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An Object-Oriented Semi-Supervised
Land-Use/Land-Cover Change Detection Method

Based on Siamese Autoencoder Graph
Attention Network

Yifan Wu , Zhiwei Xie , Zaiyang Ma , Min Chen , Fengyuan Zhang , Zhenguo Shi , Wengang Li ,
and Shuaizhi Zhai

Abstract—Change detection via remote sensing data is a popu-
lar method for monitoring land cover/land use. Graph attention
(GAT) network is a method that can improve the change detection
performance of land-cover/land-use monitoring by enhancing the
feature representation of remote sensing images. However, the
shortcomings of connection sparsity and insufficient sample fea-
ture mining of the GAT affect the application of these methods
in change detection. This article proposes a Siamese autoencoder
GAT network for object-oriented land-cover/land-use change de-
tection via high-resolution remote sensing, which is useful for
semi-supervised problem methods with poor simplicity. First, we
reduce the pressure of graph network model operations and obtain
multidimensional features via the growing multilevel segmentation
strategy. The adjacency matrix is established by adding strongly
connected edges via the weighted difference similarity matching
method with image objects as nodes. Second, we use the Siamese
autoencoder to pretrain the node features and migrate the weight
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parameters to the GAT feature extraction layer. Finally, a small
number of samples are selected to train the GAT and predict all
nodes. The experimental results show that the average overall ac-
curacy of the proposed method is 95.41%, and the average F1-score
is 89.35%, which are at least 5.04% and 10.84% better than those
of other typical methods, such as the graph convolutional network.
In particular, detecting roads and bare soil is significantly better
than that of other methods.

Index Terms—Graph attention (GAT) networks, growing
multilevel segmentation, Siamese autoencoder (AE), similarity
matching.

I. INTRODUCTION

IDENTIFYING and recording Earth’s surface changes are
critical topics for geographic and environmental research.

Land-use/ land-cover change detection is an important method
for Earth surface change monitoring. Moreover, remote images
from different times within the same landscape can be iden-
tified, and these images have wide applications in ecological
environment monitoring and land resource management [1],
[2], [3]. Remote sensing image change detection methods can
be divided into two categories based on the units of analysis:
pixel-based methods [4] and object-oriented methods [5]. Pixel-
based change detection methods are mostly applied to medium-
and low-resolution remote sensing images; these images have
low-pixel purity, and it is difficult to form pixel sets with high ho-
mogeneity [6]. The object-oriented change detection method can
combine spatial, spectral, and textural information from images.
With the rapid development of Earth observation technology, the
spatial resolution of remote sensing images is increasing. Com-
pared with conventional remote sensing images, high-resolution
remote sensing images have richer spatial feature information.
A higher spatial resolution highlights the correlation between
pixels, which increases “salt and pepper” noise [7]. Therefore,
compared with pixel-based methods, object-oriented change
detection methods have more advantages in terms of efficiency
and feature dimension capacity [8], [9].

Deep learning models, such as convolutional neural networks
(CNNs), are not suitable for object-oriented image processing
due to the non-Euclidean data structure of image objects [10],
[11], [12]. A graph convolutional network (GCN) is a machine

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-7442-2546
https://orcid.org/0000-0003-0505-5724
https://orcid.org/0000-0003-3353-4060
https://orcid.org/0000-0001-8922-8789
https://orcid.org/0000-0002-1951-9617
https://orcid.org/0009-0003-9983-301X
https://orcid.org/0009-0000-5275-6641
https://orcid.org/0009-0000-3050-3432
mailto:q984641286@gmail.com
mailto:szgaq77@163.com
mailto:szgaq77@163.com
mailto:664271710@qq.com
mailto:zsz2152@sina.com
mailto:zwxrs@sjzu.edu.cn
mailto:mazaiyang@njnu.edu.cn
mailto:chenmin0902@163.com
mailto:zhangfengyuan@nnu.edu.cn


WU et al.: OBJECT-ORIENTED SEMI-SUPERVISED LAND-USE/LAND-COVER CHANGE DETECTION METHOD 6479

learning method that has advantages in image processing be-
cause of the non-Euclidean data structure of image objects [13],
[14]. To date, there are few GCN applications in remote sensing
image change detection. GCN-based change detection methods
can effectively improve change detection accuracy through end-
to-end learning of node features and structural information [15],
[16], [17]. However, the adjacency weights of the above methods
need to be manually customized, which limits their application.
A graph attention (GAT) network can aggregate neighboring
nodes via attention. It achieves adaptive assignment of adjacency
weights and can extract richer feature information than a GCN
[18]. GATs are designed for application in traditional networks,
and their standardized graph propagation structure is suitable
for traditional network data with rich connectivity relationships,
such as social network data [19], [20], [21] and traffic net-
work data [22], [23], [24]. The sparse connection relations of
remote sensing images cannot meet the GAT network density
requirements. Moreover, the dimensionality of the feature space
of remote sensing data is much greater than that of traditional
network data. This will put considerable pressure on feature
selection and fusion in the GAT. Effective feature depth mining
methods are urgently needed to maintain a constant sample
size.

Training sample size control is another challenge for change
detection methods. Deep learning models can be classified as
supervised or unsupervised according to their dependence on
samples. The supervised models can determine the land-cover
change classes. It is robust for different atmospheric and light-
ing conditions, and a large number of high-quality training
samples are needed to improve its accuracy [25], [26], [27].
The unsupervised model does not require samples, and it can
automatically fit the classification function through the feature
distribution of the difference images. Moreover, these methods
lack data-based modeling capabilities and guidance on output
results, which may lead to failure in practice. Semi-supervised
models have been developed to combine the advantages of
supervised and unsupervised models. Semi-supervised models
use a small number of labeled samples for learning, continu-
ously mine information from a large amount of unlabeled data
during the learning process, and update the labeled samples with
this information [28]. The semi-supervised method solves the
problem of an insufficient number of labeled samples and has
better applications in change detection [29]. In addition, graph
transductive models, represented by GCN and GAT, are feasible
for semi-supervised learning. It assumes that nearby nodes tend
to have the same label, thus propagating the information from
labeled to unlabeled nodes [30].

A semi-supervised GAT uses a small number of labeled sam-
ples to achieve node feature representation. A small number of
labeled samples reduces the cost of sample labeling but may give
rise to deficiencies in feature representation. The main solutions
to this deficiency include enriching the feature space of the la-
beled samples and learning knowledge from unlabeled samples.
Multiscale features, temporal features, pixel-level features, and
image object-level features are applied to expand the feature
space. Shuai et al. [31] proposed a superpixel-based multiscale
Siamese graph attention network to increase feature expression

and generalization through multiscale node features. The au-
thors in [32] and [33] designed temporal–spatial joint GAT
(TSJGAT), a GAT network capable of fusing pixel-level and
image object-level features, to correct the accumulation of
node feature errors due to image segmentation using pixel-
level features and to improve the deficiencies of image object-
level feature representation. Moreover, the TSJGAT utilizes the
temporal–spatial joint correlations reflected in the multitemporal
images and obtains a temporal–spatial affinity matrix, allowing
the graph nodes to aggregate multiple effective features ac-
cording to the correlation matrix, further enhancing the feature
representation capability. Unlabeled samples can be obtained
by analyzing their similarity to labeled samples. Jia et al. [34]
took advantage of GATs ability to ingest knowledge related
to unlabeled regions from unlabeled image datasets with a
small number of labeled samples. They explored the regions of
consistency between multitemporal images in the latent spatial
domain and utilized the spatial information of the opposite
images to obtain enhanced feature representations. Sun et al. [35]
implemented the Siamese nested UNet (SANet) using a GAT
network. Pseudolabels with high confidence are obtained with
the help of pixel-level threshold filtering. The accuracy of the
pseudolabel is improved by comparing the pseudolabel with the
enhanced original image. The above methods enhance the fea-
ture expression ability of the GAT, but there is still much room for
improvement.

To effectively leverage the performance advantages of GAT
feature expression for land-use/land-cover remote sensing mon-
itoring, the problems of connection sparsity and insufficient
sample feature mining need to be addressed. This article pro-
posed a Siamese autoencoder GAT (SA-GAT) network for
semi-supervised land-use/land-cover change detection via high-
resolution remote sensing. First, we used a growing multilevel
segmentation strategy (GMSS) to reduce the computing pres-
sure and constructed multidimensional and multilevel feature
spaces. Second, with the image objects as nodes, an adjacent
matrix was established to construct a multitemporal image net-
work. Then, we used the chi-square transformation (CST) to
calculate the weighted difference of the multidimensional fea-
tures, and the weighted difference similarity matching (WDSM)
method was used to improve the graph connection density.
Moreover, the Siamese autoencoder (AE) was used to deeply
mine the high-dimensional features of node attributes, and the
obtained weight parameters were subsequently transferred to
the GAT. Finally, the model was trained using a small num-
ber of samples to obtain a classifier for change detection. A
flowchart of the proposed change detection method is shown in
Fig. 1.

The major contributions of this study are given as follows.
1) A GAT change detection network based on a Siamese AE

is proposed. The traditional GAT relies on only labeled
samples to obtain a high-dimensional representation of
nodes during network training. The proposed network uses
a Siamese AE for unsupervised training and obtains a
high-dimensional representation of feature vectors by con-
tinuously minimizing the reconstruction errors between
the input and output.
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Fig. 1. Flowchart of the proposed change detection method.

2) We propose a graph connection density method based on
similarity matching. Traditional graph construction meth-
ods do not consider the connectivity of similar nodes dur-
ing network propagation. By using the similarity matching
method, virtual connection edges are added to realize
information sharing among similar nodes.

It is beneficial to break out of the information jam in the
process of node aggregation and to spread network supervised
information.

3) A growing multilevel image segmentation strategy is pro-
posed. Small-scale image segmentation results were taken
as constrained thematic maps, and the subsequent model
operation efficiency and multilevel feature extraction were
optimized by combining growth segmentation and multi-
level segmentation models.

The rest of this article is organized as follows. Section II intro-
duces related works, such as attention mechanism, multimodel
remote sensing change detection, and semi-supervised learning.
In Section III, the GMSS, similarity matching graph connection
density enhancement method, and SA-GAT change detection
method are introduced. Sections IV and V present the experi-
mental details, ablation experiment, and parameter discussions,
respectively. Finally, Section VI concludes this article.

II. RELATED WORK

A. Attention Mechanism

Attention mechanisms improve the ability of neural networks
to perceive meaningful features. In 2014, attention mechanisms
were successfully applied to image classification and natural
language processing based on recurrent neural networks (RNNs)
[36], [37]. Two years later, Yin et al. [38] proposed the use of
attention mechanisms in CNNs and applied them to statement

modeling. Subsequently, Google came up with a text represen-
tation using a self-attention mechanism, which forms the core
module of transformer [39]. The spatial attention mechanism
determines the location information of interest by learning all
the bands [40]. The spatial weight matrix obtained by the
spatial attention mechanism is one of the main methods for
enhancing CNN encoders to capture global contextual features
[41], [42], [43]. The spectral attention mechanism establishes
correlations between different bands and can enhance important
spectral features [44], [45], [46]. In addition, the spatial–spectral
attention mechanism combines the advantages of spectral and
spatial features to optimize the feature representation of images
in local regions [47], [48]. In response to the temporal features
of multitemporal remote sensing, encoders with temporal at-
tention mechanisms focus on spatial regions characterized by
continuous temporal changes. The main frameworks used in
this mechanism are neural networks, such as fully convolutional
networks [40], RNNs, and long short-term memory (LSTM)
networks [49]. The GAT can improve the deficiency of CNNs
that cannot fuse long-range feature dependencies [35], [50]. For
the sample self-training problem, the GAT mines information
related to the labeled regions from the unlabeled image dataset
[34]. It has a prominent role in capturing the global spatial
dependence of image pixels or image objects [51].

B. Multimodel Remote Sensing Change Detection

The spectral, spatial, and temporal features of multitemporal
remote sensing data, and multisource remote sensing data and
the combined use of all the above information can help to im-
prove the change detection performance. In general, multimodel
change detection methods can be categorized into multimodel-
integrated frameworks and multimodel data fusion frameworks
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[52]. The multimodel-integrated framework has a hybrid struc-
ture, similar to a double-stream design, that combines the ad-
vantages of feature extraction from different models [53]. The
objective was to highlight the characteristics of real changes
between multitemporal images and to suppress the interference
of spectral differences within the same class of land cover. Kou
et al. [54] combined convolutional LSTM with the conditional
generative adversarial network (GAN) to form a domain trans-
lation framework. The framework reconstructs the prechange
image using temporal features and ensures that it has spectral
consistency with the postchange image. Li et al. [55] combined
the deep features of a deep belief network and the low-level
features of a support vector machine to analyze multitemporal
ZiYuan-3 images and verified that the multimodal features help
to improve detection accuracy. The multimodal data fusion
framework improves detection accuracy by integrating informa-
tion from multiple sources of data. Zhang et al. [56] introduced
the use of a multiscale morphological gradient in a nonsubsam-
pled shearlet transform pulse-coupled neural network for edge
detection. This method improved the utilization of edge features
and achieved the fusion of SAR and optical remote sensing data.
Liu et al. [57] subsequently addressed the difference in resolu-
tion of the input data in the different-resolution change detection
task from the perspective of feature alignment. Zhang et al.
[58] proposed a multispatial resolution image change detection
framework that combines high-level deep learning features and
low-level mapping change features. All of the above multimodel
remote sensing change detection methods are used to enrich and
refine the feature space through the cross application of multiple
models or multisource data. Multidimensional features play a
key role in encoding and decoding changes via deep learning
and will always constitute a hot research topic.

C. Semi-Supervised Learning

The semi-supervised learning method is one of the main meth-
ods for overcoming the problem of insufficient training sam-
ples. A pixel-level semi-supervised change detection method
was proposed by Bandara and Patel [59]. The method utilizes
unlabeled samples to randomly perturb the difference map with
hidden features and maintains the consistency of the predicted
change probability map in the change detection network. To
fully utilize the potential of unlabeled data, Peng et al. [60]
used two discriminators to enhance the consistency of feature
distributions in segmentation and entropy maps between labeled
and unlabeled data. Liu et al. [61] proposed a semi-supervised
remote sensing change detection method based on a GAN and a
graph model. First, the multitemporal remote sensing change de-
tection problem is transformed into a semi-supervised learning
problem on a graph, which includes most unlabeled nodes and a
few labeled nodes. Then, GANs are used to generate samples in
a competitive manner and help improve classification accuracy.
The above semi-supervised change detection methods are all
pixel based. Integrating the characteristics of semi-supervised
methods into object-oriented deep learning change detection and
establishing an object-oriented semi-supervised deep model are
still problems that need to be further explored.

D. Parameters of Fractal Net Evolution Approach (FNEA)

FNEA segmentation is widely used for remote sensing image
segmentation and is the core algorithm of eCognition. The
main parameters of FNEA include the shape factor wshape, the
compactness scale wcompact, and the segmentation scale ζscale.
Inappropriate settings of these parameters may result in both
over- and undersegmentation [62]. Usually, the default values
for the first two parameters are 0.1 and 0.5. According to several
related studies, the default values for these two parameters are
generally acceptable [63], [64], [65], [66], [67], [68], [69], [70],
[71], [72], [73]. The parameter ζscale is a user-defined threshold
for controlling average object size. More segmented objects are
typically produced by smaller values of ζscale, and vice-versa
[74]. Currently, there are two methods available ζscale: automatic
[75], [76], [77] and manual methods [70], [78], [79], [80].
The estimation of scale parameters of eCognition introduced
the local variance (LV) index to reflect the homogeneity of
the segmentation results. The LV index will stop increasing
when the segmentation scale reaches a particular range, and this
scale may be the optimal segmentation scale [76]. The exist-
ing automatic determination methods mostly provide reference
candidates for the optimal segmentation scale, but manual or
segmentation strategies need to be used in conjunction to obtain
the final results. The manual selection of segmentation scale
methods usually has better applicability because the parameters
are determined according to the specific application. The char-
acteristics of the data and ground objects are important factors
that affect the manual selection of segmentation scales.

III. MATERIALS AND METHODS

This study comprised three primary stages, as illustrated in
Fig. 1. First, we used GMSS to segment the multitemporal
images and construct the multidimensional feature space of the
image objects. Second, we constructed the graph using image
object nodes and a first-order adjacency matrix and increased
the connection density via the WDSM. Third, we used the
Siamese AE to express multidimensional features and trained
the GAT with a few training samples to obtain a change detection
classifier.

A. Image Object Acquisition With GMSS

We designed a new segmentation strategy, named GMSS,
to obtain multitemporal image segmentation objects with the
same segmentation boundary. In this article, an image object is
a segmentation result, not a single building. The GMSS fully
considers the spectral and spatial features of an image and
integrates image features at different levels through multilevel
segmentation. This approach has the potential to enhance the
adjacency relationship between image objects at a small scale,
thereby significantly improving both local and global sensing
field features in subsequent processing.

The traditional overlay segmentation strategy involves first
segmenting the images and then overlaying them to ensure
consistent segmentation boundaries of multitemporal remote
sensing images [81]. Due to the influence of multitemporal
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Fig. 2. Schematic of the growing segmentation strategy. (a)–(d) are prechange
image, prechange image segmentation, postchange image, and postchange im-
age segmentation. This is one of the all levels of segmentation. The yellow
lines signify the boundaries extracted from the prechange image, while the red
lines represent the newly derived boundaries from the postchange image. The
arrows indicate the direction of influence, symbolizing how the segmentation
boundaries of the prechange image guide the segmentation process of the
postchange image. The partial images are derived from Data A.

remote sensing image registration and spectral differences, this
strategy generated too many broken boundaries and noisy image
objects. Moreover, a single segmentation scale was inadequate
for accurately delineating the diverse ground object boundaries.
A GMSS schematic diagram is shown in Figs. 2 and 3. In
Fig. 2(d), the yellow lines represent the segmentation boundaries
of the prechange image, and the red lines represent the new
segmentation boundaries of the postchange image. The seg-
mentation boundaries of the prechange image were used as the
thematic map to constrain the postchange image segmentation,
and the segmentation results of the postchange image were used
as the final segmentation boundaries. Moreover, a multilevel
segmentation model was established. L segmentation layers
were set up, the minimum-scale image objects in the first layer
were obtained by using growth segmentation, and the multilevel
segmentation objects were obtained step by regionally merging
the lower level image objects based on the heterogeneity of
spectral and shape. The multilevel segmentation scale is given
as follows:

leveln = levelini + n ∗ Tscale (1)

where levelini represents the starting segmentation scale, Tscale is
the fixed step size, n denotes the level, and 0 ≤ n ≤ L. The seg-
mentation scale at the first level is level0, and the pixels are taken
as the merging objects. We first obtained the prechange image
segmentation boundary preB0 at scale level0; then, using the
boundary preB0 as the thematic map, we derive the postchange
image segmentation boundary postB0 at the same scale level0.
The final segmentation results of the first level of segmentation
are the segmentation boundary postB0 and the image object sets
Object0. Moving on to the second level, the merged objects were
the image object sets Object0, and other operations were similar
to the first level of segmentation. The segmentation process for

the other levels was consistent with that for the second level. We
generally set L = 4, Tscale = 15, and levelini according to the
image and feature characteristics. We used FNEA to obtain the
segmentation boundaries.

Multidimensional feature combinations have been proven to
be suitable for land-use/land-cover change detection, but mul-
tilevel feature representations have been less considered. After
multilayer segmentation, each layer of the image object feature
space was constructed by spectral, textural, geometric, indexing,
and other features. We used eCognition to extract the features
of the image objects, including spectral, textural, indexing, and
geometric features. The spectral features included the average,
maximum, and minimum gray values of the blue, green, red,
and near-infrared (NIR) bands, and the standard deviation of
gray values of the NIR band. The texture features included the
mean and entropy of the grayscale cogeneration matrix of the
NIR band. The index features included the normalized difference
water index and normalized difference vegetation index. The
geometric features were the area of the image object at each
segmentation level.

B. Graph Connection Density Enhancement Method Based on
WDSM

The graph structure can describe the relationships between
nodes. A good graph structure is a prerequisite and key to fully
utilizing the performance of a graph neural network (GNN). We
used the image objects as nodes and the relationships between
image objects as edges. Change image objects often have ex-
cessive variability with surrounding neighboring nodes, which
affects the connectivity of the graph. This approach made it
difficult to effectively transfer supervised information. Theoreti-
cally, two nodes with close differentiation had similar supervised
information. Thus, a strong graph connection density enhance-
ment method based on similarity matching was proposed. After
constructing the first-order adjacency matrix using the location
information of nodes, we used the CST to calculate the weighted
difference of the multidimensional features [82]. The virtual
connected edges were added by the WDSM to enhance the
connection density of the graph.

The CST used the variance in the difference bands as the
weight of the fusion and compressed the multidimensional fea-
tures into 1-D features. The CST is given as follows:

dn =

M∑
i=1

(
F 2
i − F 1

i

σi

)2

, i = 1, 2, . . . ,M (2)

where dn is the weighted difference of the image object n,
and D = {d1, . . . , dn . . . , dN}. N is the total number of image
objects, t ∈ {1, 2} represents the prechange and postchange
times, Ft = {Ft1, . . . , Fti, . . . , FtM} is the M-dimensional fea-
ture vector, and σi is the standard deviation of the difference
band i. The image objects with similar degrees of difference had
similar supervised information. With this in mind, this article
designed a graph connectivity enhancement method based on
difference similarity. Iterating through all the elements in D, we
calculated the absolute value of the difference between dn and
the other elements in D, and sorted the results from smallest
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Fig. 3. Schematic diagram of the GMSS. GMSS takes the image objects obtained from the smallest segmentation scale as the basic units and establishes the
correlation of the segmentation results at different scales by merging the basic units level-by-level.

Fig. 4. Schematic diagram of the WDSM. Each node represents an image object. The nodes within each green circle represent the set of nodes that have a
first-order adjacency relationship with node A or B, respectively.

to largest. Then, we set the similarity step s, match the first s
nodes with the smallest absolute value of the difference with
dn as strongly connected nodes, and establish the connection
relationship between nodes belonging to dn. A schematic dia-
gram of the WDSM is shown in Fig. 4. The red edge connecting
nodes A and B between subgraphs is a virtual connected edge
constructed by the WDSM, which can improve the connectivity
density of the graph.

The article constructed the difference graph by the above
steps. The graph was an undirected graph of G = (V,E),
where V = {v1, . . . , vi, . . . , vN} was the set of nodes and E
was the set of edges.N was the number of nodes. Since an image
object corresponded to a node, the number of nodes in the graph
corresponded to the number of image objects. A was defined
as the strongly connected adjacency matrix of G. The element
aij in A represents the adjacency relationship between vi and

vj . Each node represents the physical meaning of each image
object, while the graph representation constructs the spatial,
spectral, and topological relationships of image objects in a
graph structure, providing a comprehensive understanding of
the semantic information of image objects from various feature
dimensions.

C. Change Detection Based on SA-GAT

1) GAT Network: The GAT achieved the adaptive assign-
ment of different neighbor weights by aggregating neighbor
nodes through an attention mechanism. This approach greatly
improved the expressive power of the GNN. We assumed that a
graph has N nodes and that the multidimensional feature set of
nodes can be represented as h = {�h1, . . . ,�hi, . . . ,�hN}. Here,
the nodes were derived from the graph constructed from the
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image objects, and the number of nodes was consistent with the
number of image objects. The purpose of the attention layer was
to output the new node feature set h′ = {�h′

1, . . . ,
�h′
i, . . . ,

�h′
N}.

The method applied the linear transformation W , from �hi to
a new feature �h′

i. W was the shared weight matrix, which trans-
formed the input into higher level features. The self-attention
mechanism was shared along the connecting edges of adjacent
nodes to calculate the attention coefficient between the target
node and the neighboring nodes

eij = α
(
W�hl

i,W
�hl
j

)
(3)

where eij is the calculated attentional coefficient and α is a
shared attentional mechanism. We computed eij from the feature
vector �hl

i of node i in the GAT layer l and the feature vector �hl
j

of node j. The above attention calculation considered any two
nodes in the graph, i.e., the influence of each node in the graph
on the target node was considered so that the graph structure
information was lost. For the target node i, only the correlation
of the nodes in its neighborhood to the target node (including its
own influence) was calculated. The softmax function normalizes
the attention coefficient to an easily comparable form. The
spatial relationship matrix A was used as the basis, and the
coefficients at nonzero positions in A were retained. Finally,
the final normalized attention coefficients αij were obtained by
applying the LeakyReLU activation function as follows:

αij = Softmaxj (LeakyReLU (eij)) =
exp(eij)∑

vp∈Ñ(vi)
exp(eip)

(4)
where Ñ(Vi) is a neighbor of vi and vp is a neighbor node.
The LeakyReLU activation function gives a nonzero slope to
all negative variables, which improves the vanishing gradients
problem. Following the idea of weighted summation of attention
mechanisms, the new feature vector of node vi is given as
follows:

�hl+1
i = σ

⎛
⎝ ∑

vj∈Ñ(vi)

αijW�hl
j

⎞
⎠ (5)

where σ is the sigmoid activation function. The sigmoid activa-
tion function maps the variables to the interval 0–1. In addition,
to stabilize the learning process of self-attention, a group of
independent attention mechanisms was applied to the top and the
output results were spliced according to the following equation:

�hl+1
i =‖Kk=1 σ

⎛
⎝ ∑

vj∈Ñ(vi)

αk
ijW

k�hl
j

⎞
⎠ (6)

where ‖ is the concatenation operation, αk
ij is the weight co-

efficient computed by the k th attention mechanism, and K is
the total number of attention mechanisms.W k is the input linear
transformation matrix. In addition, to avoid the problem of over-
smoothing the model due to too many GAT layers, we designed
the GAT using two GAT layers. The number of GAT layers
should not be too high; otherwise, it will cause oversmoothing.

2) SA-GAT and Change Detection: The GAT is a semi-
supervised learning model and has the advantage of fully com-
bining GAT propagation characteristics with topological struc-
ture [83]; however, the following problems remain. First, the
GAT optimizes network features by sharing a weight matrix to
train and extract features through labeled samples. The effec-
tiveness of the GAT in extracting features would be affected
if there were insufficient training samples for semi-supervised
change detection or if the samples deviated significantly from
the overall data in terms of distribution [84]. Second, conven-
tional change detection methods superimpose feature matrices
of multitemporal images and then import them into deep learning
networks. This process allowed the variance detection to start
from the first layer, resulting in features belonging to different
layers interacting with each other. It was difficult to maintain
the high-dimensional features of the original image [85]. To
improve the above deficiencies, we optimized the training and
feature extraction of the GAT using the Siamese AE.

Pretraining of node features via the Siamese AE in-
volves identifying optimal high-dimensional features. The
encoder transforms the original low-dimensional features
Ft = {ft1, . . . , fti, . . . , ftM} of the multitemporal nodes into
high-dimensional features by an encoding matrix Wenc. The
decoder retransforms the high-dimensional features into tempo-
rary low-dimensional featuresFt

′ = {f ′
t1, . . . , f

′
ti, . . . , f

′
tM} by

decoding the matrixWdec to obtain the optimal high-dimensional
features. The training is performed by the gradient descent algo-
rithm and iterative operation to compare the difference between
the low-dimensional original feature Ft and the newly gener-
ated low-dimensional feature Ft

′. When the difference does
not change, the encoder obtains the optimal parameters Wenc

and benc. In addition, the process of obtaining high-dimensional
features via multiple temporal nodes is synchronized, and the
parametersWenc and benc are shared among them. To migrate the
weight parameters of the Siamese AE, we replaced the weight
feature extraction layer of the GAT with a fully connected (FC)
layer. That is, the weight parameters of the original GAT feature
extraction layer were replaced with the weight parameter Wenc

and the bias parameter benc of the Siamese AE. This allowed
the parameter form of the feature extraction layer of the GAT to
be adjusted to ensure consistency with the form of the weight
parameters of the Siamese AE. A schematic diagram of the
SA-GAT is shown in Fig. 5.

An AE was able to learn the implicit features of input
data in an unsupervised manner and continuously minimized
the reconstruction error between the input and output through
training. The change detection task is mostly dominated by
a multitemporal data space, which was used to construct a
Siamese AE [86]. The Siamese network was used to obtain
high-dimensional features of input multitemporal nodes through
unsupervised pretraining. These high-dimensional features were
directly bought into the subsequent GAT node representations by
the network as parameters, allowing for the extraction of more
feature information even with limited samples. In the Siamese
network structure, feature vectors of multitemporal images were
used as double inputs, and the parameters of the network layer
were shared to ensure that the multitemporal images had the
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Fig. 5. Schematic diagram of the SA-GAT. The T in the circle stands for transfer, i.e., transferring the parameters trained by the AE directly to the layer of the
GAT.

same high-dimensional features. Given a multitemporal input
feature vector Ft, the change weight matrix from the input layer
to the hidden layer was Wenc, and the encoder encoded the input
as ht. The decoder mapped the encoded features ht to the input
space, and the reconstructed input Ft

′
was obtained. The method

assumed that the encoding matrix from the hidden layer to the
output layer was Wdec. The AE is a three-layer neural network
that includes an input layer, a hidden layer, and an output layer.
The AE compresses the number of input features from 144 to
32. The reconstructed input is shown in the following equation,
where σ is the sigmoid activation function:

ht = σ (WencFt + benc) (7)

F ′
t = σ (Wdecht + bdec) . (8)

The root-mean-square error Er was used as the reconstruction
error function [87], and the model was trained by continuously
minimizing the reconstruction error between the input and out-
put. The parameters were continuously optimized using the
gradient descent algorithm, and the model was made to converge
by the iterative algorithm

Er =
1

m

2∑
t = 1

m∑
i = 1

‖ f ′
ti − fti ‖22 . (9)

To ensure the consistency of the model parameters during the
migration from the Siamese AE parameters to the GAT network,
we replaced the feature extraction layer of the first layer of
the GAT with FC. The change was that the bias parameter benc

was added to enhance the fit of the network. The above-noted
coefficient exhibited the following changes:

eij = α
(
Wenc

�hl
i + benc,Wenc

�hl
j + benc

)
. (10)

The weight parameter Wenc and bias parameters benc of the
encoder obtained from the Siamese AE training were saved as
the initialization parameters of the GAT FC layer. We calculated
the loss Lq of the labeled sample using the cross-entropy loss
function L, and samples were labeled by visual interpretation

L =

NS∑
q=1

Lq (11)

where NS is the number of labeled nodes. We used the gradient
descent algorithm for supervised training.

After running the model for several epochs, a softmax clas-
sifier was used to complete the binary classification of all node
predictions and generate a change result. The final task of this
article was to predict whether each pixel belongs to a changed
or unchanged class. By using this method, we achieved binary
classification of all nodes. Since each node corresponds to an
object in the image and all the image objects contain all the
pixels, we have accomplished the prediction of the classes of all
the pixels.

IV. RESULT

A. Dataset and Implementation Details

WorldView-2 images from November 2012 and Pleiades im-
ages from August 2013 from the East Lake New Technology
Development Zone in Wuhan, China, were used for the experi-
mental data. WorldView-2 was launched by the United States in
October 2009. It stays in a sun-synchronous orbit, approximately
770 km above the Earth. The French Pleiades satellites consist of
two identical satellites, Pleiades 1 and Pleiades 2. These satellites
were successfully launched into their own sun-synchronous or-
bits in 2011 and 2012. The above data included red, green, blue,
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Fig. 6. From top to bottom are four datasets A, B, C, D, and E. (a)–(c) are prechange image, postchange image, and reference change map generated by visual
interpretation. The red and green pixels are the changed and unchanged samples in the training set in column (c).

near-infrared, and panchromatic bands. The spatial resolutions
of the panchromatic and multispectral bands were 0.5 m and
2 m, respectively. The Pansharp algorithm fused multispectral
and panchromatic bands, and the polynomial model was used to
register the 2012 and 2013 images. The article selected four sets
of experimental data, named Data A, B, C, and D. The sizes of
Data A, B, C, and D are 2232 × 1524, 2158 × 1517, 3476 ×
2456, and 3020×1994 pixels, respectively. To verify the validity
of the segmentation scale for different data sources, we added
Data E from the multitemp scenes Wuhan dataset (MtS-WH)
[22]. The MtS-WH dataset was obtained by IKONOS sensors
in February 2002 and June 2009. It includes red, green, blue,
and near-infrared bands with a spatial resolution of 1 m. The
size of Data E is 1000 × 1000 pixels. The experimental data and
reference data are shown in Fig. 6.

We compared the prechange and postchange image objects
at corresponding positions via manual interpretation and used
the set of changed image objects as reference data. The ratios of
changed to unchanged pixels in the reference data for Data A, B,

C, D, and E are 0.22, 0.14, 0.30, 0.29, and 0.34, respectively. In
addition, similar to some remote sensing image analysis methods
based on GNNs, we selected some of the nodes as the training set
and the rest as the test set [16], [88], [89], [90]. For Data A, B, C,
D, and E, the division ratios of the training set and test set were
300:10 579, 200:7806, 3001: 2871, 300:9805, and 400:17 589,
respectively. Our experiments were based on the Windows 10
operating system and an Intel(R) Core (TM) i5-6200U CPU
@ 2.30 GHz processor with 8 GB of running memory. The
programming language used was Python, and the deep learning
framework used was PyTorch.

We used the GMSS to segment multitemporal remote sensing
images. The segmentation scale of the bottom layer of the
prechange image was set to 25 or 20, the compactness factor
was 0.5, and the shape factor was 0.1. The segmentation results
are shown in Fig. 7, and the segmentation parameters are shown
in Table I. We manually selected the changed objects as positive
samples and the unchanged objects as negative samples and
kept the ratio of positive to negative samples consistent. Our
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Fig. 7. Segmentation results. (a)–(e) are data A, B, C, D, and E. The black lines represent the boundaries between segmented image objects.

TABLE I
SEGMENTATION PARAMETERS

acceptable minimum area of a changed object was 50 m2. After
change detection, we merged adjacent change image objects
and removed image objects that were smaller than 50 m2. The
proportions of samples to the total for the four datasets were
2.84%, 2.56%, 1.55%, and 3.06%, respectively. The above pro-
portions ensured that the number of samples was much smaller
than the number of unlabeled samples, which was conducive to
an objective description of the effectiveness and usefulness of
the algorithm. The numbers of changed image objects annotated
for Data A, B, C, D, and E are 150, 100, 150, 150, and 200, re-
spectively. The numbers of unchanged image objects annotated
for Data A, B, C, D, and E were the same as those of the changed
image objects.

Consistent with most related references [75], [79], [91], the
changed and unchanged image objects of our reference data
were also obtained by manual visual interpretation. We formed
comparison groups of multitemporal image objects and visu-
ally compared the differences among the groups one by one.
If we found a significant difference, we labeled it a changed
image object. Significant differences were generated due to
the conversion among vegetation, built-up land, and water, and
the changed image objects are shown in Fig. 8. A portion of the
changed image objects were labeled training samples, and image
groups that did not change significantly were labeled unchanged

image objects; the unchanged images are shown in Fig. 9. The
multitemporal image objects are combinations of vegetation,
water, and built-up land, as shown in Fig. 9(a), (b), and (c),
respectively.

B. Comparison Methods

We used the proposed SA-GAT for change detection on all
the experimental data. In addition, the authors compared the
results of our method with those of similar methods, including
the unsupervised change detection method DCST [92], the semi-
supervised machine learning method TSVM [93], the semi-
supervised machine learning method TSVM with deep features
(TSVM-VGG) [94], the standard GAT method without Siamese
AE optimization [18], the GCN semi-supervised change detec-
tion method [16], and the graph sample and aggregate-attention
(SAGE-A) change detection method [95]. DCST uses CST to
construct a 1-D difference feature space of the image object
and obtains the binary segmentation threshold through the max-
imum expectation and Bayesian minimum error. The TSVM
computes the absolute difference of each feature and implements
binary classification in a multidimensional feature space via
hyperplanes. In TSVM-VGG, a second layer of depth features
extracted by the classical visual geometry group (VGG) is added
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Fig. 8. Changed image objects. (a)–(f) are vegetation to built-up area, vegetation to built-up area, vegetation to built-up area, vegetation to built-up area, built-up
area to vegetation, vegetation to water, water to vegetation, built-up area to water, and water to built-up area. The red polygons are the regions of interest.

Fig. 9. Unchanged image objects. (a)–(c) are unchanged vegetation, water, and built-up areas, respectively. The red polygons are the regions of interest.

to the feature space, and the remaining steps are the same as
those in TSVM. GAT is the same method as ours, except that
Siamese AE optimization is not used. Conversely, for GCN and
SAGE-A, the corresponding GNNs are used to replace the GAT
of the proposed methods; otherwise, the GCNs and SAGE-A do
not differ from each other. The DCST, TSVM, and TSVM-VGG
are traditional machine learning methods and are fundamentally
different from the proposed methods in terms of feature repre-
sentation. In addition, the same labeled samples were used for
all methods to ensure the fairness of the experiments.

To quantitatively evaluate the performance, precision, recall,
overall accuracy (OA), and F1-score were used as accuracy
analysis metrics. They were calculated as follows:

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

OA =
(TP + TN)

(TP + TN + FP + FN)
(14)

F1 =
2× Precision × Recall

Precision + Recall
. (15)

TP represents the true positive, which refers to the part cor-
rectly predicted as changed areas. FP represents the false posi-
tive, which refers to the part wrongly predicted as changed areas.
TN represents the true negative, which refers to the part correctly
predicted as unchanged areas. FN represents the false negative,
which refers to the part wrongly predicted as unchanged areas.

C. Results and Analysis

We accomplished change detection for Data A, B, C, D, and E
using DCST, TSVM, TSVM-VGG, GAT, GCN, SAGE-A, and
SA-GAT. The similarity step s = 1, the number of hidden layer
units d = 16, and the number of training epochs i = 400. The
change detection results for DCST, TSVM, TSVM-VGG, GAT,
GCN, SAGE-A, and SA-GAT are shown in Fig. 10. The results
of the DCST included more trivial image objects, as shown in
the red box in Fig. 10(a). The integrity of the detection results
of the TSVM and TSVM-VGG methods was better than that of
the DCST method, but the change detection results in the first
dataset were poorer, and the false alarms were more serious, as
shown in the red box in Fig. 10(b) and (c). GAT had serious
false detections in Data B and C. Specifically, a large amount
of unchanged vegetation adjacent to roads and bare soil was
incorrectly classified as changed, as shown in the red box in
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Fig. 10. Change detection results. (a)–(h) DCST, TSVM, TSVM-VGG, GAT, GCN, SAGE-A, SA-GAT, and reference data. Red boxes highlight interesting areas
where models diverge. These regions of interest point out the specialties of the proposed method. The errors of models are highlighted with different colors, the
red for false positive and the yellow for false negative.

Fig. 10(d). GCN and SAGE-A had good detection results for all
four datasets. The accuracy of the road and building boundary
extraction was slightly worse than that of the proposed method,
as shown in the red boxes in Fig. 10(e), (f), (g), and (h). SA-GAT
could effectively identify changes in houses, vegetation, bare

land, and water, especially in roads and bare soil. Overall, the
proposed method could achieve high-precision change region
extraction for all four datasets, which proved its effectiveness
and applicability for change detection in high-resolution remote
sensing images.
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TABLE II
ACCURACY EVALUATION RESULTS

TABLE III
AVERAGE OF ACCURACY EVALUATION RESULTS

We used precision, recall, OA, andF1-scores to quantitatively
evaluate the accuracy of the change detection results for DCST,
TSVM, TSVM-VGG, GAT, GCN, SAGE-A, and SA-GAT. The
accuracies of DCST, TSVM, TSVM-VGG, GAT, GCN, SAGE-
A, and SA-GAT are shown in Table II. The average accuracy
is shown in Table III. The average precision, recall, OA, and
F1-scores of SA-GAT were 85.38%, 94.27%, 95.41%, and
89.35%, respectively. Compared with those of DCST, TSVM,
TSVM-VGG, GAT, GCN, and SAGE-A, the average OA of
SA-GAT improved by 10.20%, 8.39%, 13.31%, 19.25%, 5.04%,
and 4.68%, respectively. The average F1-score improved by
27.24%, 17.20%, 22.35%, 34.01%, 10.84%, and 9.55%, re-
spectively. The DCSTs and TSVMs were easy to implement.
However, they could not make full use of the topological features

of image objects, resulting in poor detection results. The GAT
results were also unsatisfactory because the GAT failed to take
full advantage of deep features. The detection results of GCN
and SAGE-A were better than those of traditional DCST, TSVM,
and TSVM-VGG, but the accuracy was not as good as that of
semi-supervised SA-GAT.

Among them, DCST, TSVM, and TSVM-VGG were simpler
to extract than the other methods, but they failed to make full
use of the topological relationships of image objects, resulting
in poor detection. The results of the GAT directly applied to
the four experimental datasets were also unsatisfactory because
the GAT could not be effectively trained with a few samples.
GCN and SAGE-A outperformed traditional DCST and TSVM,
but the extraction accuracy was not as high as that of SA-GAT.
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Fig. 11. Experimental results using different network nodes. (a) Comparison of the running times of single epochs with different numbers of nodes. (b) Comparison
of image objects of the overlay segmentation and growing segmentation.

Compared with GCN SAGE-A, SA-GAT could better assign
weights to adjacent image objects, and the feature vectors pre-
trained by the Siamese AE were also more conducive to deep
feature extraction.

V. DISCUSSION

A. Effect of Image Segmentation Scale

The GAT is a type of direct push learning [40]. The larger the
quantity of input data is, the more computing power is digested
during GAT training. Therefore, the number of image objects
affects the operational efficiency of the GAT. The experimental
results using different network nodes are shown in Fig. 11(a).
We compared the changes in the running times of single epochs
as the number of network nodes increased from 4000 to 10 000.
The single-epoch running time is positively correlated with the
number of network nodes. For this reason, our segmentation
strategy effectively controlled the number of image objects.
Moreover, ensuring the effectiveness of the segmentation al-
gorithm improved the operation efficiency of the model.

Specifically, we introduced GMSS to construct multilevel
segmentation object layers. First, the optimal segmentation pa-
rameters were obtained by the heuristic method [96], and the
segmentation scale of the bottom layer of the prechange image
was determined to be 25, the compactness factor was 0.5, and
the shape factor was 0.1. The postchange image was segmented
by the same parameters, and the segmentation result of the
prechange image was taken as the base image. The segmentation
of the postchange image was constrained by the results of the
previous temporal segmentation, and a new object was generated
when and only when the postchange image was significantly
different from the prechange image. Then, based on the segmen-
tation results at the initial scale, the postchange segmentation
layer scale was determined by increasing the amplitude to 15.
The number of segmentation layers N depended on the spatial
resolution of the images and the size of the ground objects. If N
was too small, it was insufficient to obtain the global receptive
field feature. A too-large N will cause data redundancy. A total
of four object segmentation layers, level0, 1, 2, and 3, were

ultimately determined. A comparison of the numbers of image
objects in the growing segmentation and overlay segmentation
is shown in Fig. 11(b). The increase in segmentation greatly
reduced the number of image objects compared with that of
the conventional overlay segmentation. A dataset was used to
demonstrate the results of growing overlay segmentation and
was compared with the methods that did not use the segmen-
tation strategy; the results are shown in Fig. 12. A comparison
of the segmentation results, as delineated by the red boxes in
Fig. 12(c) and (d), shows that the growing segmentation reduced
the incorrect segmentation caused by image registration and
spectral differences and that the segmentation results had greater
integrity.

According to the eCognition software manual and related
references, it is common to set the parameter shape factor wshape

to 0.1 and the compactness factor wcompact to 0.5 (the default
values). This is the basis for setting our parameters wshape and
wcompact. At the segmentation scale ζscale, both automatic and
manual methods require human involvement, which is why we
set the segmentation parameters based on experience. We set the
bottom layer of the prechange image to 15, 20, 25, 30, and 35
and used SA-GAT for change detection at different segmentation
scales. Using Data A and E as examples, Fig. 13 shows the
impact of the segmentation scale, and setting the bottom layer
of the prechange image to 25 achieved better change detection
accuracy for Data A and E.

The experimental results verify that the segmentation scale
has an important impact on the object-oriented change detection
method. In addition, the segmentation scale of 25 in this article
has good adaptability for high-resolution remote sensing images
with spatial resolutions of less than 1 m. How to obtain the
optimal segmentation scale automatically is still worth paying
attention to.

B. Effect of the Similarity Step

The similarity step s determines the number of virtual con-
nected edges of the nodes, which affects the connectivity of the
graph. The details of the edges obtained without the WDSM and
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Fig. 12. Comparison of the overlay segmentation and growth segmentation results (a)–(d) are prechange image, prechange segmentation, postchange overlay
segmentation, and postchange growing segmentation. The partial images are derived from data A.

Fig. 13. Impact of the segmentation scale. (a) and (b) Data A and E.

the edges obtained with the WDSM are shown in Fig. 14. As
Fig. 14 shows, the edges obtained with the WDSM have sig-
nificantly better connection density than those obtained without
the WDSM. An increase in connection density can improve the
feature expression ability of the GAT [18]. The similarity step s
of the connection density enhancement method determines the
number of strongly connected edges. The other parameters were
controlled to be the same, and the change detection results using
different similarity steps are shown in Fig. 15. When s = 0, no
virtual connection edge was established. A few obvious change

areas that were not identified could be observed. The reason
was that the differences between this node and the surrounding
neighboring nodes were too large, which made it difficult to
effectively transmit supervised information. When s = 1, as
shown in the red boxes of Fig. 15(a) and (b), most of the obvious
change regions could be effectively extracted, and the precision
and recall rates increased, among which the recall rate signifi-
cantly improved, which proved the effectiveness of the proposed
method. A comparison of the change detection accuracy for
different numbers of similarity steps is shown in Fig. 16. The
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Fig. 14. Details of the edges obtained without WDSM and the edges obtained with WDSM. (a)–(c) are the segmentation result, image object boundaries,
connected edges without WDSM, and connected edges with WDSM.

Fig. 15. Change detection results using different similarity steps. (a)–(d) are
s = 0, 1, 2, and 3, respectively. The s is the similarity step. The partial images
are derived from data A.

results showed that the change detection accuracy reached its
highest when s = 1. When the value continued to increase, as
shown in Fig. 15(c) and (d), the number of noisy change image
objects increased, and the change detection accuracy decreased,
indicating that the value should not be too large.

C. Parameter Analysis of GAT

We used Data A to conduct an experimental analysis on the
GAT parameters. The experimental parameters included training
epochs i, dropout of notes dr, the number of hidden layer units d,
and the number of training samples tr. We first tested the effect

of different training epochs on our methods. We fixed dr = 0.2,
d = 16, tr = 200, and the step size was 100. We changed the
training epochs i from 100 to 500. The experimental results using
different training epochs are shown in Fig. 17(a). As i increased,
the experimental accuracy increased rapidly at the beginning
and then stabilized. We tested the effect of different dropout
durations on our method. We fixed i = 400, d = 16, tr = 300,
and the step size was 0.1. We changed the dropout from 0 to 0.3.
The experimental results using different dropouts are shown in
Fig. 17(b). When dr= 0.1 and dr= 0.2, the experiment achieved
a more desirable accuracy, with a 5%–10% improvement in both
accuracy and recall compared to dr = 0. However, the dropout
should not be too large, and the precision will drop rapidly if it
exceeds 0.2. We tested the effect of different numbers of hidden
layers on the experimental results. We fixed i = 400, dr = 0.2,
tr = 300, and the multiplicative step size = 2, and changed d
from 4 to 32. The experimental results using different numbers
of hidden layers are shown in Fig. 17(c). With the increase in
the number of hidden layers, the accuracy and recall rate of
the data gradually increased, which indicated that the model’s
difference feature extraction ability was enhanced. At d = 16,
the accuracy of change detection peaked and then showed a
downward trend. The reason was that d determined how much
the model compressed the multidimensional features. When d
was too small, too much information was lost in the input data.
A too-large d led to more training parameters, which was not
conducive to model training.

In addition, we tested the effect of sample size on the accuracy
of the model. The experimental results using different numbers
of samples are shown in Fig. 17(d). We fixed i = 400, d = 16,
dr = 0.2, and the step size = 100, and changed the number
of samples from 100 to 400. In the initial stage, the accuracy
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Fig. 16. Change detection accuracy comparison for similarity steps. (a)–(e) are data A, B, C, D, and E.

Fig. 17. Parameter analysis of the model training. (a)–(d) are different training epochs, different dropouts, different numbers of hidden layers, and different
numbers of samples.
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Fig. 18. Analysis of the model training gradient loss value. (a) and (b) are data A and B, respectively.

increased sharply, peaked at tr = 300, and then showed an
up-and-down trend. The analysis showed that too many manual
samples would lead to an increase in the possibility of incorrect
samples, which would affect the experimental accuracy. There-
fore, while the number of samples satisfied the model training
requirements, the sample quality should also be guaranteed.

D. Impact of Siamese AE Pretraining

We compared the impact of Siamese AE pretraining on the
performance of the GAT using Data A and B as examples. In
the model training, the training gradient loss represents the error
between the prediction result of the training set in the model and
the real result, and its trend reflects the model training status
and completion. The curve change in the two methods with the
number of training epochs i during the model training is shown
in Fig. 18. With the increase in training iterations, the loss of the
GAT pretrained without the Siamese AE decreased slowly, and
at i = 400, the loss still fluctuated around approximately 0.4.
This result indicated that the model was not trained efficiently
and failed to learn effectively. The loss of GAT signal using
the Siamese AE during pretraining decreased rapidly; at i =
200, loss decreased to less than 0.1, and there was still a small
decrease in the interval [200, 400]. The training feature vector
after the Siamese AE was involved in pretraining fits the GAT
adequately, which helped speed up the training process and the
model was learned effectively.

E. Ablation Experiment

We designed ablation experiments for the proposed method
using four datasets. To improve the change detection perfor-
mance of the GAT, we proposed two improvements in this article.

The WDSM method was proposed to enhance the connection
strength of nodes, and the Siamese AE was proposed to obtain
high-dimensional features. The ablation experiments analyzed

TABLE IV
ACCURACY OF THE ABLATION EXPERIMENT

TABLE V
RESULTS OF THE GENERALIZABILITY EXPERIMENT
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TABLE VI
TIME COMPLEXITY (S) AND GPU MEMORY (GB) COMPLEXITY

the changes in accuracy by controlling for how the improvement
measures were used. The experiments included the methods
using WDSM and Siamese encoders, the methods without
WDSM and Siamese encoders, and the methods using WDSM
or Siamese encoders. The accuracy of the ablation experiment
is shown in Table IV.

The OA and F1-scores of change detection methods using
only the WDSM or Siamese encoder were higher than those
of the methods not using them. The OA and F1-scores of
the change detection method using the WDSM and Siamese
encoders were higher than those of the methods using only
one of them. The average OA and F1-scores of our method
were 95.41% and 89.35%, respectively, which were 19.25% and
34.01% greater than those of the methods that did not use any
of the improvements. The accuracy of the ablation experiment
demonstrates that our use of the WDSM and Siamese encoder
to improve change detection using GAT was effective.

F. Generalizability Analysis

In order to verify the generalizability of the method, we apply
the model of data A trained by SA-GAT to the prediction of
the other data. Considering the differences in data sources, Data
E was subjected to the same experiments. The results of the
generalizability experiment are shown in Table V. The model
for Data A was applied to the other data and the prediction
accuracies all decreased. Data E and Data A belong to different
sensors from each other, and the decrease in prediction accuracy
is even more pronounced. The same conclusion can be reached
for the experiment with Data E. It can be seen that our method is
generalizable to data from the same sensor and less generalizable
to data from nonsimilar sensors.

G. Complexity Analysis

Complexity analysis can evaluate the efficiency of each mod-
ule of the algorithm. The time complexity analysis records the
running time of each module. The graphics processing unit
(GPU) memory complexity analysis records the running mem-
ory of the neural network [97], [98], [99]. Data A, B, and E
are chosen as the experimental data. Data E has a different data
source compared to Data A and B, which can increase the gener-
alizability. TSVM+CNN was used as a comparison experiment
without graph construction. The training and prediction time
of TSVM+CNN includes the time to construct deep features

of CNN and the training and prediction time of TSVM. The
GPU memory of TSVM+CNN is occupied by CNN. The time
complexity (s) and GPU memory (GB) complexity are shown
in Table VI. Among them, the time to construct deep spatial
features of CNN is 26.52 s, 28.52 s, and 22.53 s, respectively.
The time complexity of SA-GAT is much higher than that of
TSVM+CNN. The running time of segmentation and graph
construction are on average 7% and 2% of the total. Graph
construction increases the time complexity, but the training and
prediction consume more time. The experiments on Data E also
illustrate that the training and prediction time is proportional to
the number of nodes. The GPU memory usage is similar. The
construction of CNN deep features requires more GPU memory.

H. Limitation of the Proposed Approach

Compared with that of other methods, the superiority of this
method was proven, but there were still some shortcomings.

1) The proposed method requires manual selection of sam-
ples, and samples cannot be shared among different
datasets, which means that different data need to be re-
selected for different samples. This was because, such as
most GNNs, the proposed method is essentially a kind of
transductive learning. That is, learning from the observed
training dataset and then predicting the label of the test
dataset was not conducive to batch data processing. This
problem was similarly challenged in other article change
detection papers using GNNs [15], [16]. An unsupervised
model can also mine its own supervised information from
large-scale unsupervised data. It trains the network with
this constructed supervised information and can learn rep-
resentations that are valuable for downstream tasks [100].
In the future, we will discuss the possibility of automatic
sample selection. It is used to implement an unsupervised
change detection model to improve the efficiency of the
application.

2) This method is suitable for high-resolution, multiband
satellite images and does not work well for RGB images
with low resolution and lack of an NIR band. In addition,
the proposed method expands the receptive field of image
objects through multilevel incremental segmentation and
controls the number of image objects to remain within
an operable range. However, the optimal number of seg-
mentation layers and segmentation scale parameters are
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determined by heuristic methods, and no standard deter-
mination method is available [101]. This is because the
number of segmentation layers and the segmentation scale
depended on the spatial resolution of the image and the size
of the ground object.

VI. CONCLUSION

This article proposed a semi-supervised land-use/land-cover
object-oriented change detection method based on an SA-GAT
network via high-resolution remote sensing to solve the prob-
lems of connection sparsity and inadequate sample feature min-
ing in remote sensing change detection via GAT. We experi-
mentally verified the effectiveness of the proposed method and
obtained the following conclusions.

1) Too many nodes could lead to memory overrun of the
GNN. The growing multilevel image segmentation strat-
egy proposed in this article reduced the number of ob-
jects while ensuring segmentation accuracy and extracting
multilevel features, which was conducive to improving
operational efficiency and accuracy.

2) When using GNNs for change detection problems, it is
important to consider whether the supervised information
of the model can be effectively propagated. The similarity
matching method was used to increase the virtual connec-
tion edge, which could improve the connection density of
the graph, which was conducive to the dissemination of
supervised information.

3) Through network layer replacement, Siamese AE pretrain-
ing, and fine-tuning with a few labeled samples, the GAT
quickly extracts the high-dimensional features of nodes,
which helped improve the model training efficiency and
accuracy. Through experiments, this article proved that
the proposed method was effective for semi-supervised
change detection in high-resolution remote sensing im-
ages using a few samples.

The proposed method can serve the natural resources man-
agement and provide them with a reference technology for
land-use/land-cover change monitoring. At the same time, the
optimization of pretraining and graph connection density en-
hancement provides a new idea for how to effectively apply
GNNs to remote sensing image change detection. This is un-
doubtedly beneficial to researchers of GNNs. In the future, we
will develop a method for changing region classification that can
directly use the output data from this article. Finally, the code
and data for our project, after being organized, will be made
available on the web.
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