure,
and the same type of hybrid structure in MIoU, PA, and MPA
metrics, reaching 77.85%, 90.03%, and 88.33%, respectively.
On this basis, HyCloudX has a greater improvement, with MIoU,
PA, and MPA reaching 78.86%, 90.43%, and 88.88%, respec-
tively. According to the categories of the dataset, HyCloud(X)
is basically ahead of other networks in terms of P, R, and F1
metrics of all categories. Although the R metric of HyCloud
on cloud shadow and the R metric of HyCloudX on cloud are
not the highest, there is only a slight gap compared with the
well-behaved methods.

We randomly selected five images according to the categories
of cities, villages, open spaces, waters, and selected several
networks with the highest MIoU in the convolution structure,
transformer structure, and hybrid structure as representative
networks, and used them to compare the segmentation results.
Fig. 8 is the relust of comparison. The red area of the label
image represents the cloud, the green area represents the shadow
of the cloud and the black area is the background. For the
segmentation results of cloud and cloud shadow, we generally
evaluate the segmentation accuracy and local details of the edge,
such as small area cloud and cloud shadow misjudgment (less or
more judgment) and the segmentation of thick and thin clouds,
cloud shadow or background inside the cloud. The segmentation
results of DenseASPP are relatively rough. For example, small
clouds in (1) are not detected, and there are many missed and
false pixels in the cloud and cloud shadow boundaries. Com-
pared with DenseASPP, OCRNet, and SegNet and DBNet have
improved the accuracy of cloud and cloud shadow boundary

segmentation, but there are still deficiencies in the identification
of small clouds and inside clouds. For example, DBNet and
SegNet missed the detection of small clouds in (1) and (4),
respectively. Compared with the previous networks, SwinUNet
can better deal with the identification of small clouds and the
situation of thick and thin clouds, cloud shadows and ground
inside clouds in most cases, but in some cases [such as the lower
left area in (5)] there are still problems. This is because from the
perspective of visible light, the hickness of the cloud is difficult
to capture. When facing a complex background, the texture of
the cloud and cloud shadow is similar to it, and the complex
atmospheric optics interfere with the image. These factors make
the segmentation of clouds and cloud shadows challenging. Our
HyCloudX achieved the best results, which is due to the use
of convolution and transformer dual-branch structure, which
combines the advantages of these two network structures for
local feature extraction and global information modeling, re-
spectively. The CFF module is used to guide the extraction of
features between the two branches, and the CLF module is used
to extract and fuse multiscale feature information. The feature
information of the two branches is deeply multiscale feature
extracted and fused. In the decoding process, the CHF module
uses the multiscale features of the above-mentioned backbone
and modules to guide the network to repair the detailed infor-
mation of the segmented boundary, which reduces the problem
of serious loss of boundary details after deep down sampling.
It plays a crucial role in improving the final effect of cloud
and cloud shadow segmentation tasks with complex boundaries.
More importantly, our network introduces an infrared band
to assist the visible light channel for segmentation, so that
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Fig. 9. Comparison of different networks under noise. (a) Test images. (b) Label. (c) Segmentation results of HyCloudX. (d) Segmentation results of HyCloud.
(e) Segmentation results of SwinUNet. (f) Segmentation results of DBNet. (g) Segmentation results of SegNet. (h) Segmentation results of OCRNet. (i) Segmentation
results of DenseASPP.

the network can accurately locate clouds and cloud shadows.
Experiments show that the proposed method not only improves
the accuracy of cloud and cloud shadow segmentation, but also
retains rich boundary details. The judgment of small clouds
and the processing inside the cloud show the best performance
compared with other networks.

Fig. 9 is the segmentation results of various networks under
noise interference (such as snow and other backgrounds sim-
ilar to clouds). It can be seen that under the interference of
noise, DenseASPP, OCRNet, SegNet, DBNe, and SwinUNet
have different degrees of missed detection and false detection.
Compared with the previous segmentation results of scenes
with less noise, these networks cannot achieve accurate seg-
mentation in the case of more noise interference, especially
the performance of segmentation boundaries, small-size clouds
and cloud shadows, and distinguishing backgrounds will be
drastically reduced. This is because a large amount of noise
will mislead the network’s judgment. In addition, the semantic
information and spatial information of cloud and cloud shadow
extracted by these networks are also insufficient. In contrast, the
HyCloud network has stronger anti-interference ability, fewer
false detection pixels, and more refined segmentation results,
and HyCloudX network shows amazing excellent segmenta-
tion performance under the assistance of the infrared auxiliary
band.

Fig. 10 shows the heat maps of attention of different networks,
where the first row of each sample is the attention of the network
to the cloud, and the second row is the attention to the cloud
shadow. The attention degree of a region from strong to weak
shows a gradual change from red–orange–yellow–green–blue.
It can be seen from the heat map results that CvT does not pay
enough attention to clouds and cloud shadows, which also leads
to poor segmentation results. The attention of DBNet, OCRNet,
and DenseASPP is more concentrated than CvT, but the attention
to the boundary is still insufficient, resulting in relatively rough
segmentation of the edges of clouds and cloud shadows, as well
as small clouds and thin clouds and backgrounds in clouds. In
particular, in noisy scenes [e.g., Fig. 10 (3)], other networks
have different degrees of bias in the attention of clouds and

Fig. 10. Visual comparison of attention of different networks. (a) Test images.
(b) HyCloudX. (c) DBNet. (d) OCRNet. (e) DenseASPP. (f) CvT. (g) SegNet.

cloud shadows, and CvT and SegNet have even lost a large area
of attention to cloud shadows. Our network provides highly
focused attention to the subject of clouds and cloud shadows.
Besides, due to the complexity of the cloud and cloud shadow
boundary, our proposed network also pays some attention to the
area near the boundary. Experiments show that it is beneficial
for obtaining more boundary information and achieving more
precise segmentation results.

E. Generalization Experiments on 38-Cloud Dataset

Table VIII shows the comparison between HyCloud(X) and
the current excellent network on the 38-Cloud dataset. From
the perspective of network structure category, the network with
hybrid structure has better performance than the network with
convolution and transformer structure. From the comprehen-
sive performance point of view, SETR and DANet have the
worst performance, and then according to the MIoU metric,
they are CvT, FCN-32S, BiSeNet V2, LinkNet, DenseASPP,
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TABLE VIII
COMPARISON OF DIFFERENT NETWORKS ON 38-CLOUD DATASET

PAN, DeepLab V3, CGNet, PSPNet, SegNet, HRNet, CDUNet,
OCRNet, SwinUNet, and DBNet. SwinUNet and DBNet per-
form well, but they are not as good as HyCloud(X). HyCloud
is ahead of other networks in MIoU, PA, and MPA metrics,
with MIoU, PA, and MPA reaching 93.83%, 96.82%, and
97.06%, respectively. HyCloudX reached 94.71%, 97.28%, and
97.54%, respectively. According to the classification, whether
it is cloud or cloud shadow, our HyCloud(X) is basically
ahead of other networks in terms of P, R, and F1 metrics
of subclassification. Although HyCloud’s R metric on cloud
detection is not as good as CDUNet’s, it has only a slight
gap.

Fig. 11 shows the segmentation results of representative
networks of convolution, transformer, and hybrid structures in
few-cloud, multicloud, and no-cloud scenarios on 38-Cloud
dataset. The white area of the label image represents the cloud,
and the black area is the background. It can be seen from
the comparison that the edges of clouds and cloud shadows
of CDUNet, DBNet, and OCRNet are relatively rough. There
are a large number of missed and false detection pixels in
complex backgrounds, such as snow [such as (2)]. In contrast,
SwinUNet shows stronger anti-interference ability, the number
of false detection and missed detection points is reduced, and
the edge accuracy of the cloud is improved. But compared to our
HyCloud, the details are still slightly inadequate. Our proposed
network HyCloud uses convolution and transformer dual-branch
structure to fully extract and fuse multiscale contextual feature
information, and uses multiscale feature information to guide
the network to repair the details of the segmentation boundary

in the decoding stage, thus achieving better cloud detection and
segmentation. However, in cloudless and complex scenes [such
as (6)], all networks (including HyCloud) except HyCloudX
have different degrees of false detection. HyCloudX can show
such an excellent effect, which is benefited from the assistance
of the infrared band. By capturing the different absorption rates
and reflectivity of clouds, cloud shadows and backgrounds in
the infrared band, which cannot be obtained in the visible light
channel, and integrating them into the features extracted by
the dual-branch structure, the final segmentation performance
is improved.

F. Generalization Experiments on SPARCS-Val Dataset

In order to further evaluate the segmentation performance
and generalization ability of our network, we also conducted
generalization experiments on the SPARCS-Val dataset. The
experimental results are shown in Table IX, where the left-hand
side shows the overall metrics, and the right-hand side shows the
PA of different networks for each category, where CS refers to
cloud shadow category, CS OW refers to cloud shadow over
water category, W refers to water category, I/S refers to ice
and snow category, L refers to land category, C refers to cloud
category, F refers to flooded category.

According to the categories of network structure, the trans-
former structure network performs better than the convolu-
tion structure network on more categories and more complex
datasets, and the segmentation performance of the hybrid struc-
ture network is further improved on the basis of transformer. This
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Fig. 11. Comparison of different networks on the 38-Cloud dataset. (a) Test images. (b) Label. (c) Segmentation results of HyCloudX. (d) Segmentation results
of HyCloud. (e) Segmentation results of DBNet. (f) Segmentation results of SwinUNet. (g) Segmentation results of OCRNet. (h) Segmentation results of CDUNet.

TABLE IX
COMPARISON OF DIFFERENT NETWORKS ON SPARCS-VAL DATASET
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Fig. 12. Comparison of different networks on the SPARCS-Val dataset. (a) Test images. (b) Label. (c) Segmentation results of HyCloudX. (d) Segmentation
results of SwinUNet. (e) Segmentation results of DBNet. (f) Segmentation results of OCRNet. (g) Segmentation results of LinkNet. (h) Segmentation results of
DeepLab V3.

shows that the dual-branch structure composed of transformer
and convolution is effective in feature extraction. According to
the overall metrics, our proposed HyCloud is superior to other
networks in MIoU, PA, MPA, R, and F1 metrics, especially
the DBNet, which is second in the overall lead and also uses
the convolution–transformer hybrid structure. And HyCloudX
is further improved on this basis. From the perspective of class
PA, HyCloud has achieved the second place in addition to ice and
snow and flood categories, and HyCloud’s performance in these
two categories is also very close to the second place network.
HyCloudX achieves the highest PA in all categories, which is
benefited from the additional information of the infrared aux-
iliary band, our network has strong segmentation performance
and generalization ability, and still has excellent performance
in some complex situations (such as clouds and shadows on the
water, and clouds and snow).

Fig. 12 shows the segmentation results of representative net-
works of three structures in different scenarios of this dataset.
The first group is the segmentation result of cloud shadow
on the water area, and the second and third groups are the
segmentation results of cloud, cloud shadow, and water area.
It can be seen from the graph that the segmentation results

of the traditional convolution structure network DeepLabV3,
LinkNet, and OCRNet are not good, the edges are rough, and
there are a lot of false detections in the water areas category.
The segmentation results of transformer structure SwinUNet and
hybrid structure DBNet are relatively good, but there is still a
certain range of false detection. HyCloudX has the best effect,
because the CFF and CLF modules can make the dual-branch
structure extract and fuse the multiscale information of the image
efficiently and accurately, which reduces the occurrence of false
detection. The fourth, fifth, and sixth groups in Fig. 12 mainly
show the segmentation results of clouds, cloud shadows and
waters by different networks under the noise of ice and snow. It
can be seen that due to the interference of ice and snow, other
networks have a large area of false detections in the segmentation
of water, clouds, and cloud shadow areas. With the assistance
of the infrared band, our HyCloudX network can easily obtain
the information that the visible light channel cannot obtain,
such as the reflectivity and absorptivity of ice and snow, clouds,
shadows and waters, which are completely different from those
of clouds, clouds and waters. It greatly reduces the occurrence
of false detection and improves the segmentation effect under
noise interference.
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IV. CONCLUSION

In this article, we propose a multibranch cloud and cloud
shadow semantic segmentation network HyCloud(X), which is
composed of traditional convolution and transformer branches,
and use their ability to extract local features and network global
information, respectively. Different from the simple processing
of branch features in the same type of hybrid network, we
introduce the CFF module to guide each other between the two
branches, and use the CLF module to extract and fuse multiscale
features to further improve the feature extraction and processing
capabilities. In the decoding process, we use the CHF module
to utilize the multiscale features of the backbone network and
other modules to help the network repair the details of the
segmented boundary. This design effectively reduces the loss
of boundary details caused by deep downsampling. According
to our experimental results, HyCloud has better segmentation
performance than other networks using convolution structure,
transformer structure or hybrid structure. Moreover, HyCloudX
has further improved segmentation performance based on this
foundation. This is mainly due to the fact that it not only
integrates information from the visible light channels, but also
cleverly introduces the infrared auxiliary band, to more accu-
rately understand complex scenes. This enables HyCloudX to
achieve remarkable robustness when handling various complex
scenarios. Nevertheless, there is still much room for improve-
ment in our network. In the future, we plan to further optimize
HyCloudX under the premise of maintaining segmentation per-
formance, reducing the number of parameters and computational
complexity of the network, and improve the inference speed
of the network. Most importantly, the research in this article
shows that the introduction of infrared and other bands into
semantic segmentation can greatly improve the segmentation
performance. This breakthrough idea opens up new possibilities
for the segmentation network in the application of atmospheric
science, and has far-reaching significance for cloud detection
related work and extensive downstream applications in the field
of atmospheric science.
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