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Siamese Biattention Pooling Network for Change
Detection in Remote Sensing
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Abstract—Change detection (CD) in remote sensing aims to
identify variations in image pairs captured at the same location
but different times. While recent deep learning approaches, par-
ticularly those incorporating attention mechanisms, have achieved
encouraging results on this task, they often fall short of compre-
hensively exploiting the change relevant patterns that are present
in paired images. In this study, we propose a novel deep learn-
ing architecture, namely Siamese Bi-Attention Pooling Network
(SBA-PN), to emphasize broad-scale change patterns by exploiting
both intraimage and interimage contexts. The overall structure of
SBA-PN aligns with the U-Net based encoder-decoder paradigm.
A Siamese Transformer-like encoder formulates paired multiscale
feature maps. To effectively emphasize change relevant patterns,
a spatial optimal pooling module is devised, replacing the con-
ventional self-attention mechanism. A contrastive pixel-wise su-
pervision scheme is designed for shallow encoder layers in pur-
suit of change-aware feature maps. Next, the decoder mirrors
the multiscale design, which formulates difference maps using a
novel biattention mechanism from paired feature maps. During
the decoding phase, a channel deviation pooling module is devised
to further emphasize salient change regions. Comprehensive ex-
perimental results demonstrate the effectiveness of the proposed
method with the state-of-the-art performance on two commonly
used benchmark datasets, Sun Yat-Sen University (SYSU)-CD and
LEarning VIsion Remote sensing (LEVIR)-CD.

Index Terms—Attention, change detection (CD), deep learning
(DL), remote sensing.

I. INTRODUCTION

OUR dynamic Earth undergoes continuous changes, due to
both natural occurrences and human activities. Therefore,

monitoring the health of the Earth and promoting sustainable
human development necessitate better understanding of these
changes. Change detection (CD) in remote sensing serves this
purpose, which identifies disparities in land surfaces by com-
paring two remote sensing images acquired from the same geo-
graphical area, but at different points of time. Change detection
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is a cornerstone in remote sensing image analysis and plays
an important role in extensive applications, such as monitoring
urban expansion [1], disaster management [2], and deforestation
control [3]. As satellite technology continues to advance, an
array of sensors with increasing functionalities such as active or
passive, optical or microwave, and high or low resolution, have
been launched into space [4]. The wealth of high-quality remote
sensing data facilitates various studies, yet it also brings forth
new challenges that need to be addressed for change detection.

Conventional change detection methods rely primarily on
spectral information extracted from remote sensing images.
Existing methods, such as image differencing [7], [8], regression
analysis [9], change vector analysis (CVA) [10], [11] and princi-
pal component analysis (PCA) [12], although effective, involve
extensive image preprocessing, optimal thresholding, and the
integration of handcrafted features. These requirements often
limit their robustness and efficiency in real-world applications.
The introduction of deep learning (DL) to change detection
addresses these challenges. The core advantage of DL lies in its
capability to learn intricate patterns or representations without
the necessity of manual feature engineering. By learning directly
from labeled samples, DL offers a data-centric approach to
modeling, eliminating the dependency on explicit handcrafted
features and subsequently enhancing the potential accuracy and
adaptability of change detection models.

Recent DL methods for change detection have shifted focus
to a larger receptive field, recognizing that changes, particularly
in remote sensing imagery, are context-dependent. A neural
network with an expanded receptive field can better assimilate
information from a wider spatial context. This improves its sensi-
tivity to subtle and contextually significant changes. Techniques
such as stacking additional convolutional layers [13] have been
employed to achieve this. Moreover, the integration of attention
mechanisms [14], [15], [16], [17], [18], [19], [20], [21], [22] has
marked a significant advancement in this domain. Drawing par-
allels to human perception, where our focus naturally gravitates
towards salient features in a scene [23], attention mechanisms
in DL models enable selective emphasis on critical information.
This translates to neural networks that prioritize relevant change
characteristics over extraneous data. By automating feature map
weighting through these mechanisms, networks can pinpoint
pivotal change signals, leading to an improvement in detection
precision.

Existing attention-based methods in change detection can
be broadly classified into three categories: 1) spatial-wise

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0009-0007-3573-7714
https://orcid.org/0000-0002-6891-8059
https://orcid.org/0000-0003-3573-084X
https://orcid.org/0000-0002-0608-065X
https://orcid.org/0000-0002-6723-7323
https://orcid.org/0000-0002-8043-0312
mailto:hche6958@uni.sydney.edu.au
mailto:hukun_sdu@hotmail.com
mailto:zhiyong.wang@sydney.edu.au
mailto:zhiyong.wang@sydney.edu.au
mailto:patrick.filippi@sydney.edu.au
mailto:thomas.bishop@sydney.edu.au
mailto:w.xiang@latrobe.edu.au


CHEN et al.: SIAMESE BIATTENTION POOLING NETWORK FOR CHANGE DETECTION IN REMOTE SENSING 7279

Fig. 1. Comparative visualization of change detection techniques. (a) Orig-
inal image captured at time t1. (b) Subsequent image captured at time t2.
(c) The ground truth change map for reference. (d) Change map derived from a
convolutional deep learning method (2018) [5]. (e) Change map produced using
a Transformer-based deep learning method (2022) [6]. (f) Change map produced
using SBA-PN (ours).

attention [16], [17]; 2) channel-wise attention [14], [15]; and 3)
mixed attention [18], [19]. Spatial-wise attentions allow neural
networks to emphasize specific regions within an image, target-
ing pertinent or anomalous areas. Channel-wise attentions, on
the other hand, concentrate on distinctive channels, accentuating
those of particular relevance to the context. Adeptly leveraging
the benefits of these two approaches, mixed attention integrates
spatial-wise attention to pinpoint critical spatial anomalies and
utilizes channel-wise attention to emphasize pertinent feature
details.

While these attention-based methods provide significant im-
provements in change detection, their effectiveness is inherently
limited by their local scope of operation. Theoretically, these
methods operate within a constrained contextual window, dic-
tated by the fixed kernel size of convolution operations, making
it challenging to encapsulate the global context necessary for
comprehensive change detection. This local focus leads to a sub-
stantial theoretical limitation: The inability to capture the long-
range, interpixel dependencies and contextual nuances critical
in accurately representing the complex, dynamic interactions in
remote sensing imagery.

Several recent studies [20], [21] have reported encouraging
results using Transformer-based models to capture the semantic
relationships between pixels. The original design of Vision
Transformers (ViTs) primarily focuses on handling standalone
image inputs. However, in applications like change detection,
where it is necessary to analyze paired image features, this
approach encounters limitations. Methods such as feature dif-
ferencing or concatenation are commonly used for this purpose,
however they can result in the loss of fine-grained information
due to their inherent coarseness. This is illustrated in Fig. 1(e),
where the change map, generated by the method from [6],
presents noticeable sparkling discontinuities, indicating the loss
of details during the merging process.

Motivated by the aforementioned challenges, this article in-
troduces the Siamese Bi-Attention Pooling Network (SBA-PN),
a novel DL method designed to enhance the single-input self-
attention mechanism. The SBA-PN facilitates interaction with
feature pairs and incorporates feature differencing, enabling the
comprehensive capture of long-range dependencies and fine-
grained details. Importantly, it achieves this sophistication with-
out incurring high computational costs by efficiently eliminating
redundant information. The overall structure of the SBA-PN
is a U-Net based encoder-decoder architecture, as illustrated
in Fig. 2. First, a bitemporal image pair is fed into a Siamese
Transformer-like encoder with a spatial optimal pooling mecha-
nism instead of a conventional self-attention mechanism, which
aims to effectively highlight the change detection hints in the
resultant feature maps. Particularly, the encoder is aided with
a multistage design to generate multiscaled paired semantic
feature maps. This corresponds with the decoder design that
progressively computes the distance maps between the feature
maps from each encoding stage. For comprehensive decoding
in each stage, a novel biattention mechanism is introduced
to formulate a difference map based on the encoded feature
map pair and the output from the previous decoding stage.
To enhance the salient information during decoding, a stan-
dard deviation-based operation, channel deviation pooling is
devised which is able to reduce the channel length and en-
courages the network to prioritize semantically rich channels.
Finally, a prediction head (i.e., change detection head) is used
to produce the final change map. In addition, compared to
the conventional training pipeline for change detection, we
introduce a novel contrastive pixel-wise supervision scheme
for shallow encoder layers in pursuit of change-aware feature
maps.

Overall, the key contributions of this article are as follows.
1) We propose a novel SBA-PN network, designed to exploit

the paired relations in bitemporal images across both
spatial and channel dimensions, utilizing straightforward
yet efficient pooling strategies.

2) We devise a multistage encoder with a novel spatial op-
timal pooling (SOP)-Former architecture, uniquely in-
troducing SOP to formulate spatial patterns instead of
using a conventional self-attention mechanism. Our SOP
mechanism able to achieve an elegantly simple balance
between max and average pooling, enhancing the pooling
operation’s flexibility and context-awareness. Our decoder
employs a biattention mechanism optimized for process-
ing paired image features. In addition, we introduce chan-
nel deviation pooling (CDP), a standard deviation-based
pooling strategy. CDP effectively reduces redundancy by
selectively filtering out less informative features across the
channel dimension.

3) A contrastive pixel-wise supervision schema is devised
for shallow network layers, optimizing the extraction of
change-aware feature maps.

4) Comprehensive experiments were conducted to demon-
strate the effectiveness of our proposed method on two
widely used datasets–LEVIR-CD and SYSU-CD with the
state-of-the-art performance.
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Fig. 2. Illustration of the proposed SBA-PN architecture. (a) SBA-PN follows a U-Net based encoder-decoder design, which consists of a Siamese Transformer-like
encoder to formulate paired feature maps in a multiscale manner, and a biattention-based decoder corresponds to this multiscale design, which derives difference
maps. (b) The proposed SOP. (c) The proposed CDP. (d) The proposed biattention mechanism. (e) The illustration of Contrastive Pixel-wise Supervision.

The rest of this article is organized as follows. Section II
reviews the related work of traditional methods and DL methods.
Section III provides the details of our proposed method. The
experimental results are presented in Section IV with the dis-
cussions and analyses. Finally, Section V concludes this article.

II. RELATED WORK

CD techniques have evolved from traditional methods to
advanced DL-based approaches. In the early days of CD re-
search, image differencing and CVA were commonly used.
While these traditional methods were effective for change de-
tection, they had limitations in handling complex spatial and
temporal variations [3], [24]. The shift to DL models marked
a significant advancement in CD, benefiting from hierarchical
feature extraction and end-to-end learning paradigms. More
recently, Transformer-based architectures have emerged in the
CD domain. These models have shown promise in detecting
intricate changes across varied datasets. This section reviews
the development of CD across three major phases: 1) traditional
CD methods; 2) DL CD methods; and 3) Transformer-based
methods.

A. Traditional CD Methods

Image differencing [7], [8] was a foundational approach in
CD, employing a co-registered multitemporal image pair to
generate a residual image that highlighted changes. Changes
were either discerned directly from pixel values or based on
preprocessed metrics like vegetation indices. However, this
method’s need for manual thresholding and occasional inaccura-
cies in determining change magnitude were evident limitations.

Regression analysis between bitemporal images [9] assumed
a linear projection from the preevent to the postevent image,
but identifying an accurate linear function remained a chal-
lenge for subtle bitemporal changes [25]. In contrast to singular
band-based methods, which analyze satellite imagery one spec-
tral band at a time, CVA examines multiple bands simultane-
ously [10], [11]. Using vectors to encapsulate pixel values across
spectral bands, CVA computed change vectors by subtracting
vectors from different observation points. The direction of these
vectors indicated change type and their magnitude revealed
change extent. Yet, CVA demanded consistent atmospheric con-
ditions for the image pairs–a challenging prerequisite in many
remote sensing contexts. Reducing redundancy in imagery, PCA
was also integrated into CD [12], [26]. Here, image data was
reconfigured into principal components based on variance, with
the first two typically denoting unchanged regions. Moving from
conventional techniques like PCA, the Bi-CCD method [27] rep-
resents a significant advancement, improving land cover moni-
toring accuracy with its bidirectional analysis, thereby reducing
common errors seen in traditional CD approaches. Despite their
advancements, traditional CD methods confronted challenges,
from manual thresholding to linearity assumptions and reliance
on handcrafted features. These challenges underscored their
limitations in handling high-dimensional data and providing
meaningful semantic insights.

B. Deep Learning CD Methods

DL has established itself as a groundbreaking advancement,
addressing the complexities inherent in traditional CD meth-
ods. Distinct from their predecessors, DL models autonomously
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extract salient features from paired images, negating the need
for elaborate handcrafted features. FCN [5] first proposed an
end-to-end convolutional network designed for simultaneous
feature extraction from paired images, leading to change maps
derived from various feature differencing methods. Subsequent
work [13] has incorporated advanced convolutional layers to
produce feature difference maps across diverse scales, mitigat-
ing the presence of pseudochanges. In addition, MTCDN [28],
which integrates optical and SAR imagery for change detection,
aligns well with DL advancements like the Unet++ framework,
underscoring its significance in this field. In applying DL to
remote sensing images, a critical challenge is the accurate ex-
traction and discerning prioritization of salient features, a task
that mirrors human cognition. Among numerous visual stim-
uli, the human brain adeptly emphasizes essential details. This
parallels the role of attention mechanisms in neural networks.
Such mechanisms allow models to allocate varying significance
to different data facets, enhancing both feature extraction ac-
curacy and model interpretability. As a result, this has led to
the development of attention-augmented methods, which can be
largely categorized into spatial-wise, channel-wise, and mixed
attention approaches.

1) Spatial-Wise Attention: Spatial attention mechanisms
were introduced to guide neural networks in pinpointing specific
regions within an image that warranted emphasis. This was
particularly crucial in remote sensing, where understanding spa-
tial distributions and patterns was paramount. The mechanism
worked by transforming the original data into a latent space,
preserving only the task-relevant patterns. A notable method in
this context was PGA-SiamNet [16]. It focused on emphasizing
regions in paired images that differed and downplaying identi-
cal areas. Building on such concepts, difference-enhancement
dense-attention modules [17] were integrated, especially fol-
lowing the U-Net backbone. These modules produced atten-
tion masks at different levels, further enhancing the model’s
resilience to noise. Methods such as [6] and [29] leveraged
the Transformer’s capability to capture long-range information,
modeling the global spatial context for improved results. How-
ever, although spatial attention provided a robust understanding
of image space, it did not always offer a granular view of
the diverse channels of information inherent in remote sensing
imagery. This realization prompted the exploration of channel
attention.

2) Channel-Wise Attention: This mechanism focuses on en-
abling neural networks to determine which feature channel
requires more emphasis. The IFN [15] was conceptualized to
enhance internal compactness by introducing channel atten-
tion across every encoder layer. Later developments, like the
UNet++ backbone [14], shifted towards deriving a multitude
of feature maps from decoders. In this context, the Ensem-
ble Channel Attention Module was devised to refine the most
salient features across various levels. As spatial attention excels
in capturing local dependencies and channel attention adeptly
identifies feature-wise importance, both mechanisms have their
constraints. Integrating these approaches not only capitalizes
on their strengths, but also addresses inherent weaknesses. This
rationale sets the stage for our exploration of mixed attention.

3) Mixed Attention: Building upon spatial and channel atten-
tion mechanisms, the mixed attention approach integrates these
into a unified framework. The Convolutional Block Attention
Module [30], for instance, enhances feature maps for com-
plex relationship analysis in change detection [19]. Similarly,
DCA-Det [18] employs mixed attention modules for object-level
change refinement. These developments, coupled with domain
adaptation techniques like HighDAN [31], underscore the dy-
namic progress in DL for remote sensing change detection. To
adeptly capture global patterns from an image without incur-
ring significant computational demands, STANet [22] divided
images into patches and leveraged a spatial-temporal attention
module, treating temporal information as channels. It refined
features by computing attention weights between pixel pairs.
Likewise, BIT [20] employed a semantic tokenizer to convert im-
age pairs into patches, enhancing feature representation across
both spatial and channel dimensions.

C. Transformer-Based Deep Learning Methods

The Transformer architecture, first presented in [32], has
since become the benchmark in natural language processing.
Building on this success, Dosovitskiy et al. [33] extended
the standard Transformer to computer vision, achieving no-
table results in image recognition. Likewise, in semantic seg-
mentation, Transformers have made significant advancements.
Strudel et al. [34] presented the first pure Transformer-based
method, yet its high computational cost remained a challenge.
Xie et al. [35] addressed this by refining the self-attention mech-
anism and resizing the feature map, striking a balance between
efficiency and performance. Although the self-attention mecha-
nism is often credited as the pivotal component in Transformers,
the very recent studies [36] indicate that replacing the self-
attention module with alternative aggregation operations still
yields competent models in computer vision tasks. For change
detection, MATU [6] combined CNNs and Transformers to learn
features efficiently. Meanwhile, ChangeFormer [29] employed
a pure Transformer within the Siamese structure specifically for
this purpose. Building on these advancements, SpectralGPT [37]
was introduced for processing spectral remote sensing (RS) im-
ages using a 3-D generative pretrained transformer. This model
is designed to analyze diverse and complex RS data, improving
performance in tasks like change detection. However, most of
these methods prioritize long-range dependencies in individual
inputs, often overlooking correlations between image pairs. Our
research aims to bridge this gap by focusing on both interimage
dynamics and intraimage correlations.

III. METHODOLOGY

This section provides an in-depth explanation of our novel
SBA-PN. As illustrated in Fig. 2, the SBA-PN framework intro-
duces an innovative approach to bitemporal change detection.
The architecture effectively combines two essential compo-
nents: 1) a multistage Siamese encoder, of which each stage
consists of several Spatial Optimal Pooling (SOP) blocks aiming
to extract multiscale feature pairs from bitemporal images and
2) a multistage biattention decoder, which consists of biattention



7282 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Algorithm 1: Inference of SPA-PN Model.

Input: I = {(I1, I2)} (a pair of registered images)
Output: Ĉ (a binary change map)
#Step 1: extract feature pairs by Encoder
1: for i in {1, 2} do
2: {Fs

i}s∈S = Encoder(Ii)
3: end for

#Step 2: use Bi-Attention Decoder to refine the distance
maps

1: DS = |FS
1 − FS

2 | (initial distance map at stage S)
2: for s = S − 1 down to 1 do
3: Ms = Bi-Attention(Fs

1,F
s
2,D

s)
4: Ds−1 = channel_deviation_pooling(Ms)
5: end for

#Step 4: obtain change mask by the prediction head
1: Ĉ = Detection_Head(D1)

modules and CDP blocks to progressively generate change maps
from deep to low. Given a pair of bitemporal images at the
preevent time and the postevent time, denoted by I1 ∈ RH×W×C

and I2 ∈ RH×W×C , respectively, where W indicates the width,
H indicates the height, and C is the number of channels. The
primary objective of a change detection algorithm is to estimate
a binary change map C ∈ RH×W , which can be defined as
follows:

C = {cwh ∈ {0, 1}, 1 ≤ w ≤ W, 1 ≤ h ≤ H} . (1)

Particularly, we denote the estimated change map as Ĉ =
{ĉwh} ∈ RW×H . In the following subsections, we detail each
component of the proposed methodology and highlight the
innovations that distinguish our approach.

A. Encoder With SOP Blocks

The encoder is constructed in a multistage manner with S
stages, each of which contains an embedding block and an SOP
block.

1) Embedding Block: At the beginning of an encoding stage,
the input is first processed by an embedding block to reduce its
dimension as a downsampling operation, which is implemented
by a convolution layer. We have

Xi = Embedding (Ii) . (2)

2) SOP Block: The embedded featuresXi, for i ∈ {1, 2}, are
processed through L consecutive SOPs. Each SOP comprises
an aggregation layer, at the core of which is an aggregator that
contextualizes and refines spatial visual features. This operation
is captured by

Yi = Aggregator (Norm (Xi)) +Xi (3)

where Norm(·) denotes a normalization function, based on the
Group Normalization method [38]. The output of the aggrega-
tion layer is denoted as Yi for i ∈ {1, 2}. Various aggregators
have been investigated in the literature [36]. A self-attention
based aggregator has been widely used for computer vision
tasks by treating Xi as a set of subimage patches, and in this

case (3) can be viewed as a Transformer block. Besides, spatial
multilayer perceptron (MLP), convolution and pooling-based
aggregators have also been explored. It is noteworthy that,
although the pooling-based aggregator is straightforward in its
approach, it demonstrates a comparable modeling capability
with significantly fewer parameters, thereby reducing the model
complexity [36].

Motivated by this, we aim to devise an optimal strategy by
taking the advantages of this pooling based scheme. In this
study, pooling operations summarise the pixel-wise patterns in a
given region or an observation window. Formally, we denote by
pn ∈ RD, where n = 1, . . ., N , the vectors characterising the
nth location (i.e., pixel) in a region. Here, N represents the total
number of pixels in the given region. A general average pooling
and maximum pooling can then be adopted accordingly.

Average pooling computes the mean of pn

yd =
1

N

N∑
i=1

pd
i , ∀d (4)

where pdi is the value of the dth dimension in pn, and y =
{yd}d=1:D ∈ RD is the pooled result from all locations.

Maximum pooling operates by identifying the maximum
value with a given observation window

yd = max
i

(
pd
i

)
, ∀d. (5)

Note that the average pooling treats all elements equally which
may introduce redundant patterns for change detection. Con-
versely, the maximum pooling focuses only on the dominant el-
ement, which could miss critical change detection hints. Hence,
to achieve an optimal and balanced pooling scheme for change
detection, we devise a learnable pooling strategy–SOP.

SOP weights the top K elements in a data-driven manner for
a given observation window

yd =
K∑

k=1

wk · k-max
i

(
pd
i

)
, ∀d (6)

where wk > 0 and
∑K

k=1 wk = 1. k-maxi is an operator that
identifies the k greatest values. Note that the coefficients wk are
learnable weights. The SOP can be used to imitate convolution
and average pooling with K = N , or approximate maximum
pooling with K = 1. As a result, (3) can be written as

Yi = SOP (Norm (Xi)) +Xi. (7)

Next, the linear transformation layer, which is also known as
a feed-forward layer, is adopted following a common practice
in visual Transformers [33]. In detail, it consists of two MLPs

Zi = FeedForward (Yi) = σ (Norm (Yi)W1)W2 +Yi

(8)
where σ is a nonlinear activation function. W1 and W2 are
matrices containing learnable weights.

By adopting a number of SOPs, the final output is utilized as
the input of the next encoding stage to construct deeper feature
representations. The obtained encoded feature pairs from each
stage is denoted by Fs

1 and Fs
2, where s is the stage index.
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B. Biattention Decoder

The purpose of the decoder in change detection is to under-
stand the paired encoding features and formulate their difference
and the corresponding change map.

Similar to the encoder, there are multiple stages s = S, . . ., 1
in the decoding process. Each decoding stage contains G biat-
tentions and a CDP module. In the sth decoding stage, its input is
the feature pair Fs

1 and Fs
2 from the corresponding sth encoding

stage and a distance map Ds. It then formulates a distance map
Ds−1 for the next decoding stage. Particularly, the distance map
DS to the initial decoding stage S is obtained as

DS =
∣∣FS

1 − FS
2

∣∣ (9)

where | · | indicates an element-wise operator for absolute val-
ues.

1) Biattention Module: Drawing inspiration from the self-
attention mechanism introduced in [32], we present a refined bi-
attention layer that marries the multihead biattention (MBA) de-
sign with linear projections. For each layer l where l = 1, . . ., G,
and for every head i with i = 1, . . .,Γ, a query-key-value triplet,
namely Qs

i,l, K
s
i,l, and Vs

i,l, is formulated as

Qs
i,l = Fs

1W
Qs

i,l; K
s
i,l = Fs

2W
Ks

i,l; V
s
i,l = Os

l−1W
Vs

i,l

(10)
where WQs

i,l, W
Ks

i,l, W
Vs

i,l ∈ Rcs×d are matrices containing
learnable parameters. Note that Fs

1 ∈ RHsWs×Cs and Fs
2 ∈

RHsWs×Cs are reformulated as HsWs vectors, Os
l−1 is the

output of the previous biattention layer. Particularly, the input to
the initial biattention layer is the distance map: Os

0 = Ds.
In addition, to consider the spatial relations of these vectors,

position information is introduced to the input. Absolute position
encoding is added to the triplet before being fed into the first
biattention layer in each decoding stage

Fs
1 = Fs

1 +PQ
s; Fs

2 = Fs
2 +PK

s; Os
0 = Os

0 +PV
s (11)

where PQ
s, PK

s, PV
s ∈ RHsWs×Cs are positional embed-

dings. The ith attention head models the global relations between
the triplet as

Heads
i,l

(
Qs

i,l,K
s
i,l,V

s
i,l

)
= σ

(
Qs

i,lK
s
i,l

�
√
d

)
Vs

i,l (12)

where σ denotes a softmax activation function on channel di-
mension and d is the channel dimension of the triplet.

We compute Γ attention heads simultaneously and concate-
nate them to form a complete MBA

As
l = MBA

(
Heads

1,l, . . .,Heads
Γ,l

)
=
(
Heads

1,l ⊕ . . .⊕ Heads
Γ,l

)
WAs

l (13)

where WA
s
l ∈ RΓd×cs is a matrix for linear projection and ⊕ is

a concatenation operator along the channel dimension. Finally,
the decoding result goes through an MLP of two layers

Os
l = MLP (As

l ) . (14)

By adopting G consecutive biattention layers, the output is
ready to be fed into the next stage of the decoder. A short-cut

connection with the next corresponding encoding stage’s output
is introduced as follows:

Ms = upsample (Os
G)⊕

∣∣Fs−1
1 − Fs−1

2

∣∣ (15)

where the upsampling operator is necessary to upsample Ms

to a spatial dimension of Hs−1 ×Ws−1, which matches the
dimension of Fs−1

1 and Fs−1
2 .

2) CDP Module: The output channel dimension needs to be
aligned with the next stage of the decoder. Unlike traditional
methods that use spatial convolutions, we found that incorporat-
ing additional channel attention can further emphasize patterns
relevant to change detection. This is achieved by selectively
emphasizing informative channels and filtering out redundancy.
Motivated by this observation, we introduce a CDP mechanism
on the decoded feature map Ms to obtain the results of the sth
decoding stage

Ds−1 = CDP (Ms)� ,

CDP (Ms) = CDP-Pool (Hs
CDP)V

s�
CDP,

Hs
CDP = σ

(
Qs�

CDPK
s
CDP√

d

)
(16)

where Qs
CDP, Ks

CDP, and Vs
CDP ∈ RHs−1Ws−1×Es are matrices

obtained fromMs with learnable linear projections; andHs
CDP ∈

REs×Es , which is the product of transposed QCDP and KCDP,
can be viewed as a feature heatmap. CDP-Pool(·) denotes the
function to select Cs−1 rows from Hs

CDP as a new matrix, which
contains the most informative patterns. Formally, we rank the
rows in Hs

CDP by computing row-wise standard deviation, and a
row with high standard deviation indicates its informative nature.

C. Change Detection Head

The decoder progressively restores the output feature map for
change detection back to the original image size. A prediction
head is further adopted to predict changed results based on the
final feature mapD1. Specifically, the prediction head generates
a probability map Ĉ ∈ RH×W to estimate C

Ĉ = σ(g
(
upsample

(
D1
))

(17)

where σ is a pixel-wise softmax function along the channel
dimension and g is a convolutional layer.

D. Contrastive Pixel-Wise Supervision

The success of DL techniques is closely tied to the growth
in the depth of neural networks. However, traditional training
strategies typically supervise the neural network at its final
layer and use back-propagation to adjust the remaining layers.
It presents a significant challenge in optimizing the intermediate
layers. Hence, recent research [19], [39], [40] has introduced the
concept of applying auxiliary supervision directly to the shallow
layers. However, this strategy has its limitations in the high-level
semantic supervision, which is inherently task-focused, often
conflicts with the common observation that shallow layers pri-
marily learn low-level features.

A potential solution could be put forth in a contrastive deep
supervision framework [41], which supervises the intermediate
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layers using augmentation-based classifiers. This method, how-
ever, was primarily designed for image-level classification tasks,
and its effectiveness could diminish when applied to our change
detection one, which is a dense prediction task. Therefore, we
devise a self-supervised learning scheme for dense predictions,
which operates in a pixel-wise manner to overcome the limita-
tions of existing methods as a more optimal solution.

The proposed optimization scheme focuses on the outputs
from each encoding stage, and we denote f as the vector of a
pixel in the changed area of Fs

1. Its associated positive vector f+

is a sampled pixel point from the neighboring location on Fs
1;

whilst its negative associated vectors f− are a set of pixels in the
changed area on Fs

2. As revealed by recent studies [42], [43],
a large set of negatives is critical in contrastive representation
learning. To this end, the pixel-wise contrastive loss is defined
as

Lcontra =
∑
f

− log
exp (f · f+/τ)

exp (f · f+) +∑f− exp (f · f−/τ)
(18)

where τ denotes a temperature hyperparameter.

E. Training Loss

As change detection can be viewed as a binary pixel-wise
classification, the binary cross entropy (BCE) loss is adopted to
optimize our network

Lbce =
1

WH

∑
w,h

�(ĉwh, cwh),

�(ĉwh, cwh) = −cwh log(ĉwh) + (1− cwh) log(1− ĉwh).
(19)

To this end, the overall loss function is a linear combination of
the BCE loss and the pixel-wise contrastive loss

Ltotal = 0.5× Lbce + 0.5× Lcontra. (20)

IV. EXPERIMENTS

A. Datasets

To demonstrate the effectiveness of our method, compre-
hensive experiments are conducted on three commonly used
benchmark datasets, LEVIR-CD [22], SYSU-CD [19], and
HRCUS-CD [46].

1) LEVIR-CD: The LEarning, VIsion, and Remote sensing
Change Detection (LEVIR-CD) dataset distinguishes itself on
building change detection. Encompassing 637 pairs of high-
resolution remote sensing images, each image exhibits a dimen-
sion of 1024 × 1024 at spatial resolution of 0.5 m. In the public
version of the dataset, these images are systematically divided
into distinct, nonoverlapping sub-images of 256×256. As stated
in [22], the dataset is partitioned into training, validation, and
testing subsets, comprising 7120, 1024, and 2048 image pairs,
respectively.

2) SYSU-CD: The Sun Yat-Sen University Change Detec-
tion (SYSU-CD) dataset emerges as a notable public resource
for bitemporal image CD, illuminating the dynamic landscape
of Hong Kong between 2007 and 2014. It comprises 20 000

pairs of aerial images, each meticulously captured at a 0.5-m
granularity and displayed at a resolution of 256 × 256. The
captured changes span a diverse range: From the rise of new
urban infrastructures and roadway expansions to fluctuations in
vegetation and coastal developments. Structured with precision,
the dataset adopts a 6:2:2 distribution ratio, designating 12 000
pairs for training, 4000 for validation, and 4000 for testing, thus
ensuring a robust and balanced experimental setup.

3) HRCUS-CD: The High-Resolution Complex Urban
Scene Change Detection (HRCUS-CD) dataset includes 11 388
pairs of 256× 256 pixel high-resolution remote sensing images
with a 0.5-m spatial resolution, containing over 12 000 annotated
change instances. Originating from Zhuhai, China, the dataset
captures two primary areas: 1) the Urban Built-up Area (2019–
2022) with minimal changes and 2) the Rural and Developing
Urban Area (2010–2018) with notable urban development.

B. Implementation Details

1) Training Setup: We implemented our models using Py-
Torch and trained them on a single NVIDIA Tesla V100 GPU.
We applied standard data augmentation techniques to the input
images, which include flipping, rescaling, cropping, and Gaus-
sian blurring. The batch size is set to 8. The model was optimized
using stochastic gradient descent with momentum. We set the
momentum to 0.99 and the weight decay factor to 0.0005. The
learning rate is initially set at 0.01 and linearly decays to 0 over
the course of 200 training epochs. In (18), we set the temperature
τ to 0.07, following the setting in [43]. Validation is performed
after each training epoch, and the best-performing model on the
validation set is subsequently used for the evaluation on the test
set.

2) Size Variations: This section outlines the various config-
urations of our SBA-PN model, highlighting its modularity and
scalability across diverse settings, as follows.

1) SBA-PN/S (Small Size Configuration): The encoder em-
ploys the MetaFormer architecture [36] as its backbone.
MetaFormer features four stages, with each stage reducing
the spatial size of its input to one-fourth of its original
dimensions. For this configuration, we use the “S24”
version, which means the model includes 24 MetaFormer
blocks. The output channel dimensions from this configu-
ration are [64, 128, 320, 512]. The feed-forward layer inte-
grates an MLP with an expansion ratio of 4. As mentioned
in Section III, our adaptation of the MetaFormer involves
replacing its token mixer with our SOPs, where the pooling
operation in our SOP has a kernel size of 3× 3, and the op-
timal value k is 5. The decoder incorporates six biattention
layers for each stage. Absolute position encoding is used
in our biattention mechanism, where these position encod-
ings are embedded with each input. These are learnable
parameters with values between 0 and 1 and are as long
as the input sequence length. The multihead biattention
mechanism features eight heads, with each head having a
channel dimension d of 8. The feed-forward layers mirror
the MetaFormer’s specifications with an expansion ratio
of 4. The prediction head consists of two convolutional
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TABLE I
COMPARISON BETWEEN OUR PROPOSED SBA-PN AND EXISTING METHODS IN TERMS OF CHANGE DETECTION PERFORMANCE (%) AND MODEL COMPLEXITY

(I.E., PARAMS. AND FLOPS) ON LEVIR-CD, SYSU-CD, AND HRCUS-CD

layers with Group Normalization (GN). These layers have
output channels of 32 and 2, respectively, and use a kernel
size of 3.

2) SBA-PN/L (Large Size Configuration): For this vari-
ant, the encoder uses the “M36” configuration of the
MetaFormer architecture, indicating a larger model with
36 MetaFormer blocks. The decoder in this configuration
includes eight biattention layers for each stage. The mul-
tihead biattention mechanism here comprises 16 heads,
allowing for more complex attention patterns.

3) Evaluation Metrics: Change detection can be understood
as a pixel-wise binary classification challenge. For evaluating
the prediction outcomes, we primarily rely on metrics such as
precision, recall, F1 score, and Intersection over Union (IoU).
Precision provides insights into the accuracy of positive pre-
dictions, and recall denotes the proportion of true positives that
are correctly identified. The F1 score harmoniously combines
precision and recall, serving as a balanced metric. In addition,
IoU offers a measure of the overlap between the predicted
change map and the ground truth. In this study, the F1 score is
our predominant evaluation metric due to its resilience against
the skewed distributions often observed between changed and
unchanged classes. The metrics are concisely defined by the
following equations:

Precision =
TP

TP + FP
. (21)

Recall =
TP

TP + FN
. (22)

F1 Score =
2× TP

2× TP + FP + FN
. (23)

IoU =
TP

TP + FP + FN
(24)

where TP, FP, FN, and TN represent true positives, false posi-
tives, false negatives, and true negatives, respectively.

C. Comparison With SOTA Methods

To highlight the performance of our proposed method, we
compared it with in total six state-of-the-art (SOTA) meth-
ods known for their robust performance: FC variations [5],
STANet [22], BIT [20], ChangeFormer [29], SwinSUNet [44],

AMTNet [45], and AERNET [46]. In the following subsection,
we provide a detailed discussion, presenting both quantitative
results and qualitative examples.

1) Quantitative Analysis: Our proposed methods, SBA-
PN/L and SBA-PN/S, demonstrate superior performance across
various datasets when compared to existing methods, as shown
in Table I. The best performance is highlighted in bold and the
second-best performance is underlined for clarity.

Starting with the LEVIR-CD dataset, our methods achieve
remarkable F1-scores of 92.05 for SBA-PN/L and 91.03 for
SBA-PN/S, along with IoU scores of 84.77 and 83.27, respec-
tively. Notably, SBA-PN/L surpasses the best existing method,
Bit-CD, by 1.82% in F1-score and 2.58% in IoU. Similarly,
on the SYSU-CD dataset, SBA-PN/L and SBA-PN/S record
F1-scores of 82.78 and 80.31, respectively, with corresponding
IoU scores of 71.06 and 67.26. Here, SBA-PN/L outperforms the
top existing method, STANet, by 4.66% in F1-score and 6.96%
in IoU.

In addition, our analysis of the HRCUS-CD dataset re-
veals that SBA-PN/L achieves the highest precision score of
78.55%, demonstrating its strong capability in accurately de-
tecting changes in complex urban settings with high-resolution
imagery. While SBA-PN/L does not achieve the top IoU score,
its second-place ranking at 62.37% still showcases a commend-
able performance in identifying true changes, underlining the
importance of a balanced approach in change detection for varied
environments.

In terms of computational efficiency, our SBA-PN models are
also notable for their reduced complexity. The SBA-PN/S model
requires only 13.69 GFLOPs, and the SBA-PN/L model operates
at 18.04 GFLOPs. This is significantly lower compared to other
high-performing models such as ChangeFormer, which demands
129.27 GFLOPs. This stark contrast in FLOPs demonstrates the
efficiency of our models, making them suitable for scenarios
where computational resources are limited. Despite their lower
FLOPs, both SBA-PN models maintain superior performance
metrics, underscoring their ability to provide an optimal balance
between accuracy and computational load.

However, it is important to note that in terms of precision, our
SBA-PN method exhibits lower scores compared to some ex-
isting methods on the SYSU-CD dataset. These methods, while
achieving higher precision, tend to have significantly reduced
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Fig. 3. Qualitative results of various methods on four image pairs (i.e., (a)–(d)) from the LEVIR-CD test set. The first two columns are the input image pair, the
third column is the ground truth change map, the fourth to the ninth columns show the results of FC-CONC [5],..., BIT-CD [20] and our proposed method SBA-PN.

recall scores, leading to an overall lower F1-score than SBA-PN.
This suggests a potential bias towards unchanged pixels in these
methods, likely due to the inherent imbalance between changed
and unchanged areas in the datasets.

Finally, when comparing the three datasets, LEVIR-CD ap-
pears to be the least challenging. This is indicated by the higher
performance metrics achieved by our methods on this dataset.
The less challenging nature of LEVIR-CD can be attributed to
its sole focus on building changes. In contrast, SYSU-CD and
HRCUS-CD encompasses a more diverse range of changes and a
larger number of image pairs, thereby presenting a more complex
scenario for change detection.

2) Qualitative Comparison: Fig. 3 provides a visual com-
parison of different methods applied to 4 sample pairs in the
LEVIR-CD dataset, where true positive pixels (changed areas)
are shown in white and true negative pixels (unchanged areas) are
shown in black. From our observations, the proposed SBA-PN
outperforms other methods in a number of aspects.

First, SBA-PN with refined discriminative features consider-
ing the global context effectively reduces false negatives, which
often arise when distinct objects appear under specific lightning
or weather conditions (e.g., roofs under shadows). Conversely,
in Fig. 3(a), most existing methods incorrectly classify the gray
rectangular stripes on the building’s roof as unchanged pixels,
leading to an inconsistent result for the rightmost rectangular
building. Likewise, in Fig. 3(c), existing methods fail to detect
changes at the right corner due to similarities in texture. Second,
SBA-PN effectively mitigates irrelevant changes induced by
seasonal variations or modifications in the appearance of land
cover elements.

Fig. 4 presents a qualitative comparison of different meth-
ods applied to the SYSU-CD dataset. Overall, both BIT-CD
and SBA-PN demonstrate superior capability to detect entire
changes compared to other methods, which often exhibit patchy
or noisy remnants. However, our SBA-PN method has a lower

false positive rate than BIT-CD. For example, in Fig. 3(d), a
large area of land surrounding the orange object is incorrectly
identified as a changed region by BIT-CD. In contrast, our
method is not only comprehensive for large-scale structural
patterns, but also precise for fine-grained patterns.

D. Ablation Study

This section provides a detailed ablation study aimed at un-
derstanding the influence of individual components within our
proposed method, as shown in Table II.

SOP: In comparison to the default aggregation operation in
PoolFormer that employs an average pooling strategy, our SOP
demonstrated enhancements in F1-scores, registering increases
of 0.89 and 1.67 on the two datasets. This improvement was
achieved with only a marginal increase in computational cost.
These findings underscore the pivotal role our customized back-
bone and SOP play in enhancing change detection performance.
Visually, it is apparent that SOP helps to globally detect changes.
From Fig. 5(a), it is evident that the absence of SOP results in
false positive patches at the bottom of the change map. While
these may appear as changes locally, they are not considered
changes on a global scale.

Biattention: To assess the effectiveness of our biattention
mechanism, we compared it with the widely-used self-attention
mechanism. The findings indicated that our biattention mecha-
nism outperformed the standard self-attention approach, record-
ing F1-score improvements of 0.52 and 0.63 on the two datasets,
respectively. As illustrated in Fig. 5(a) and (b), the biattention
module appears to smooth out the change detection results by
removing sparkling noise. This highlights the critical role of the
biattention mechanism in our model, enabling a more focused
exchange of information between paired feature sets.

CDP: Omitting the contrastive component from the SBA-
PN model resulted in slight reductions in both the number of
parameter and the number of FLOPs, indicating a simpler model
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Fig. 4. Qualitative results of various methods on four image pairs (i.e., (a)–(d)) from the SYSU-CD test set. The first two columns are the input image pair and the
third column is the ground truth change map. The fourth to the ninth columns display the prediction outcomes of FC-CONC [5],..., BIT-CD [20] and our proposed
method SBA-PN, respectively.

TABLE II
EXPERIMENTAL RESULTS OF ABLATION ON LEVIR-CD AND SYSU-CD

Fig. 5. Visualized comparisons of ablation studies: (a) selected samples from the LEVIR-CD dataset and (b) selected samples from the SYSU-CD dataset.

with potentially lower computational requirements. However,
this change negatively impacted performance across all metrics
for the LEVIR-CD and SYSU-CD datasets. This performance
drop signifies the importance of the contrastive component on
the SBA-PN model’s efficiency and effectiveness, especially on
the SYSU-CD dataset.

Pixel-wise contrastive: When comparing the CDP setting
with traditional pointwise convolution, CDP proved superior in

terms of both efficiency and effectiveness. This advantage arises
from the CDP’s approach, which identifies key features and
ignoring less relevant semantic information across the channel
dimension.

Moreover, we validated the effectiveness of combining var-
ious modules by testing three combinations: “SOP + Bi-
attention,” “SOP + CDP,” and “Bi-attention + CDP.” As indi-
cated in Table II, the results show that the ’SOP + Bi-attention’
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Fig. 6. Attention heat map visualization on sample pairs in the SYSU-CD dataset. The intensity of the color red indicates higher attention, while the intensity of
blue signifies lower attention. This heat map demonstrates how effectively the model focuses on crucial regions within the image, highlighting the robustness of
the attention mechanism in capturing changes in information. Selected samples are represented in figures (a) through (d).

combination is the most impactful. Removing this combination
led to a decrease in the F1 score by 6.72 and 5.02 on the
LEVIR-CD and SYSU-CD datasets, respectively.

E. Attention Heat Map Analysis

To delve deeper into the proposed model’s mechanism, the
semantic attention maps are visualized and analyzed based on
the results produced on the two datasets. Fig. 6 illustrates the
attention feature maps on the SYSU dataset. Evidently, the shal-
low layer features such as F1

1 and F1
2 primarily concentrate on

local patterns and granular details, including edges and textures.
As the depth of the layers increases, they start to identify global
patterns and be aware of semantic information. In Fig. 6(b), the
results are notably intriguing. The heat maps extracted from the
encoder appear relatively faint and dispersed, suggesting that
the network has yet to learn to attend on the building in the
top-right corner. However, after passing through the 3th stage
and 4th stage biattention layers, a substantial shift in focus is
apparent. The attention is now primarily directed towards the
top-right corner of the image, where the building is located. As
per Fig. 6(c) and the F2

2 map, shadows considerably influence
attention, with the heat mainly concentrated in shadowy areas.
Nonetheless, after traversing the biattention mechanism, shad-
ows cease to be an issue, and the attention reverts to regions with
change hints. Our biattention is not flawless, as seen in Fig. 6(d).
TheM4 map is closer to the ground truth, but an additional stage
of biattention resulting in the M3 map leads to a reduction in
the attention region. Despite this, we tend to agree visually with
the results derived from the SBA-PN network rather than the
ground truth labels.

Likewise, as depicted in Fig. 7, shallow layers are tasked
with learning local patterns, such as edges and textures, while
deeper layers focus on context information. By comparing M4

and M3, it becomes clear that an additional biattention layer

enables the network to learn more refined results. We wish to
highlight the unique aspect of the LEVIR-CD dataset, which
solely concentrates on building changes. We conjecture that
this characteristic prompts our network to prioritize the building
regions. For instance, in Fig. 7(b), upon examining F2

1 and F2
2,

it is clear that attention is dominantly distributed throughout
F2

2, meanwhile F2
1 exhibits minimal heat. The input images are

nearly identical, with the only distinction being the presence of
buildings in I2. Although the LEVIR-CD dataset is exclusively
concerned with building changes, other alterations can affect our
network’s performance. In 7(c), we observe that both M4 and
M3 allocate attention to not only building objects, but also road
objects. In Fig. 7(d), despite the ground truth label indicating no
changes across the entire region, a comparison of the images
intuitively suggests that we are more inclined to agree with
the network’s learned M3. The vivid red spots indeed seem to
indicate building changes.

Fig. 8 offers a visualization of the ablation study concerning
contrastive learning. From this figure, it becomes evident that
the incorporation of contrastive supervision significantly im-
proves the focus of the model on key objects within the images
taken at two different time points. This is demonstrated by the
heightened attention directed towards these crucial elements.
In terms of the prediction feature, the presence of contrastive
supervision appears to reduce the amount of irrelevant atten-
tion noise, thereby enhancing the overall clarity and relevance
of the model’s focus. This is particularly clear in Fig. 8(b),
where the resultant feature map is noticeably refined. In the
absence of contrastive supervision, the model seems to get dis-
tracted by the background elements, as indicated by a misplaced
focus. Conversely, when contrastive supervision is applied,
the attention appropriately shifts towards areas of the image
where changes have occurred. This demonstrates the benefit
of contrastive supervision in ensuring the model’s attention is
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Fig. 7. Attention heat map visualization on sample pairs in the LEVIR-CD dataset. The color gradient, spanning from red to blue, illuminates the model’s varying
degrees of attention; red indicates high attention, whereas blue signifies low attention. This visualization underscores the effectiveness of the attention mechanism
in highlighting and emphasizing significant change-related features within the image pairs of the LEVIR-CD dataset. Figures (a) through (d) represent selected
samples.

Fig. 8. Attention heat map visualization for contrastive ablation study on the SYSU-CD dataset. The color ranges from blue, which represents the lowest values,
to red, which represents the highest values. In between, it transitions from blue to cyan, then to yellow, and finally to red as the value increases.

appropriately directed and meaningful patterns are more effec-
tively recognized.

V. CONCLUSION

In this article, a novel DL architecture is presented, namely
SBA-PN, to explore the broad-scale spatial information from
both intrapair and interpair image patterns for change de-
tection in remote sensing. The overall structure of SBA-
PN follows a U-Net-like encoder-decoder structure. Specifi-
cally, a Siamese Transformer-like encoder formulates paired

feature maps in a multiscale manner and a biattention-
based decoder corresponding to this multiscale design for-
mulates difference maps. Two pooling mechanisms are de-
vised to emphasize the change relevant patterns, including
a spatial optimal pooling module and a channel deviation
pooling module. In addition, a contrastive pixel-wise super-
vision is devised for shallow encoder layers in pursuit of
change-aware feature maps. Comprehensive experimental re-
sults on two widely used CD benchmark datasets demonstrate
our proposed method is able to achieve the state-of-the-art
performance.
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In our future work, we aim to focus on improving seman-
tic change detection with the SBA-PN. Our goal is to make
the model better at identifying meaningful changes in various
settings, including cities, natural areas, and during emergencies.
Adding semantic analysis to our model is expected to increase its
accuracy and usefulness in different situations. Also, exploring
how hyperspectral bands affect change detection accuracy is
important. Imaging data often have issues like degradation,
noise, and variability [47]. Dealing with these issues is key
to effectively modelling with hyperspectral imagery. We are
working to advance change detection technology in remote
sensing, making it stronger and more flexible for various needs.
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