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Abstract—With the development of Earth observation technol-
ogy, it becomes easier and easier to acquire multimodal image data
at the same time. To improve the performance of a multimodal
remote-sensing detection algorithm, a new fusion feature optimiza-
tion detection network is proposed. The method is designed to solve
the problem of performance degradation caused by the unreliabil-
ity of single-modal data in multimodal remote-sensing data. The
key to obtain high-quality fusion features from multimodal data
with interference is to suppress single-modal redundant features
and fully integrate multimodal features. The proposed method
mainly includes two improvements. First, a novel joint expression
optimization module is designed to enhance the target features and
suppress the redundant and interference features that affect the
fusion effect. In addition, we propose a novel specific information
enhancement module to further enhance the discriminative feature
information of targets within each modal image. Experiments on
the DroneVehicle dataset show that our proposed method is state
of the art on this dataset.

Index Terms—Joint expression optimization module (JEOM),
multimodal object detection, specific information enhancement
module (SIEM).

I. INTRODUCTION

THE object detection technology of Earth observation data
is widely used in military and civilian fields, such as
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intrusion warning, aerospace, etc. [1], [2]. The optical image
has the texture and detail information of the target, and the
infrared image can provide the temperature information of the
target. These two types of target information are complemen-
tary. Currently, how to make full use of multimodal data has
gradually become a new research hotspot [3]. However, in
the case that there may be modal interference in multimodal
remote-sensing data, how to obtain high-quality fusion features
and give full play to the complementary advantages of mul-
timodal information is a major challenge for fusion detection
technology.

Optical remote-sensing images have the advantages of easy
access and high resolution. Many researchers use optical remote-
sensing images for object detection [4], [5]. However, in some
challenging visual scenes, such as low illumination, smoke inter-
ference, etc., relying solely on optical images for detection often
fails. Infrared remote-sensing images can obtain temperature
information of the target without relying on visual factors in the
environment. Some researchers have focused on using infrared
images for object detection [6]. Due to the low resolution of
infrared images, it is difficult to detect difficult targets such as
low contrast, small scale, and lack of texture. In the face of some
highly difficult suspected targets, even the human eye is difficult
to judge. If the temperature information of the infrared image
and the details and colors of the optical image can be used at the
same time, the detection performance can be greatly improved.
Therefore, it is worth exploring how to solve the inherent limita-
tions of single-modal data by using multimodal complementary
information to improve the detection performance [7], [8].

At present, deep learning technology is widely used in various
fields [9], and it is also the focus of research in the field of
multimodal target detection. Fig. 1 shows different fusion strate-
gies in multimodal object detection algorithms in detail, which
are image-level fusion, feature-level fusion, and decision-level
fusion. In this figure, the red part is responsible for feature
extraction, the green part represents the fusion step, and the
blue part points to the object detection. Many studies have shown
that implementing multimodal feature fusion in the middle layer
of the network can usually obtain better multimodal detection
results [10]. Nowadays, multimodal object detection methods
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Fig. 1. Diagram of three types of fusion schemes. (a) Detection by fusion
image. (b) Detection by fusion feature. (c) Fusion both detection results.

based on feature fusion have been widely concerned and become
the mainstream trend.

To use optical and infrared remote-sensing images for object
detection, some researchers carry out direct weighted summa-
tion of each modal branching feature. Li et al. [11] introduce
illumination information to guide the fusion of multimodal
image features. They use a simple CNN and prediction head
to evaluate the illumination of RS optical images, and according
to the evaluation results, the importance of optical image branch
features is obtained, and finally, the weighted summation of
each mode feature is carried out to obtain the fusion feature.
Guan et al. [12] went a step further by using a deeper hierarchy
to evaluate the illuminance information and then used the eval-
uation results to guide multimodal feature fusion. However, the
branch learning efficiency of the modal weight calculation of this
fusion method is low, which affects the detection performance.

In order to obtain the fusion features adaptively, Tu et al. [13]
extracted the fusion feature information by layer-by-layer join-
ing and convolution of multimodal features, which improved the
overall efficiency of the algorithm. Zhang et al. [14] went further,
using a more complex concatenation convolutional structure to
obtain fusion features of multiple subspaces simultaneously, and
finally, grouping these features along the channel dimension to
obtain fusion features for prediction. This approach directly
combines the features of the two branches and ignores the
possible interference in the modal information.

Recently, attention structures have been widely used in vari-
ous architectures because of their excellent performance. Meng
and Liu [15] use a residual attention structure to perform self-
attention operations on convolution-acquired fusion features to
highlight their useful components. Zhao et al. [16] use trans-
former architecture to perform self-attention operations on mul-
timodal features and perform attention weighting in multiple
subspaces. Wang et al. [17] applied the attention structure to
feature fusion networks combined with reliability weighting
operations for high-level semantic information. This method
combines the high efficiency of multimodal detection based on
feature fusion with the robustness based on reliability weighting
and has achieved great success on a remote-sensing dataset.
However, in the aforementioned methods, the attention structure
is only applied to the feature fusion method while the backbone
network still uses the general structure for feature extraction.

In summary, multimodal object detection still faces many
challenges due to the significant modal differences between
different modal data. The simple weighted fusion method strug-
gles to fully aggregate the multimodal feature information.

The fusion method based on concatenation convolution fails to
consider how to suppress feature information that hinders fusion.
Although the fusion methods based on attention structure design
have shown excellent performance, they neglect to improve the
single-modal feature extraction ability of the backbone network,
ultimately reducing the efficiency of multimodal feature fu-
sion. In addition, optical images can introduce interference in
the feature fusion process, especially under low-illumination
conditions. The discriminative information is the information
that can distinguish the target from the background, such as the
temperature difference between the target and the background in
the infrared image, and the color difference in the optical image.
The simple feature fusion methods may inadvertently introduce
interference information and reduce the overall detection per-
formance.

The main contributions of this article are as follows.
1) To address the aforementioned challenges, this article

proposes a novel two-branch multimodal detection fusion
feature optimization detection network (FFODNet). The
FFODNet aims to adaptively fuse target feature informa-
tion from multimodal remote-sensing images and achieve
high-performance detection. Specifically, the method con-
sists of two key improvements: 1) the backbone network
and 2) the feature fusion module.

2) To fully integrate multimodal features and suppress in-
terference information that is unfavorable to fusion, we
propose a joint expression optimization module (JEOM)
based on cross-concern. The JEOM is designed to adap-
tively extract high-quality multimodal joint expressions of
objects of interest from remote-sensing data with uncertain
primary and secondary states.

3) To enhance the discriminative feature information of the
target in the single-modal image, we propose a new
specific information enhancement module (SIEM) in the
two-branch backbone network. The SIEM is designed to
suppress irrelevant background feature information and
further improve the efficiency of the subsequent feature
fusion operation.

The rest of this article is organized as follows: In Section II, we
describe the network structure and methods in detail. Section III
gives the details of our work and experimental results and related
comparisons to verify the effectiveness of our method. Finally,
Section IV concludes this article.

II. PROPOSED METHOD

The overall architecture of the proposed detection method is
illustrated in Fig. 2. Since the infrared image and optical image
have a similar data format, we utilize an isomorphic backbone
network to extract features from the multimodal images. To
ensure that the image features of each modality have the same
dimension within the network, we expand the single-channel
infrared image to three channels by duplicating the same value
across all channels. The feature extraction process begins with a
double-branch structure, which extracts features from the mul-
timodal images. Subsequently, the JEOM utilizes these features
to suppress information that is not conducive to fusion, thereby
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Fig. 2. Proposed multimodal object detection method mainly includes backbone, SIEM, JEOM, and detection.

extracting high-quality joint feature representations. Simultane-
ously, the SIEM is employed to enhance the extracted features,
thereby improving the discriminative features of each individual
modality and further enhancing overall performance. Finally, the
fused features are passed to the detection head, where the detec-
tion results are obtained. This detection head leverages the fused
features to identify and localize the target objects in the scene.

The proposed architecture combines multimodal feature fu-
sion and single-modal feature enhancement, allowing the net-
work to effectively capture useful complementary information
in multimodal remote-sensing images and improve the perfor-
mance of detection tasks. In addition, the isomorphic backbone
network enables the extraction of consistent and compatible
features from different modalities, facilitating the fusion process
and enhancing the overall performance of the detection method.

The specifics of the JEOM and SIEM are elaborated upon in
Section II-A and Section II-B, respectively.

A. Joint Expression Optimization Module

To obtain high-quality multimodal fusion features, we pro-
pose the JEOM based on cross attention to address possible
interference in remote-sensing data. This module incorporates
both single-modal features and multimodal joint features to
perform attention operations. The objective of these operations
is to enhance useful information while suppressing redundant
information that is not beneficial for fusion. Networks generally
exhibit better performance when they have access to more use-
ful information. By incorporating cross-attention mechanisms
within the JEOM, our proposed method effectively focuses
on important features and enhances their representation in the
fusion process. This allows the network to leverage the most
relevant and discriminative information from both single-modal
and multimodal features, thereby leading to improved overall
performance.

The query tensor is used to search for and enhance useful
features in each single mode. If the query tensor can search for
the target feature more accurately, then it can also be regarded
as learning a lot of useful information. To further improve
the fusion efficiency, an additional step is designed during the
fusion process. This involves adding the query vector, which is

Fig. 3. Schematic diagram of JEOM.

calculated from each single-modal feature, to the fusion feature.
The structure of this enhanced fusion feature is depicted in Fig. 3.

As shown in Fig. 3, the optical and infrared features are input
to the fusion module and mapped as query tensors, respectively.
These query tensors are then combined with the simple fusion
multimodal features for attention operations. Finally, the query
tensor and the enhanced fusion feature are added together to
obtain the final fusion feature. The entire process leverages the
attention mechanism to suppress redundant information, thereby
obtaining a high-quality fusion feature expression.

By incorporating this enhanced fusion feature into the net-
work architecture, aiming to further emphasize the useful in-
formation contained within the single-modal features, thereby
increasing the proportion of useful information in the final fusion
feature.

In addition, an attention-enhancing structure similar to the
transformer strategy is designed, which has a strong ability
to acquire high-quality fusion features [18]. In this structure,
in order to carry out adaptive information fusion, we use the
form of convolution instead of tensor product operation. First,
the module fuses the multimodal input features, obtains the
preliminary fusion features, and regards them as key tensors
and value tensors. Second, the query tensor is calculated using
each modal feature. Then, two query tensors and key tensors are
used to calculate the weight vector, respectively, and the value
tensor is weighted by the weight vector. Finally, the enhanced
fusion features are added to the query tensor to obtain the final
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fusion features. Finally, the enhanced fusion feature is added to
the query tensor to obtain the final fusion feature. The formula
of the overall calculation process is expressed as follows:

JEOM
(
FRGB
i , F Inf

i

)
= ˜F Inf

i + ˜FRGB
i +QI +QR (1)

where ˜F Inf
i and ˜FRGB

i refer to the enhanced feature tensor,
respectively. QR and QI refer to query tensors calculated from
RGB image features and infrared image features, respectively

QR, QI = Conv1×1

(
FRGB
i

)
,Conv1×1

(
F Inf
i

)
. (2)

Conv1×1 represents a convolution operation with kernel size 1
that does not change the dimension. Take the feature calculation
of optical image as an example, the formula is as follows:

˜FRGB
i = Tr

(
Q = QR,K = F f

i , V = F f
i

)
. (3)

Tr is a cross-attention enhancement operation similar to the
transformer strategy. It uses the query tensor and the key tensor
to calculate the weight vector, and weights the value tensor as
follows:

Tr(Q,K, V ) = W (Q,K) · V. (4)

The dot multiplication in the formula refers to the multiplication
of values along the channel dimension after broadcasting, so as
to achieve the purpose of feature selection

W (Q,K) = Poolaverage[CBL1×1(Q,K)]h,w (5)

CBL1(X,Y ) = L_ReLu{Bn{Conv1[Cat(X,Y )c]}}. (6)

The previous formula represents the use of a weight vector
to enhance the channel dimension of the feature graph where
Poolaverage refers to the global averaging pooling operation of fea-
ture tensors along the width and height directions. CBL1×1 refers
to the concatenation convolution operation. Bn and L_ReLu
are the batch normalized operation and the activation operation
using the leaky ReLu function, respectively. In the previous
equation, F f

i refers to the preliminary fusion feature, and the
calculation formula of it is as follows:

F f
i = Upsample

(
F̃ r
i + F̃ i

i

)
. (7)

The primary fusion features are obtained by adding and
applying operations on the calculated F̃ r

i and F̃ i
i

F̃ r
i = Conv1×1

(
Cat

(
F r
i , F

add
i

))
(8)

F̃ i
i = Conv1×1

(
Cat

(
F i
i , F

add
i

))
. (9)

To fully capture the discriminative information from each
modality, we concatenate the optical feature and infrared feature
and perform convolutions with the fusion feature separately. This
process enables the network to focus not only on the combined
features but also on individual modal features, thus providing
essential information for subsequent fusion operations. The re-
sulting fusion feature map is denoted that primarily emphasizes
the optical modal features as F̃ r

i . F add
i in the formula refers to

the multimodal features of the initial fusion. This step enhances
the discriminative capability of the network and contributes to

Fig. 4. Schematic diagram of SIEM.

improved multimodal object detection performance

F add
i = Convs=2

3×3

(
FRGB
i + F Inf

i

)
(10)

F r
i , F

i
i = Convs=2

3×3(F
RGB
i ),Convs=2

3×3

(
F Inf
i

)
. (11)

Convs=2
3×3 in the formula represents a convolution operation

with kernel size 3 and step size 2. In order to obtain the context
information of different modal features, we carry out a down-
sampling operation on the features involved in the calculation
when calculating the initial fusion features, so as to obtain useful
information conducive to fusion in a larger area.

B. Specific Information Enhancement Module

To enhance the feature extraction capability of single-modal
remote-sensing images, we propose a self-attention SIEM mod-
ule to further improve the detection performance. This module
leverages multiscale feature information to enhance the discrim-
inative features of the target, thereby improving the network’s
attention to target information during the feature fusion stage.
We adopt the attention-enhancing structure proposed in this
article within the SIEM. Given that the input features consist of
both deep and shallow features that exhibit strong correlations,
the operation methods of the query tensor, key tensor, and value
tensor within the attention network in this section differ from
those introduced in the previous section. These modifications are
necessary to effectively capture and enhance the discriminative
information within the multiscale feature representation. By
incorporating the self-attention SIEM module, we enable the
network to dynamically emphasize target-related information
and enhance the discriminative power of the fused features.

The structure diagram of SIEM is shown in Fig. 4. SIEM
utilizes shallower features to enhance attention toward deeper
features. In many feature extraction networks, downsampling
operations are performed on feature maps to reduce compu-
tation. However, this downsampling process can result in the
loss of certain low-level spatial location information. SIEM
addresses this issue by enhancing the discriminative features of
the target and reducing the loss of spatial position information
caused by downsampling during feature extraction.

In SIEM, the input shallow feature is scaled, and the module
performs separate mapping operations on the deep feature and
the scaled shallow feature. Specifically, key features and query
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features are mapped, and their interaction generates an attention
vector. This attention vector is then utilized to enhance the
discriminative feature information within the deep feature.

By incorporating SIEM into the network structure, we lever-
age richer spatial information from the shallower features to
enhance the deeper features. Simultaneously, the deeper fea-
tures undergo self-attentional operations to enhance useful target
feature information. The useful information component in the
feature is enhanced to improve the efficiency of the subsequent
feature fusion network.

The overall calculation process is as follows:

SIEM(Fi−1, Fi) = Attself(Fi) + Attcro(Fi−1, Fi). (12)

Fi and Fi+1 represent shallow features and deep features in
the process of feature extraction. The output of this module is
the sum of the arithmetic result of the deep feature self-attention
enhancement and the weighted feature of the shallow feature.
The formula for self-attention enhancement is as follows:

Attself(Fi) = Tr(Qs(Fi),Ks(Fi), Fi) (13)

Qs(Fi),Ks(Fi) = Conv1×1(Fi),Conv1×1(Fi). (14)

In the cross-attention operation, deep and shallow features
need to be aligned in wide and high dimensions. In order to
retain more low-level spatial information, we only use one
convolutional layer for dimensional alignment. Although the
method also downsamples shallow features, compared with the
backbone network, the single-layer convolution operation can
retain more spatial information rather than extract more semantic
information. In addition, the single-layer convolution structure
can also establish additional residual paths and improve the
training efficiency of the method. The cross-attention formula is
as follows:

Attcro(Fi−1, Fi) = Tr(Qc(Fi−1),Kc(Fi), Fi) (15)

Qc(Fi−1),Kc(Fi) = Convs=2
3×3(Fi−1),Conv1×1(Fi). (16)

Qc and Kc in the formula refer to the computational structure
of the query tensor and the bond tensor in this part. The operation
process of the function Tr in the formula is the same as the
formula (4).

In the overarching process, we input the multimodal image
data into the network and initiate distinct feature extraction
procedures using a specialized isomorphic backbone network
tailored for each modality. This step enables us to capture
and emphasize unique characteristics inherent to each type of
data. Following this initial extraction, we propose the SIEM
to dynamically amplify the discriminative information present
within the features of each individual modal. This enhancement
process occurs independently within dedicated branches for each
modal.

Building upon this enhancement, we activate the JEOM,
which orchestrates the fusion of multimodal features at the same
hierarchical level. The objective here is to ensure a harmo-
nious integration of information across modalities, promoting
a synergistic representation. Within this fusion process, careful
attention is given to utilizing each modal feature map in order
to selectively suppress redundant information embedded within

TABLE I
VOLUME DIAGRAM TABLE FOR EACH DATASET

the initial fusion feature map. This approach aims to distill
and preserve only the most pertinent details, generating fusion
features of elevated quality.

In the culmination of this sophisticated process, we deploy
resulting high-quality fusion features for critical object detec-
tion tasks. Our comprehensive approach encompasses distinct
feature extraction, individual modal enhancement, multimodal
fusion, and information refinement, all working collectively to
ensure the robust and effective performance of our network
in discerning and identifying targets within multimodal image
data. By taking advantage of the different strengths of each
mode, our network extracts target discrimination features from
multimodal images that capture both multimodal shared infor-
mation and single-modal specific information. The individual
modal enhancement module refines the features of each modal-
ity, boosting their discriminative power and facilitating more
accurate object detection. The multimodal fusion process effec-
tively integrates the enhanced features from different modalities,
enabling the network to exploit the complementary informa-
tion and achieve a more comprehensive understanding of the
scene.

III. EXPERIMENT

A. Experimental Datasets

The DroneVehicle dataset consists of 19 459 pairs of
RGB-infrared images, classified as vehicles, captured by
camera-equipped drones [19]. Regional scenes are divided
into urban roads, residential areas, and highways. The lighting
conditions were night and day. We used 17 990 RGB-infrared
image pairs for training and 1469 pairs for validation. The
overall dataset contains the following five categories of
objectives: 1) car, 2) freight car, 3) truck, 4) bus, and 5)
van. Some images have the problem of low contrast or low
illumination, which will cause the network to be interfered by
certain modal data in the feature fusion stage, which requires
the feature balancing performance of the network. According to
the interference degree of modal data, the dataset is divided into
the following two parts: 1) the weak interference subset and 2)
the strong interference subset. The subsets are shown in Fig. 5.
It is important to note that we have only divided the test set.

To ensure the consistency of the image scale between the two
modalities in FLIR, we conducted experiments on the “aligned”
version [20]. The “aligned” FLIR contains 5142 RGB-infrared
image pairs, of which we used 4129 pairs for training and 1013
pairs for testing. It covers different urban street scenes and
includes three object categories: 1) bicycle, 2) car, and 3) person.

The training, testing, and overall data volumes for each dataset
are shown in Table I.
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Fig. 5. Schematic samples of the weak interference subset and the strong interference subset are shown in the figure. (a) Schematic data of the strong interference
subset. (b) Schematic data of the weak interference subset.

Fig. 6. Comparison of three fusion structure diagrams. (a) Direct addition of the feature map. (b) Convolution after concatenation of feature graphs. (c) Multiple
interleaved concatenation and convolution of feature graphs.

B. Implementation Details

We executed all experiments using PyTorch on a machine
equipped with a GeForce RTX 3090 GPU. The optimization
process employed the stochastic gradient descent algorithm,
with an initial learning rate set at 0.003, an attenuation weight of
0.0001, and a momentum value of 0.9. To quantitatively assess
the performance of multimodal object detection, we employed
the conventional evaluation metric known as average mean
precision (mAP).

C. Performance Evaluation on DroneVehicle Dataset

Our base structure is a two-branch object detection network
without SIEM and JEOM in Fig. 2. The baseline of the proposed
method is improved by the single-branch Faster-RCNN [21]. To
explore a better feature fusion method, we conducted some rela-
tive comparative experiments. Hong et al. [22] listed a number of
multimodal feature fusion methods. The authors in [14] and [23]
used pointwise addition and Concat-Conv, respectively, to carry
out multimodal feature fusion, and achieved certain results. We
reproduced the most complex fusion method in their paper and
compared it with direct addition and concatenation convolution,
two simple fusion methods, their structures are shown in Fig. 6.

These three fusion methods are called pointwise addition,
Concat-Conv, and Cross-Concat-Conv in turn. Each of the meth-
ods in the table uses ResNet50 for feature extraction of single-
modal images and only uses different structures for feature
fusion. Finally, the fused features are used for object detection.
By comparing the performance differences of various fusion
methods, experiments show that the proposed fusion method is
superior to the earlier fusion methods.

Table II shows that a more complex feature fusion network
can obtain better multimodal fusion features, thus improving
the performance of the object detection method. To improve the
learning efficiency of the network and make a more explicit
performance comparison, we refer to the detection network
using direct addition operation in the fusion part as the baseline.

Table II shows the comparison between the proposed method
and the current object detection method with multimodal feature
fusion capability. RISNet and UA-CMDet are good fusion object
detection algorithms at present [17], [19], both using a mixture
of feature-level fusion and decision-level fusion strategies, but
their performance is still inferior to our proposed method.

For a better comparison, the detection structure of the
method in Fig. 6(a) is used as our baseline. Our improved
mAP improves by about 16% compared to baseline results and
is significantly higher than the single-modal object detection
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Fig. 7. Visualization of detection results of each algorithm. From top to bottom are the test results of pointwise addition method, Concat-Conv, Cross-Concat-Conv,
UA-CMDet, and FFODNet.

TABLE II
EXPERIMENTAL PERFORMANCE OF EACH OBJECT DETECTION METHOD ON

DRONEVEHICLE DATASET AS WELL AS THE MODAL IMAGES IT USES

method. Experiments show that the proposed method can extract
high-quality fusion feature information from infrared-optical
image pairs, and its performance is state of the art.

The subjective detection results of each algorithm are pre-
sented in Fig. 7. The first line represents the fusion method of
pointwise addition, the second line represents the fusion method

TABLE III
EXPERIMENTAL PERFORMANCE OF EACH OBJECT DETECTION METHOD ON

DRONEVEHICLE DATASET AS WELL AS THE MODAL IMAGES IT USES

of Concat-Conv, and the third line represents the fusion method
of Cross-Concat-Conv. The fourth line displays the detection
result of UA-CMDet, and the image is sourced from the original
paper. The final line demonstrates the test results of the proposed
method. The proposed method demonstrates excellent detection
effectiveness, performing well on dense targets and targets with
obstructed edges

The quantitative analysis of each fusion method on the two
subsets is compared in Table III. To evaluate the robustness of the
algorithm in difficult scenarios, the test set of the original dataset
is divided into two test subsets according to the difficulty of the
scenario. Experiments show that the proposed method is robust
in a low-illumination environment.
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Fig. 8. Subjective diagram of test results. The rows from top to bottom are labeled optical images, baseline detection results, and the results of the FFODNet.

As shown in Fig. 8, the true value is shown in green on the
first row of the RGB image. The second and third rows show the
detection results for the baseline and the FFODNet, respectively.
To enhance visual clarity, we highlight the objects with our
approach above the baseline in yellow.

Visualizations of some of the detection results in the strong
interference subset are depicted in Fig. 9. In the first column
of the presented data, the infrared data exhibits a low-contrast
phenomenon while the optical image suffers from cloud in-
terference. The feature fusion network needs to address the
low-illumination interference caused by optical images in the
second and fourth columns of data. In the third column of
data, both cloud and low-illumination problems are observed
in the optical images. These phenomena indicate that a certain
modality of data is not always reliable in the fusion object

detection task. Consequently, it is crucial for the algorithm to
initially treat all modal data as equally important during feature
fusion and adaptively suppress the interference introduced by
modal data throughout the fusion process.

The experimental results unequivocally validate the effective-
ness and feasibility of our algorithm, particularly when applied
to the challenging strong interference subset. The algorithm
demonstrates excellent detection performance, surpassing ex-
pectations and showcasing its potential for real-world appli-
cations. The exceptional performance of our algorithm can be
attributed to its innovative fusion strategy, adaptive weighting
mechanism, and end-to-end training approach. These key com-
ponents enable the algorithm to effectively handle interference
from different modalities, prioritize relevant information, and
optimize the feature fusion process for accurate object detection.
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Fig. 9. Figure of data sample detection results with modal data interference. The first is the infrared image data, the second is the detection result of the baseline,
and the third line is the detection result of the proposed method.

TABLE IV
OUR PROPOSED METHOD WAS COMPARED WITH BASELINE ABLATION

EXPERIMENTS

The algorithm’s ability to adaptively suppress interference and
exploit the complementary characteristics of multimodal data
contributes to its outstanding performance.

D. Ablation Experiment on DroneVehicle Dataset

To verify the effectiveness of the module proposed in this
article, we conducted ablation experiments on JEOM and SIEM.
Table IV shows the experimental results of the ablation experi-
ments. The baseline in Table IV refers to the method pointwise
addition in Table II.

J and S in Table IV, respectively, refer to the JEOM and SIEM
in Section II of this article. The fusion module is compared with
the simple fusion method. Furthermore, SIEM is used to improve
the ability of the network to extract the discriminant features
of the target, so as to improve the efficiency of feature fusion.
In the proposed method, the detection efficiency is improved
through the synergistic effect of JEOM and SIEM. Experiments
show that JEOM can optimize the detection performance by

TABLE V
EXPERIMENTAL PERFORMANCE OF EACH OBJECT DETECTION METHOD ON

FLIR DATASET, AS WELL AS THE MODAL IMAGES IT USES

improving the efficiency of feature fusion. On this basis, SIEM
can further improve the overall network performance. On the
basis of optimizing the feature fusion structure, it is meaningful
to enhance the ability of each feature extraction branch.

E. Performance Evaluation on FLIR Dataset

To further validate the effectiveness of our proposed method,
we conducted comparison experiments with other state-of-the-
art methods on the FLIR-aligned dataset.

Table V presents the results of several advanced object detec-
tion methods that possess multimodal fusion capabilities. As
observed from Table V, our approach outperforms the other
methods, establishing itself as the leading method for object
detection on the FLIR dataset. These results further demonstrate
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the superior performance and effectiveness of our proposed
method in multimodal object detection tasks.

As observed in Table III, using only infrared modal images can
achieve a higher degree of precision, mainly because the infrared
images in the FLIR dataset provide a better view compared to
the optical images. Inadequate fusion methods may introduce
interference information that hinders fusion, ultimately reducing
the detection performance of the network. Notably, the YOLO-
MS is a recently advanced multimodal fusion object detection
method. However, in our experiments, we have achieved higher
performance compared to the method. Furthermore, while our
approach performs equally well as UA-CMDet on the FLIR
dataset, it outperforms UA-CMDet on the drone dataset. These
results highlight the superior performance and effectiveness of
our approach in both FLIR and drone datasets.

IV. CONCLUSION

In this article, a novel multimodal detection FFODNet
is proposed, which adaptively fuses the target feature
information of multimodal remote-sensing images to achieve
high-performance detection. It includes the improvement of
the backbone network and fusion module. In order to obtain
high-quality fusion features by enhancing object-specific
features and suppressing redundant information that may
hinder fusion, a new JEOM is proposed. Based on this, a new
SIEM is designed to suppress irrelevant background feature
information and further improve the efficiency of subsequent
feature fusion operations. Experimental results show that our
proposed method outperforms existing state-of-the-art methods
on the DroneVehicle dataset.
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