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A New Spatial Downscaling Method for Long-Term
AVHRR NDVI by Multiscale Residual

Convolutional Neural Network
Mengmeng Sun , Xiang Zhao , Jiacheng Zhao , Naijing Liu , Siqing Zhao , Yinkun Guo , Wenxi Shi ,

and Longping Si

Abstract—Monitoring vegetation dynamics is essential for eco-
logical processes, environmental changes, and natural resource
protection. Fine-scale representation of vegetation indices is nec-
essary for regions with complex topography and high diversity
species. However, the advanced very-high-resolution radiometer
(AVHRR), which covers an extensive time range with high tempo-
ral resolution, does not provide normalized difference vegetation
index (NDVI) data with sufficient spatial resolutions for a detailed
analysis of vegetation changes. The moderate resolution imaging
spectroradiometer (MODIS), which has a higher temporal and
spatial resolution, has only been limited to the last few decades.
To deal with these issues, we propose a multiscale residual convolu-
tional neural network (MRCNN) that utilizes a multiscale structure
with a residual convolutional neural network to combine MODIS
NDVI and AVHRR NDVI data. The MRCNN algorithm improved
mean absolute error (MAE) and root mean squared error (RMSE)
by 0.026 and 0.032, respectively, resulting in a 64.38% improve-
ment for MAE and 62.79% improvement for RMSE compared to
AVHRR NDVI. It also increased the peak signal-to-noise ratio by
28.5% and the structural similarity index by 16.2%. The MRCNN
method accurately captures the actual state of MODIS NDVI and
consistently tracks changing trends in the vegetation index. It is
exact in complex terrain and diverse vegetation areas. This method
enhances the spatial resolution of AVHRR NDVI and significantly
improves the accuracy of monitoring nationwide vegetation index
changes over 30 years. The findings establish a solid scientific
foundation for implementing ecological conservation measures and
promoting sustainable vegetation growth.
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I. INTRODUCTION

THE normalized difference vegetation index (NDVI) is a
significant metric utilized to characterize vegetation con-

dition as well as its relationship with the natural environment
or human activities (e.g., agricultural practices [1]). To be more
specific, NDVI has been widely recognized for its crucial role
in assessing vegetation coverage [2], [3], [4], guiding ecological
protection [5], [6], and informing urban planning and agriculture
[7], [8]. In addition, many studies highlight the pivotal role
of NDVI in application for crucial ecosystems, such as forest
management and grassland conservation, by offering essential
data support for ecological protection initiatives [9], [10], [11].
Moreover, the use of NDVI enables the monitoring of the intri-
cate relationships between vegetation and outside disturbance.
Notably, it is a helpful tool to study the interaction between
vegetation and climate factors [12], [13], [14], [15]. This is
particularly valuable during natural disasters, as it facilitates the
assessment of the impact of events, such as floods, droughts,
and frostbite [16], [17], [18], [19]. Considering its versatility, as
reasoned above, researchers have devoted considerable efforts
toward acquiring high-resolution NDVI data for Earth surface
monitoring.

The acquisition of long time-series and high-resolution NDVI
datasets remains a significant challenge for many scholars due to
the inherent tradeoff between spatial and temporal resolutions.
Although enhancing spatial resolution yields more details, it
often comes at the expense of reduced temporal resolution,
thereby restricting data availability and limiting the full real-
ization of the data’s potential use. Further challenges are the
coarse temporal resolution and the presence of mixed pixels
within NDVI data, both of which impede the product’s appli-
cation in surface cover change detection and classification. In
particular, the 0.05° advanced very-high-resolution radiometer
(AVHRR) NDVI dataset, despite its extensive time series, under-
performs in capturing detailed texture information. To reconcile
the balance between time and spatial resolution, a plethora of
research is redirecting their focus toward the NDVI downscaling
techniques.
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Conventional downscaling techniques include interpolation
methods, reconstruction-based methods, and machine-learning
methods. The interpolation-based techniques predominantly
employ a designated pixel as the central point and calculate the
values of its neighboring pixels through diverse interpolation
methodologies. These methods have computational efficiency
but also indistinct boundaries [20], [21]. To improve the
indistinct boundaries, many reconstruction-based methods have
been proposed, which aim to improve the precision and level
of detail in the resulting downscaling image by utilizing prior
knowledge [20], [22]. Nevertheless, these methods cannot
capture high-frequency information [23]. To address this,
many researchers have turned to machine-learning methods.
These methods rely on extensive training data to establish a
direct relationship between low-resolution and high-resolution
images. However, their effectiveness can be limited and it may
lead to the loss of high-frequency information [24], [25], [26],
mainly when dealing with the nonlinear mapping relationship
between low-resolution images and high-resolution images.
This highlights the need for further advancements in downscal-
ing methods to address these complex nonlinear correlations.

The exploration and extraction of nonlinear attributes have
seen significant progress, with researchers developing a variety
of feature combinations. A landmark development in this area
is the downscaling convolutional neural network (CNN), which
employs bicubic interpolation alongside a three-layer convolu-
tional network to create high-resolution images, demonstrating
the robust capabilities of deep learning in the realm of image
downscaling reconstruction [27], [28]. This method, however,
extracts only a limited set of features by relying on informa-
tion from a singular image. To bypass this shortcoming, Tong
et al. applied the DenseNet network architecture combined with
a 1 × 1 convolutional kernel and a skip structure, enabling
the transfer of low-level image features to higher levels. This
strategy facilitated the extraction of a broader range of image
features, yielding significant results, albeit with certain limita-
tions in the context of multiperiod images [29], [30]. To better
efficiently realize the feature transfer, Lim et al. [23] introduced
the multiscale downscaling architecture that allowed parameter
sharing among multiple architectures, expediting convergence
and reducing parameter count. Furthermore, Wang et al. pro-
posed the residual network (ResNet), a method that integrates
deep and shallow strategies in network design and utilizes an
external network to efficiently transfer gradients, thereby en-
hancing learning effectiveness and overall model performance.
This approach emphasizes the potential of varying network
depths in optimizing downscaling methods [23], [32].

As the complexity of the network increases, degradation in
model training becomes a more significant issue. Researchers
proposed ResNets that add skip connections to regular layers,
providing shortcuts by adding a layer’s input to its output. For
example, He et al. [33] proposed ResNets to simplify the deep
networks. Sdraka et al. [34] introduced two main strategies,
including global residual learning (GRL) and local residual
learning (LRL). GRL aims to learn the residual between input
and output images, recovering high-frequency details. Concur-
rently, LRL represents the insertion of local shortcuts between

intermediate layers to alleviate the vanishing gradient problem
at the network depth [35]. Residual learning is widely used in
image super-resolution networks, including the residual dense
network [36], very deep super resolution [37], and enhanced
deep super resolution [23]. ResNets cannot sufficiently deal with
intricate and varied feature types. The development of multi-
scale network topologies is aimed at enhancing feature learning
intensity. Multiscale networks, by employing characteristics of
various sizes, aim to improve the network’s expressiveness and
flexibility. Subsequent investigations delved into the reconstruc-
tion of multidimensional features.

To increase multivariate coupling in the downscaling process,
it is a common practice to impose additional meteorological
variables as inputs [38], [39]. In downscaling processes, the
choice of auxiliary data is usually related to the physical meaning
and relevance of the target variables. For example, for precip-
itation downscaling, DeepSD [40] and Nest-UNet [41] utilize
static terrain feature elevations as an auxiliary predictor for
generating more accurate patterns in complex terrains. Several
studies have explored the interaction between vegetation growth
and topography by incorporating topography-related auxiliary
data, such as digital elevation models (DEMs). Considering
China’s diverse vegetation, complex terrain, and significant
climate changes, the adaptability of the vegetation index down-
scaling model encounters major challenges. Therefore, develop-
ing a super-resolution vegetation index for areas with complex
vegetation and topography is crucial. Despite the demonstrated
effectiveness of deep-learning methods in addressing nonlinear
relationships and restoring high-resolution images, the sheer
volume of data generated presents notable challenges in terms of
computer storage performance. The current research focus leans
toward enhancing various aspects of the neural network model,
including architecture, activation function, and optimization
methods [24], [25], [42], [43]. Through comparative analyses,
improvement of visual representation activation function [43],
[44], [45] and optimization methods [46], [47] can improve the
computational efficiency and provide more accurate mappings
than traditional techniques [31], [48].

Despite the numerous studies on downscaling algorithms and
the relentless efforts of many researchers, the aforementioned
issues have been partially resolved. However, the following
challenges still need to be overcome and improved: 1) utilizing
multiscale data flows to generate a high-resolution vegetation
product is particularly challenging in forest areas with complex
terrain and high spatial heterogeneity; and 2) the statistical rela-
tionships applied in the downscaling process may vary between
different regions and lack stability, which are especially evident
in complex terrain areas like forests [49].

A sophisticated downscaling technique is introduced to ad-
dress the issue previously discussed. This novel approach has
been thoroughly validated and competes strongly with Landsat 5
(1982–2000) and moderate resolution imaging spectroradiome-
ter (MODIS) NDVI (2001–2015) data in the studied areas.
The empirical results confirm the effectiveness of the multi-
scale residual CNN (MRCNN) method for use in both complex
and flat terrains. The results demonstrate the suitability of the
MRCNN technique for application in regions characterized by
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Fig. 1. Overview of the study area. (a) Yunnan Province location map in China. (b) Distribution of various categories. (c) MOD13A2 spatial map for July 28,
2015, in Yunnan Province, China. Note: ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; DBF: deciduous broadleaf forest; MF: mixed forest;
CSL: closed shrubland; OSL: open shrubland; WSA: woody savanna; SAV: savanna; GRA: grassland; WET: permanent wetland; CRO: cropland; and URB: urban.

intricate topography as well as in regions with level terrain. This
article addresses pertinent challenges prevalent in contemporary
research, notably: 1) the daunting task of leveraging multiscale
data streams to produce vegetation productivity at high resolu-
tions, particularly in densely wooded regions marked by intricate
topography, diverse environmental conditions, and pronounced
spatial heterogeneity; and 2) the instability and variability of sta-
tistical correlations employed in the downscaling process across
different regions, particularly in rugged terrains like forests. The
main contributions of this article are as follows.

1) This article generates an efficient technique to address
challenges in downscaling AVHRR NDVI in areas with complex
geography and diverse vegetation.

2) Creating a simulated MODIS NDVI data dataset at 1-km
spatial resolution, covering 1982 to 2015. The new dataset
can investigate how changes in regional ecological contexts
impact vegetation indicators and evaluate their potential to yield
important insights.

The rest of this article is organized as follows. Section II
outlines the study area and data datasets utilized in the article.
Section III provides an in-depth account of the implemented
algorithm and methodology. Section IV presents the model
results and offers a comparison with analogous products, includ-
ing quantitative and qualitative analyses. Sections V hosts an
extensive discussion. Finally, Section VI concludes this article.

II. STUDY AREA AND DATASETS

A. Study Area

The distinct geographical location of Yunan contributes to
its diverse climate types. The region features a warmer and
more humid environment. The areas enjoy an all-year spring
climate favorable for cultivating various crops. The northwest
typically experiences arid and semiarid climates characterized

by abundant sunshine, extended precipitation periods, and sub-
stantial evaporation. The southeastern region, with its frequent
precipitation, four distinct seasons, and semihumid to humid cli-
mate, experiences monsoons (Fig. 1). Furthermore, the diverse
topography of Yunnan, ranging from coastal plains to inland
mountains and plateaus at elevations of thousands of meters,
contributes to its extraordinarily complex climatic zoning. Its
climate is divided into eight subregions based on variations
in precipitation and altitude. Distinct climate features of each
subregion contribute to a varied and unique climate system. This
diversity creates favorable conditions for preserving biodiversity
and agricultural output yet poses challenges for researchers.
Adapting the vegetation index downscaling model becomes
more challenging due to the numerous vegetation types, complex
terrain, and significant climate fluctuations.

Situated on the southeastern edge of the Qinghai–Tibetan
Plateau within China’s Yunnan–Guizhou Plateau, Yunnan
province presents a varied topography marked by towering
mountains, rolling hills, expansive basins, and plains, ly-
ing betwixt 21°8’32"–29°15’8" N latitudes and 97°31’39"–
106°11’47" E longitudes [Fig. 1(a)].

This geological heterogeneity precipitates a wide spectrum
of elevations, with a peak differential of 6663.6 m, fostering a
unique mosaic of climates and ecosystems. The vegetational
diversity encompasses a range spanning tropical rainforests,
warm temperate coniferous forests, evergreen broadleaf forests
(EBFs), evergreen needle-leaf forests, and deciduous broadleaf
forests [Fig. 1(b)]. This array, constituting 62.4% of the total
forest cover, is integral to maintaining ecological equilibrium
and elucidating the evolutionary trajectories of distinctive veg-
etation types. Given these biomes’ representativeness and the
broad spectrum of vegetation types, this article employs EBFs,
evergreen needleleaf forests (ENF), mixed forests (MF), woody
savanna (WSA), and savannas (SAV) as test subjects to assess
the performance of the MRCNN method for downscaling NDVI.
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A spatial distribution map based on MOD13A2 data reveals a
predominant NDVI value range of 0.4–0.8 for Yunnan Province,
indicative of relatively high vegetation coverage, particularly in
areas represented in deep blue [Fig. 1(c)]. This high vegetation
coverage underscores the province’s importance in fostering
ecosystem health and biodiversity.

B. Datasets

Xiao et al. generated 8-day 0.05° AVHRR NDVI data from
1982 to 2015 as low-resolution input. It consists of daily gridded
NDVI products with a spatial resolution of 0.05°, equivalent to
approximately 5550 m [50], [51]. Due to its early establishment,
real-time significance, and extensive spatial coverage, this article
has chosen the AVHRR image data as a valuable source for long
time-series data.

The MOD13A2 dataset, which possesses a spatial resolution
of 1 km and a temporal resolution of 16 days, serves as a crucial
remote sensing resource for examining vegetation growth and
alterations on a global scale [52]. The creation of the MOD13A2
dataset signifies a collaborative effort between the United States
Geological Survey (USGS) and NASA, leveraging the MODIS
sensor on the Terra satellite. In this article, the data processing
approach encompasses utilizing the MRT tool and Python pro-
gramming language to execute a series of operations, including
batch splicing, projection transformation, and cropping, on the
MOD13A2 dataset. The outcome of this intricate procedure
yields tailored MOD13A2 data that specifically caters to the
ecological and geographical characteristics of Yunnan Province,
spanning a timeframe of 15 years from 2000 to 2015.

The Shuttle Radar Topography Mission Digital Elevation
Model 30 m (SRTM DEM 30 m) signifies a groundbreaking
effort to generate extensive worldwide digital elevation informa-
tion. This dataset is meticulously crafted through radar instru-
ments on the space shuttle, facilitating precise and distinct mea-
surements of the Earth’s surface. As a result, the SRTM DEM 30
m creates a comprehensive digital elevation dataset that covers
the entire Earth, demonstrating an impressive spatial resolution
of approximately 30 m per pixel. The acquisition of accurate
topographic data is of utmost importance due to its significant
implications in various disciplines, including geographical in-
formation systems, geomorphology, and remote sensing. It is
crucial to acknowledge that this endeavor necessitates essential
preprocessing methodologies, such as resampling and cropping,
to ensure the optimal performance and applicability of the
DEM. It can be obtained from CGIAR—CSI via the hyperlink:
http://srtm.csi.cgiar.org (January 13, 2024, retrieved).

Yang and Huang [53] produced the annual China Land Cover
Dataset (CLCD) based on 335 709 Landsat images on Google
Earth Engine, which contains annual land cover information
for China from 1985 to 2019. The CLCD is now a publicly
accessible 30-m resolution long-term annual land cover dataset.
It is compared with current land cover thematic products and
demonstrates strong alignment with global forest change, global
surface water, and impervious surface time-series datasets. Si-
multaneously, it illustrates the swift urbanization trend and
various ecological initiatives in China, unveiling human-induced

influences on LC amid climate change scenarios and offering
potential value for global change research applications.

Between March 1984 and November 2011, Landsat 5 TM
collected observation data in the reflected wavelength with a
resolution of 30 m. The global Landsat data are stored at the
Earth Resources Observation and Science Center of the USGS,
where archived Landsat 5 TM data show different coverage areas
[54], [55]. For better consistency among relatively clear Landsat
scenes, spectral radiance can be converted to planetary or exoat-
mospheric reflectance by normalizing for solar irradiance [56],
[57], [58]. In the formula for calculating NDVI, NIR stands for
near-infrared band, corresponding to band 4 of Landsat 5; Red
refers to the red band, corresponding to band 3 of Landsat 5.

III. METHODOLOGY

The MRCNN methodology enables more comprehensive
training and efficient prioritization of relevant image regions.
The multiscale group, residual group, upsampling module, and
residual block are critical components of the MRCNN (Fig. 2).
A unique network structure is created by integrating and super-
imposing elements and channels with the help of the ResNet
and a multiscale network. The multiscale group consists of
several multiscale blocks, which are used to learn the flexible
multiscale features to enhance the diversity of extracted features.
In addition, the numerous residual blocks and convolutional
networks are used to improve the learning abilities of the entire
network. This groundbreaking network design holds significant
potential for enhancing the effectiveness of various applications
(Fig. 2).

The structure of MRCNN: This article adopts a multiscale
network structure incorporating convolution blocks of sizes
3 × 3, 5 × 5, and 7 × 7, designed to learn multiscale fea-
tures beneficial for highlighting boundary details. Furthermore,
adopting a ResNet architecture, as opposed to a dense fusion
strategy, strengthens interlayer learning and reduces the num-
ber of parameters and computational load, thereby improv-
ing processing efficiency. In addition, PixelShuffle operates
by breaking down the input low-resolution image into basic
pixel blocks. These blocks are rearranged according to learned
mapping relationships, synthesizing a high-resolution image.
This method surpasses traditional interpolation techniques in
both reconstruction quality and computational efficiency. What
is more, a specialized module for terrain and land cover feature
extraction is designed, targeting high-resolution terrain data to
extract multiresolution features. Finally, we introduced residual
block design to blend high-frequency and low-frequency data to
further improve the quality of the predicted images achieving a
more balanced internal detail and clearer edges.

The introduction of high-resolution terrain feature extraction
and multiscale feature extraction modules is crucial as they
capture more details and information during analysis, essential
for enhancing model precision and reliability. By combining
features extracted from high-resolution terrain data, CLCD, and
AVHRR NDVI data, the method applies an integrated approach
to various scales and depth features, improving the model’s
capability to capture terrain details and analytical accuracy. This

http://srtm.csi.cgiar.org
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Fig. 2. Flowchart of the image downscaling process. Abbreviations: SRCNN—super-resolution convolutional neural network. ESPCN—efficient subpixel
convolutional layer. MRCNN—multiscale residual convolutional neural network.

method, by merging multiple data sources and techniques, en-
hances the quality and efficiency of feature extraction, providing
rich and precise data support for subsequent analysis. It consid-
ers multiple factors, such as terrain and vegetation, resulting
in more comprehensive and reliable analytical outcomes. To

further improve model precision, specialized modules for terrain
data and land cover feature extraction, along with multiresolu-
tion feature fusion, are specifically designed. To demonstrate
the effectiveness of high-resolution terrain data extraction and
multiscale feature fusion modules, these modules are introduced
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into the MRCNN model. Results indicate that including auxil-
iary data significantly reduces the disparity between MODIS
NDVI and Landsat 5, confirming the modules’ contribution to
revealing finer details.

The neural network architecture comprises four essential
components: the residual group, the multiscale group, the up-
sampling module, and the residual block (Fig. 2).

The input layer: The postpreprocessed AVHRR data (1982–
2015) served as input with the DEM data for training the method.

The residual group, depicted as a dark blue rectangle, consists
of interconnected residual blocks. Each residual block contains
two convolutional layers and an element summing operation,
facilitating the capture of high-frequency image details.

The multiscale group, represented by an orange rectangle,
consists of multiple parallel residual groups. The features pro-
cessed by each residual group are combined with the features
obtained from convolutional network processing. This combi-
nation is achieved by performing an elementwise summation
operation and aids in the recovery of low-frequency image
details. Different sizes of convolutional kernels (3 × 3, 5 × 5,
and 7× 7) are used to extract features from various sensory field
angles, and channel-level concatenation enhances the network’s
performance.

The upsampling module: The model is illustrated as purple
rectangles, and it enlarges the image size by a factor of five
using the PixelShuffle technique. PixelShuffle accomplishes this
by converting low-resolution feature maps into high-resolution
feature maps through convolution and channel reorganization.
This method effectively enlarges the image, replacing traditional
interpolation or deconvolution techniques.

Conv: It is depicted as a sky-blue rectangle, representing the
convolution operation.

The output layer is used to complete the downscaling of the
NDVI data and generate the 1-km resolution NDVI dataset for
the years 1982 to 2015. The output layer employs different
loss functions and evaluation metrics to optimize the network
parameters.

For AVHRR NDVI data, two branches are deployed for
processing. The first branch employs a multiscale group to
extract diversified features, which are subsequently fed into the
upsampling module to generate a 1-km resolution feature map.
The second branch utilizes convolution operations to derive new
features, which are then input into the upsampling module to
create a 1-km resolution feature combination. The feature maps
produced by the two branches are integrated using elementwise
addition to formulate a new feature map, denoted as Feature Map
1. For the input DEM data, features are extracted via residual
blocks to form Feature Map 2. Feature Map 1 and Feature Map
2 are then channel level connected to create Feature Map 3.
This map undergoes further processing via residual blocks to
ultimately yield the 1-km resolution MODIS NDVI data.

The specific steps are as follows:
Data preparation: The 0.05° AVHRR NDVI data (1982–

2015) underwent several data processing steps, such as batch
splicing, projection transformation, cropping, bidirectional
reflectance distribution function (BRDF) adjustment [41], [42],
[43] and other procedures to generate the Yunnan Province
AVHRR NDVI data. High-resolution target data came from

16-day 1-km resolution MODIS NDVI datasets covering
2001–2015. Quality pixels from MOD13A2’s quality assurance
filtering were retained. Spatial–temporal Savitzky–Golay
(STSG) processing [59] was used to reconstruct low-quality
pixels affected by clouds, snow, and aerosols. High-quality
region pixels were preserved, while low-quality ones were
replaced with reconstructed values using STSG. Each image
size is 850 × 797, totaling 345 images. The MODIS NDVI
images were split into 75% training and 25% validation sets.
DEM and CLCD served as auxiliary data alongside AVHRR
NDVI as the input datasets. DEM data provided terrain height
information aiding in downscaling, while land cover data
improved accuracy and textural detail. During model training,
MODIS NDVI served as output data.

Features extraction: Model performance was assessed by
analyzing loss function values of both training and validation
datasets, with the model exhibiting the lowest loss being deemed
optimal. The optimal model was trained on 0.05° AVHRR NDVI
data to simulate 1-km MODIS NDVI images. Model effective-
ness and accuracy were evaluated by comparing high-resolution
NDVI images produced by the model with actual MODIS NDVI
images. The model selection was based on the criteria being
the smallest root mean squared error (RMSE) value and mean
absolute error (MAE) value. After comparing these parameters
and undergoing parameter adjustment and optimization, we
selected the optimal model to complete the downscaled task
and got them ready for performance comparison. We used the
MRCNN network to generate a new dataset and compared it
with the 1-km high-quality MODIS NDVI. If the new dataset
demonstrates the best agreement with the high-quality MODIS
NDVI data, the model can estimate the NDVI dataset before
2000. In addition, we use Landsat 5 to validate the new dataset
spanning from 1982 to 2000. The study employed 1-km MODIS
NDVI data from 2001 to 2015 as the validation dataset, enabling
the analysis and assessment of the 1-km NDVI data within the
same temporal scope. We used the spatial distribution of RMSE
and MAE to check the single pixel of the new NDVI dataset
from 1982 to 2015.

The findings from the 15-year testing of the downscaling data
indicated a robust concordance between our approach and the
impact of MODIS NDVI data. In addition, our method exhib-
ited durability when subjected to prolonged sequence testing.
Furthermore, we selected five biomes to confirm their robust-
ness and applicability. The results showed that the proposed
MRCNN method can effectively capture more complex texture
information and enhance the learning performance of the algo-
rithm. These meticulous operations have improved the accuracy
and facilitated the acquisition of long-term NDVI data. This
substantial contribution enables the investigation of vegetation
growth before 2000 and the analysis of environmental changes.

IV. RESULTS

A. Comparison of Downscaled NDVI Products Obtained by
the MRCNN Method With Other Methods

1) Accuracy Evaluation of Various Downscaled Methods:
After applying downscaling techniques, such as bicubic,
SRCNN, ESPCN, and MRCNN, to AVHRR NDVI data and



7074 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 3. Spatial distribution of MAE and RMSE across various methods in 2015. (a) MAE spatial distribution. (b) RMSE spatial distribution. Left to right: bicubic,
SRCNN, ESPCN, and MRCNN.

comparing the results with MODIS NDVI data, we found 1)
the mean MAE values were 0.073, 0.038, 0.033, and 0.026,
respectively, [Fig. 3(a)]; and 2) the mean RMSE values were
0.086, 0.046, 0.040, and 0.032, respectively, [Fig. 3(b)]. Quali-
tative analysis of spatial distribution maps for MAE and RMSE
indicates that the MRCNN algorithm significantly enhances
texture information compared to AVHRR NDVI. The MRCNN
algorithm reduced MAE and RMSE by 0.026 and 0.032, re-
spectively, with a 64.38% improvement for MAE and a 62.79%
improvement for RMSE compared to AVHRR NDVI. This
evidence underscores the MRCNN algorithm’s downscaling
efficacy in complex and plain terrains. The marked reductions
in MAE and RMSE emphasize the superior performance of
the MRCNN algorithm and broad applicability across diverse
landscapes and vegetation types. This evidence confirms the
MRCNN algorithm as a crucial tool for enhancing NDVI data
resolution and accuracy, vital for ecological monitoring and
analysis. It can be mainly attributed to the MRCNN, which
focuses on the differences between AVHRR NDVI and MODIS
NDVI in specific regions, thus increasing the importance of these
mapping features.

To examine the long-term stability of the MRCNN method’s
performance, we comprehensively compared different down-
scaled products using a long-term analysis across five distinct
vegetation biomes in Yunnan province. It involved detailed
scrutiny of the annual mean NDVI curves for these biomes (ENF,
EBF, MF, WSA, and SAV) from 1982 to 2015. The objective
was to evaluate how effectively four notable downscaling tech-
niques captured interannual trends and seasonal cycles (Fig. 4).
Results highlighted that the MRCNN method’s downscaling
results mirrored the reference data most closely across all biome
classes. The result suggests the MRCNN method’s superior

capability in effectively recreating different vegetation biomes.
Conversely, the ESPCN and SRCNN techniques underestimated
the NDVI value, especially during the summer. The results
could be due to their shortcomings in handling intricate feature
classes during the downscaling procedure. This finding aligns
with the variations observed in the time-series curves in 2015
(Fig. 4). Moreover, there was a significant discrepancy between
the bicubic downscaling results and the reference data. The
results can be traced back to the bicubic method’s inability to
capture high-frequency specifics, resulting in inadequate down-
scaling tasks. These findings proved the stability of the MRCNN
method, the time, and the feasibility of applying the MRCNN
method proposed in this article to solve the long time-series
studies in different biomes. To comprehensively validate the
practical effectiveness of our downscaling algorithm, we also
tested the time series of NDVI. As shown in Fig. 5, the outcomes
generated by our MRCNN method downscaling algorithm ex-
hibited the closest alignment with MODIS NDVI for the five
representative biomes. These findings emphasize the effective-
ness and superiority of our technique in accurately describing
the vegetation dynamics in all five biomes from 1982 to 2015
concerning its advantage of spatiotemporal consistency. The
commonly used two metrics to compare different deep-learning
methods are peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) [60], with the former testing the ratio
of the resulted pixels to the noise pixels and the latter describing
the statistical similarity of the MODIS NDVI reference image
and the different downscaling results. The results of this article
indicate that SSIM and PSNR fluctuate with seasonal changes.
This finding underscores the impact of environmental factors
on these critical image quality metrics. After comparing vari-
ous super-resolution techniques, including MRCNN, SRCNN,
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Fig. 4. Time-series curves of typical species obtained by different methods, spanning 1982 to 2015.

ESPCN, and bicubic, the MRCNN method demonstrated supe-
rior performance. Specifically, compared to bicubic, the MR-
CNN method showed a 28.5% improvement in PSNR and
a 16.2% improvement in SSIM, corresponding to numerical
increases of approximately 4 and 0.12, respectively, (Fig. 6).
The findings show that MRCNN consistently outperformed
alternative methods, including SRCNN, ESPCN, and bicubic
method.

B. Spatial Distributions Evaluation of Downscaled NDVI
Products Obtained by Various Downscaled Methods

NDVI spatial distribution maps are crucial tools in envi-
ronmental and ecological fields, enabling the monitoring of
vegetation health and growth over time. They offer insights into
environmental changes, aid in agricultural management, reveal
biodiversity distribution, highlight urbanization impacts, and
support postdisaster assessment. These maps are instrumental
in research and making decisions across various domains.

Fig. 7 serves as a visual representation of the effectiveness
of four distinct downscaling techniques, illustrated through the

spatial distribution maps of the resulting 1-km NDVI downscal-
ing products. The maps are arranged in sequential order from left
to right, commencing with the 1-km NDVI data and followed
by the results garnered from SRCNN, ESPCN, and ultimately,
the MRCNN method. This arrangement allows for a precise
comparative analysis of each technique’s effectiveness. Upon
close inspection, it becomes apparent that the MRCNN method’s
downscaling outputs are similar to the 1-km NDVI data, under-
scoring its advanced ability to capture intricate texture details. In
contrast, while the SRCNN and ESPCN methods demonstrate
some capability in capturing texture information, their results do
not align as closely with the 1-km NDVI data as the MRCNN
method.

Moreover, the bicubic method exhibits noticeable shortcom-
ings, with certain regions lacking texture information, empha-
sizing its relative inadequacy in contrast to the other techniques.
Fig. 7(a) presents a spatial distribution that displays detailed
textures. These results suggest that 0.05° AVHRR NDVI exists
in several overestimated or underestimated areas, which is in-
consistent with the 1-km MODIS NDVI. Compared to MRCNN,
there are fewer instances of overestimation or underestimation,
especially in areas characterized by complex terrains or diverse
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Fig. 5. Downscaled results at five random points with five typical biomes using different methods. Note that: Point 1. MF; Point 2. ENF; Point 3. WSA; Point 4.
EBF; Point 5. SAV.

Fig. 6. Time-series curves of PSNR and SSIM with various methods in 2015.

vegetation. This indicates that the effectiveness of these methods
subtly differs depending on the geographical characteristics of
the regions. The density distribution graph depicts inflection
points at 0.4 and 0.6. Within the 0.4–0.6 interval, the bicubic
technique slightly overestimates, while between 0.6 and 0.8,

it markedly overestimates. SRCNN exhibits underestimations
in the 0.2–0.6 intervals, and overestimations occur from 0.6 to
0.8 (Fig. 7(b)). ESPCN also presents minor underestimations
in the 0.2–0.5 ranges, with modest overestimations noted in the
0.6–0.8. Despite occasional underestimation or overestimation,
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Fig. 7. Results of various downscaled methods in 2015. (a) Spatial distribution of NDVI mean values by various downscaling methods. (b) Density distribution
of NDVI mean values by various downscaling methods. Note: AVHRR NDVI, bicubic, SRCNN, ESPCN, the MRCNN, and MODIS NDVI.

MRCNN downscaling outcomes align closely with MODIS
NDVI, showcasing unparalleled precision and alignment with
actual vegetation indices.

An accurate assessment of the vegetation index is crucial for
comprehensively understanding vegetation dynamics changes,
particularly in areas characterized by complex topography. Con-
sequently, selecting appropriate downscaling techniques is im-
perative for precisely capturing change information and ad-
dressing changes across different temporal scales. The findings
illustrate the spatial distribution data of NDVI obtained through
various downscaling methods across multiple temporal scales,
such as daily and monthly (Figs. 8 and 9).

Fig. 8 plays a significant role in assessing the consistency of
NDVI value variations with MODIS NDVI for selected months
in 2015. More specifically, the figure represents each quarter of
2015 with January, April, July, and October. The image analysis
shows seasonal variations in the NDVI, indicating a consistent
underestimation of NDVI values by AVHRR NDVI compared
to MODIS NDVI across all seasons. The MRCNN algorithm
greatly enhances NDVI. This improvement is consistently ob-
served throughout winter, spring, summer, and autumn, with sig-
nificant enhancements during the spring, summer, and autumn
seasons. Compared to MODIS NDVI, the areas improved by the
MRCNN algorithm exhibit a higher level of consistency. These
findings demonstrate that the MRCNN algorithm significantly
improves AVHRR NDVI, enhancing its utility for monitoring
seasonal vegetation changes. It highlights the ability of four
downscaling methods to reflect seasonal growth patterns of
vegetation, showcasing their performance across different times
of the year. The bicubic approach, however, struggles with
accuracy in complex terrains, leading to significant underesti-
mations or overestimations. While SRCNN and ESPCN also
encounter difficulties accurately capturing vegetation in such
terrains, MRCNN distinguishes itself by significantly reducing

these errors and closely aligning with MODIS NDVI data, prov-
ing the most effective in accurately mapping vegetation across
varied landscapes. Spatial distribution maps of NDVI values for
these chosen months are juxtaposed with corresponding MODIS
NDVI values, which allows for a direct and clear comparison.
Upon careful analysis of these maps, it becomes evident that the
MRCNN method is highly effective in incorporating texture, and
its results align closely with those of the MODIS NDVI.

Conversely, the ESPCN and SRCNN methods present spo-
radic instances of underestimation in specific regions and a
comparatively limited ability to capture texture. Most notably,
the bicubic method displays substantial underestimation and a
poor ability to capture textures. Thus, this figure underscores the
MRCNN method’s superior ability to match the consistency of
MODIS NDVI values. In addition, MRCNN excels in accurately
identifying regions characterized by complex vegetation types
and aligns more closely with MODIS NDVI in areas with subtle
border distinctions (Fig. 8).

To test the algorithm’s robustness, we chose areas of the
downscaled results of Yunnan’s complex terrain and rich species
area as the small window zoom. Fig. 9 illustrates the outcomes of
image scale reduction using various methods for a specific day in
July 2015. These methods include MRCNN, ESPCN, SRCNN,
and the bicubic method. By comparing their results, one can
observe the distinct effectiveness of each technique in capturing
and representing the spatial arrangement of NDVI values. For
instance, the MRCNN method demonstrates its efficacy by
accurately capturing and conveying the spatial distribution of
NDVI values for this particular day.

In contrast, the ESPCN and SRCNN methods occasionally
underestimate the values, as dashed squares indicate. In addition,
the downscaling result by SRCNN provides more spatial details
than ESPCN. The bicubic method, however, suffers from consid-
erable underestimation and exhibits a limited ability to capture
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Fig. 8. Spatial distribution of NDVI through different downscaling techniques in 2015. January, April, July, and October correspond to the winter, spring, summer,
and autumn, respectively. (a) January; (b) April; (c) July; and (d) October. From left to right: AVHRR NDVI, bicubic, SRCNN, ESPCN, MRCNN, and MODIS
NDVI.

textures effectively. This comparison underscores the superior
performance of the MRCNN method in achieving precise image
scale reduction. The results show that compared with MODIS
NDVI, AVHRR NDVI lacks a lot of most of the texture informa-
tion. The downscaled effect of the MRCNN algorithm increases
a lot of texture information compared with AVHRR NDVI, and
the added information is highly consistent with MODIS NDVI.

C. Validation of the Downscaled Produces (1982–2015)

1) Validation of the Algorithm With High-Quality MODIS
NDVI Data (2001–2015): To evaluate individual performance
and quantify the tangible effects of downscaling methods, we
employed scatter plots to visually present the results obtained
from the 2015 dataset (Fig. 10). The article specifically
assessed downscaling phenomena by measuring RMSE and
MAE, which are important indicators of the accuracy and
effectiveness of the downscaling techniques used. The results
indicate that the MRCNN technique achieved the lowest values
for these parameters (Fig. 10). Furthermore, compared with
AVHRR NDVI, the MRCNN downscaled results were highly

concentrated along the 1:1 line, exhibiting MAE of 0.032, RMSE
of 0.045, and R2 of 0.874 [Fig. 4(b)]. Regarding error reduction,
the study noted a decrease in RMSE by 0.112 and a reduction rate
of 71.3%. Similarly, the accuracy of MAE improved by 0.102
and a reduction rate of 25%. In addition, the R2 metric showed
an improvement of 0.12 and an improvement rate of 76.1%
(Fig. 10). This suggests that it offers greater accuracy and per-
formance than other techniques, such as ESPCN and SRCNN.
On the other hand, the bicubic interpolation process yielded the
least desirable outcomes. Furthermore, the scatter plot revealed
a high concentration level in our method, as evidenced by the
close alignment of the distribution with the 1:1 line.

These findings provide empirical evidence supporting the
effectiveness of our downscaling methods and highlighting their
ability to achieve remarkable consistency with validation data. In
addition, these results underscore the potential of our technique
to improve the usability of MODIS NDVI data.

2) Validation of the Algorithm With Landsat Data (1982–
2000): Given the high susceptibility of Landsat data to cloud
cover, obtaining cloud-free images that comprehensively cover
Yunnan Province proves challenging. Therefore, a section of
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Fig. 9. Spatial distribution of Yunnan province on 24 July 2015, zoom in to display local texture detail information. Note: left to right (a) AVHRR NDVI, bicubic,
SRCNN; and (b) ESPCN; MRCNN, and MODIS NDVI.MRCNN.

Fig. 10. Density scatterplots for different downscaled methods in 2015 throughout Yunnan province. Dashed lines represent 1:1 lines, while solid lines indicate
the best-fit lines derived from linear regression. From left to right: bicubic; SRCNN; ESPCN; and MRCNN.

Yunnan Province with less than 5% cloud cover was selected
for validation analysis. Moreover, discrepancies in the validation
results are inevitable due to spectral range and spectral response
function differences among various data sources. Typically, the
higher the similarity between the original and target data, the
more effective the downscaling process. However, a comparison
between AVHRR NDVI data and Landsat data reveals signifi-
cant differences, contributing to substantial discrepancies in the
outcomes. Before validating with Landsat 5, its data need to be
upscaled to 1 km. Then, Landsat 5 data from 1982 to 2000 is
used to validate the simulated data obtained for the same period.

Typically, the higher the similarity between the original and
target data, the more influential the downscaling process. How-
ever, a comparison between AVHRR NDVI data and Landsat
data reveals significant differences, contributing to substantial
discrepancies in the outcomes. Before validating with Landsat
5, its data need to be upscaled to 1 km. Then, Landsat 5 data from

1982 to 2000 is used to validate the simulated data obtained for
the same period.

There is a significant correlation and similarity between
MODIS NDVI and AVHRR NDVI, making the use of MODIS
NDVI to validate the downscaled data results from 2001 to 2015
relatively reliable and accurate. The NOAA–AVHRR satellite
series has a 20-year global NDVI data record, and combining
MODIS–NDVI data will provide a more extensive and longer
data series for practical monitoring and research. The MODIS
vegetation index uses a new synthesis algorithm to reduce biases
caused by changes in observation angles and the solar target
sensor geometric relationship. In generating vegetation index
grid data, molecular scattering, ozone absorption, and aerosol
correction algorithms will be used, and the BRDF model will be
utilized to correct observation data.

Some problems lie about the spatiotemporality consistency.
Several factors contribute to uncertainties in AVHRR-based
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Fig. 11. Density scatterplots for different downscaled methods in February 1994 throughout Yunnan province. Dashed lines represent 1:1 lines, while solid lines
indicate the best-fit lines derived from linear regression. From left to right: AVHRR NDVI; bicubic; SRCNN; ESPCN; and MRCNN.

NDVI products. Initially, variations in band configurations, such
as center wavelength and spectral response function, among
AVHRR sensors (like AVHRR-2 and AVHRR-3) and between
these and other sensors (for example, MODIS and VIIRS), play
a significant role [61], [62], [63], [64]. Second, NDVI discrep-
ancies among identical AVHRR sensors on different NOAA
satellites may also arise. Here, variations in image capture times
and sun-target-sensor geometries between sensors can lead to
a “jump” (a sudden shift in values) in the NDVI time series
[65], [66], [67], [68]. For instance, the AVHRR sensor aboard
NOAA-11 exhibits a significantly higher NDVI compared to the
AVHRR sensors that came before and after it [69]. Third, the
accuracy might be compromised by the orbital drift of NOAA
satellites and the deterioration of AVHRR sensors, which is
attributable to the severe conditions in outer space [70]. Artificial
signals within the orbital drift in moist regions were noticeable
for AVHRR-derived NDVI products (e.g., VIP3 NDVI, LTDR4
NDVI, and GIMMS NDVI3g) and subsequent products like the
GIMMS leaf area index [71].

This discrepancy results in MAE and RMSE values when
directly evaluating the reconstruction outcomes using Landsat
data (Fig. 11). An initial attempt to align Landsat data with
MODIS through linear fitting (though its effectiveness is un-
certain) precedes the evaluation of metrics. Furthermore, the
results indicate that MRCNN is feasible for estimating data
before 2000. The inherent value differences between Landsat
and MODIS NDVI datasets significantly impact the MAE and
RMSE calculations, which rely heavily on the discrepancies
between the reconstructed and reference images.

V. DISCUSSION

A. Adaptability of Mixed Pixel Phenological Characteristics

The box plots provide a detailed analysis of the statistical
properties of NDVI data for five specific biomes (EBF, ENF,
MF, WSA, and SAV) during different seasons. At the same

time, the growth status of five typical vegetation types during
the growing season is also displayed in box plots (Fig. 12).
Each plot represents the distribution of NDVI data for a par-
ticular biome, including vital statistical measures, such as the
maximum, minimum, median, and upper and lower quartiles.
These plots serve as a valuable tool for understanding the
effectiveness of different downscaling methods across various
biomes and seasons. The box plots show that the MRCNN
method exhibits a strong correlation with the MODIS NDVI
for WSA and SAV during spring, further strengthening in
autumn.

In addition, the density plots provide insight into the distri-
bution of NDVI values and their consistency with the MODIS
NDVI. These plots enhance our understanding of the impact
of downscaling on NDVI value distribution. The density plots
clearly show that the results of the MRCNN method closely
align with the peak values of MODIS NDVI, while the bicubic
method displays the most significant deviation. In conclusion,
the informative charts effectively compare and evaluate the
performance of different downscaling methods in processing
NDVI data (Fig. 12). These findings offer valuable guidance for
future article and applications.

Boxplots provide a detailed analysis of the statistical features
of NDVI data for five different biomes across different seasons
and throughout the entire growth period (Fig. 12). These charts
are a valuable tool for understanding the effectiveness of other
downscaling techniques across various biomes and seasons. The
density distribution map reflects the proportion of NDVI mean
values in different ranges.

Fig. 12 illustrates the NDVI mean value trends across various
vegetation types (EBF, ENF, MF, WSA, and SVA) throughout
the four growing seasons, highlighting distinct growth patterns
for each type, as follows.

1) EBF growth trend analysis: The NDVI mean values for
EBF are consistently around 0.78 throughout the year, indicating
minimal seasonal variation. The NDVI obtained by the MRCNN



SUN et al.: NEW SPATIAL DOWNSCALING METHOD FOR LONG-TERM AVHRR NDVI 7081

Fig. 12. Downscaled results of various biome categories using different methods in 2015 in Yunnan province. Left to right: images of typical ecosystems selected
from Google Earth; boxplots showing downscaled results for different methods including spring, autumn, summer, winter, and the growth season; and density
distribution of downscaled results for different methods: (a) EBF; (b) ENF; (c) MF; (d) WSA; and (e) SAV.

method aligns closely with the MODIS NDVI mean, showcasing
superior accuracy and improvement over the AVHRR NDVI,
which averages around 0.5. The density distribution further
reveals that MRCNN ’s NDVI means are predominantly around
0.78, mirroring the MODIS NDVI distribution, albeit with a
slight tendency toward overestimation. This contrasts starkly

with AVHRR’s NDVI, which is concentrated around 0.58, un-
derscoring its substantial underestimation.

2) ENF seasonal growth pattern: ENF’s NDVI mean val-
ues also exhibit slight annual fluctuation, stabilizing around
0.80. Again, the MRCNN method demonstrates the closest
approximation to MODIS NDVI’s mean value. The density



7082 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

distribution maps corroborate the MRCNN ’s enhanced perfor-
mance and slight underestimation compared to MODIS NDVI,
which has its most significant proportion of mean values around
0.8. AVHRR NDVI’s largest proportion, around 0.60, reflects a
significant underestimation, underscoring MRCNN ’s substan-
tial accuracy improvement.

3) MF growth dynamics: MF shows an apparent seasonal
variation in NDVI mean values, with winter and autumn around
0.42, spring around 0.75, and summer peaking at 0.75. The
MRCNN NDVI mean is closest to MODIS NDVI, significantly
improving upon AVHRR NDVI’s average of 0.55. MRCNN and
MODIS NDVI’s most significant proportions of mean values
cluster around 0.72, indicating high consistency and MRCNN’s
notable advancement over AVHRR NDVI.

4) WSA seasonal trends: WSA’s NDVI means display sea-
sonal trends, with MRCNN reflecting the closest correlation to
MODIS NDVI’s growth trend. The density distribution shows
MRCNN and MODIS NDVI’s most significant proportion of
means around 0.78, attesting to their consistency. MRCNN ’s
substantial improvement over AVHRR NDVI is evident, with
AVHRR’s largest proportion of means at 0.55, highlighting
significant underestimation.

5) SVA seasonal growth analysis: SVA exhibits distinct sea-
sonal NDVI mean values, with MRCNN closely mirroring
MODIS NDVI’s trend, particularly noticeable in the peaks
around 0.45 and 0.76. AVHRR NDVI, primarily concentrated
around 0.50, starkly underestimates the mean NDVI values com-
pared to MODIS NDVI, emphasizing MRCNN ’s substantial
enhancement in capturing the accurate growth status of ENF.

Overall, Fig. 12 underscores MRCNN’s superior performance
in closely matching MODIS NDVI’s mean values across dif-
ferent vegetation types and seasons, highlighting its effective-
ness in accurately capturing the growth trends and improving
upon the limitations observed in AVHRR NDVI outputs. In
spring, the MRCNN method demonstrates a robust association
with MODIS NDVI for the MF, SAV, and WSA ecological
communities. Concurrently, the correlation between the two
biomes further intensified during autumn. At the same time,
bicubic exhibits the most notable difference. A line graph and
the boxplot display the correlation between downscaled results
and MODIS NDVI. In addition, the results indicate that NDVI
demonstrates a seasonal variation. For example, the warming
and moistening of the North Atlantic warm current and the
cooling and drying effects of the winter cold current collec-
tively contribute to the seasonal changes. The results show
that the AVHRR NDVI is consistently underestimated for the
selected biological groups, persisting throughout the year. The
results of MRCNN indicate overestimation for ENF, EBF, MF,
and DBF in winter, but they align well with MODIS NDVI
in other seasons. SRCNN and ESPCN models show unstable
underestimation or overestimation, indicating that these ap-
proaches have complex nonlinear variations in their applicability
across different biological communities and experience seasonal
fluctuations.

NDVI temporal curves and growth trend lines offer invaluable
insights for scientists, agricultural experts, and environmental
managers in environmental monitoring, resource management,

and climate change research. It is reasonable to utilize NDVI
temporal curves and growth trend lines presenting the down-
scaled results. It becomes evident that the proposed MRCNN
method approach outperforms all the other methods in terms of
achieving a closer alignment with the mean phenology curves
of 1-km NDVI data and capturing the annual trend of NDVI
(Fig. 13). The results of temporal curves, growth trend lines, and
the spatial distribution analysis of the mean NDVI trend indicate
that the MRCNN method produces the closest approximation
of the mean values characterizing the growth change trend
(Fig. 13). In contrast, the 1-km NDVI downscaled results from all
the other methods all showed the underestimation of mean NDVI
annual trend found in southwestern Yunnan province compared
to the reference data from MODIS NDVI. These regions embody
high vegetation dynamics because of the elevation heterogeneity,
and only the proposed MRCNN method tackles this problem
efficiently (Fig. 13).

In presenting downscaled results, the MRCNN method has
demonstrated a superior ability to align with the growth patterns
observed in MODIS NDVI. Specifically, this method closely
approximates the mean value characterizing growth change
trends, displaying a high level of congruity throughout all the
months. Compared to other methods, the MRCNN approach
outperforms aligning with the mean phenology curves of 1-
km NDVI data and capturing the intra-annual NDVI trend
(Fig. 13).

Besides, the algorithm MRCNN demonstrates superior per-
formance in capturing single-year results and maintaining con-
sistency with the MODIS NDVI trend. As can be seen from
the annual time-series chart, the downscaled 1-km NDVI shows
the highest concordant level (23.50E-4) with the trend value of
MODIS NDVI (35.59E-4) (Fig. 13). Beyond mere trend value
comparison, the MRCNN algorithm also excels in capturing
the single-year results and maintaining consistency with the
MODIS NDVI trend (Fig. 13). The annual time-series chart
shows the MRCNN method’s downscaled 1-km NDVI aligning
most closely with the trend value of MODIS NDVI. However,
all other techniques exhibit varying degrees of uncertainty, over-
estimating the NDVI trend at different levels.

Moreover, the MRCNN method performs remarkably well
in aligning with the 1-km MODIS NDVI’s interannual trend,
effectively capturing the evolving trends’ characteristics. This
is apparent in the discernible downward trends in 2002, 2008,
and 2011, and varying degrees of upward trends in 2003, 2009,
and 2012 (Fig. 13). However, it is important to note that other
methods, such as the bicubic approach, ESPCN method, and
SRCNN, show some inconsistency with the observed MODIS
NDVI change patterns (Fig. 13).

The reliability of the MRCNN method is particularly high-
lighted in its ability to estimate data before 2000. This feature
enhances its referential value and makes it a robust tool for
long-term ecological and environmental studies. Furthermore,
the MRCNN method’s precise estimation of changes in vege-
tation growth states and trends is instrumental in various ap-
plications. It aids in identifying growth cycles, understanding
how vegetation responds to seasonal climate variations, detect-
ing shifts in land use, and assessing the impacts of climate
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Fig. 13. Growth trend lines and spatial distribution analysis of mean NDVI trends in Yunnan. Row 1: AVHRR NDVI, bicubic interpolation; Row 2: SRCNN,
ESPCN interpolation; Row 3: MRCNN method, and MODIS NDVI data.

change. Faced with natural disasters, the NDVI data generated
by the MRCNN method plays a pivotal role in evaluations,
providing critical insights into changes in vegetation. These
data are also essential in agricultural management, helping guide
irrigation, fertilization, and harvesting decisions. In biodiversity
conservation, the precise NDVI data can assist in identifying
ecologically sensitive areas and biodiversity hotspots. Thus, it
provides a scientific basis for planning and managing these
areas. In conclusion, the accuracy and reliability of the MR-
CNN method make it a valuable tool for scientists, agricultural
specialists, and environmental managers who rely on such data
for research and making decisions.

Prior research has explored how spatial resolution affects
leaf phenology tracking in temperate areas through observations
from multiscale remote sensing. For instance, Zhang et al. [72]
discovered that using imagery with a coarse spatial resolution
introduced uncertainties in land surface phenology, as evidenced
by a comparison with phenology derived from fine-resolution
imagery. Chen et al. [73] carried out a simulation study and
discovered that significant uncertainty in phenology extraction
is linked to coarser spatial resolution and the mixing of plant
species, a discovery further validated by Liu et al. [74] and Tian
et al. [75] utilized real-world satellite data. Similar effects of
mixing can be expected in tropical forests as the spatial resolu-
tion varies, owing to the combination of various forest compo-
nents (namely, bare branches, leaves, and shade in our context)
within each pixel. This aggregation impacts both the spectral
and spatial characteristics of the pixels [76], [77], leading to
ambiguities in characterizing tropical phenology. Nonetheless,
the influence of spatial resolution on measuring tropical leaf
phenology, as estimated through the deciduousness metric, is
still insufficiently investigated.

These investigations also revealed that a coarser spatial res-
olution might increase uncertainty in monitoring phenology
[74], [78]. The fundamental mechanism is complex, yet it can
primarily be attributed to the growing mix of species with the
expansion of pixel size, which diminishes the likelihood of
pure pixels in images of coarser resolution [79], [80]. This is
especially pertinent in tropical landscapes filled with evergreen

trees, where the crowns of deciduous trees make up a minor
portion of the canopy and are thinly scattered across the terrain
[81], [82].

B. Comparison With Previous Studies

The article introduces MRCNN, a novel image downscaling
approach, which merges residual and multidimensional net-
works, designed to preserve original image data, particularly
high-frequency details, for high-quality results. The MRCNN
method demonstrated a higher correlation with the 1-km MODIS
NDVI values, surpassing other algorithms and closely mirroring
the 1-km MODIS NDVI in the ENF, EBF, and MF categories
[83], [84], [85]. This finding underscores the reliability, ro-
bustness, and accuracy of our proposed approach, consistently
generating the most favorable outcomes across all seasons and
growth periods [86], [87], [88].

To comprehensively assess and validate our downscaling al-
gorithm’s efficacy in practical applications, we carefully selected
five distinct feature types, encompassing a range of both natural
and artificial surface characteristics, such as typical forests,
farmlands, and grasslands (Fig. 4). We randomly selected a point
from each feature and followed their time-series curves from
2001 to 2015 (Fig. 5). This methodology allowed for extensive
and long-term observations, leading to a thorough understanding
of the practical implications and significance of downscaling.

Building on this foundation, this article focused on a specific
timeframe, treated as an autonomous, discrete interval. This
approach facilitated a detailed examination of the alignment
between the downscaling outcomes and the MODIS NDVI, a
commonly used vegetation index critical for evaluating surface
attributes and monitoring changes in surface vegetation [89],
[90], [91]. Comparative analysis revealed that our MRCNN
algorithm produced outcomes that demonstrated a higher align-
ment with MODIS NDVI for the five typical features. This result
indicates that our algorithm can more accurately represent the
true characteristics of these features, underscoring its significant
practical utility (Fig. 12). Upon conducting individual exam-
inations of each year of the five features as separate intervals,
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our method showed marginally superior alignment with MODIS
NDVI compared to four other methods, reinforcing the superi-
ority of our downscaling algorithm.

Examination of the time curves revealed that our method
successfully learned richer texture information. By contrast,
SRCNN and ESPCN showed a lower capacity for learning
texture details, leading to some degree of underestimation. This
finding underlines the enhanced accuracy of our algorithms in
extracting and acquiring texture information (Fig. 6).

Through comparative analysis, we found that our MRCNN
downscaling algorithm produced results that aligned signifi-
cantly more with the MODIS NDVI for the selected five features.
This finding suggests that our algorithm can more accurately
represent the true characteristics of these features, providing
substantial practical significance [92], [93], [94]. When we
conducted individual examinations of each year for the five fea-
tures as discrete intervals, our method demonstrated marginally
superior correspondence with MODIS NDVI compared to the
other four methods, despite overall improvements. This find-
ing underscores the superiority of our downscaling algorithm.
Analyzing the timing curves revealed our method’s successful
learning of richer texture information [Fig. 4(a)].

In contrast, it was observed that SRCNN and ESPCN ex-
hibited a lower capacity for texture detail learning, resulting in
some degree of underestimation. This highlights our algorithms’
enhanced accuracy and superior texture information extraction
and acquisition capability. The bilinear interpolation method
showed a clear tendency to underestimate and produce fewer
estimated texture details [Fig. 4(a)]. This further emphasizes our
downscaling algorithm’s superior accuracy and performance in
dealing with diverse features compared to other methods.

When conducting individual examinations of each year of the
five selected features as separate intervals, our method demon-
strated marginally superior alignment with MODIS NDVI as
compared to the other four methods, despite overall advance-
ments (Fig. 6). This finding strengthens the superiority of our
downscaling algorithm. Our method successfully learned to
capture richer texture information by examining timing curves.
Conversely, we observed that SRCNN and ESPCN demon-
strated a lower capacity for learning texture details, resulting in
a certain level of underestimation [95], [96], [97]. This finding
underscores our algorithms’ superior capability and enhanced
accuracy in extracting and acquiring texture information. The
bilinear interpolation method displayed a noticeable tendency
to underestimate and yield fewer estimated texture details. This
further highlights our downscaling algorithm’s superior accu-
racy and performance in managing diverse features compared
to alternative methods.

The dataset used in this article is important in environmen-
tal science and ecology, with implications spanning various
disciplines. By utilizing the MRCNN method, we success-
fully transformed low-resolution NDVI data into high-resolution
data. This conversion facilitates an enhanced understanding
of surface vegetation cover and ecosystem dynamics. Our
findings reveal detailed insights and spatial distribution pat-
terns of NDVI data, giving us a precise knowledge of vege-
tation growth and overall ecosystem health. These insights are

valuable for decision-makers and practitioners involved in en-
vironmental protection and sustainable development initiatives.
The application of the MRCNN method has further significant
implications. Specifically, transforming low-resolution NDVI
data into high-resolution data allows for more effective mon-
itoring and assessment of changes in vegetation dynamics. This
is particularly crucial in agriculture, forestry, and grassland man-
agement where accurate vegetation data are vital for informed
decision-making and efficient resource allocation. Furthermore,
our proposed methodology advances our understanding of the
complex relationship between vegetation and climate change.
Through close examination and analysis of NDVI data, we
can gain deep insights into how vegetation responds to climate
change. This empowers us to develop improved strategies for
climate change adaptation and mitigation.

MRCNN is designed to preserve original image data, espe-
cially high-frequency details, and it extracts extensive features
at various scales. This approach amalgamates output and input
data, maximizing the strengths of deep and shallow features.
Furthermore, MRCNN employs residual blocks to tackle gra-
dient vanishing and exploding issues and incorporates volume
scaling to maintain computational efficiency while expanding
the network’s receptive field. As a result, MRCNN demonstrates
superior downscaling accuracy and effectiveness. In addition,
MRCNN utilizes a contrastive learning strategy, leveraging
high-resolution images to enhance the network’s adaptability
to different image contents and structures. Hence, MRCNN
exhibits exceptional performance in image downscaling, par-
ticularly for complex images. This superior performance can
be attributed to MRCNN’s unique design principles, techni-
cal resources, and learning methods, thereby outperforming
other image-downscaling algorithms in accuracy, efficiency, and
adaptability.

On the other hand, the conventional methods, such as SRCNN
and ESPCN comparison methods used in this article, rely largely
on the sample numbers. A study showcased that SRCNN has
difficulty in fighting against adversarial features [98], which may
explain the outcomes in Figs. 4 and 5 that SRCNN cannot adjust
the NDVI value of the original AVHRR NDVI. Although the
ESPCN algorithm has been proven to require less running time
and feature input than SRCNN; however, the ESPCN algorithm
still depends largely on the neighboring learning feature, that
is, the large dependence on the surrounding pixels [99]. As a
result, when it comes to the regions where the target learning
feature sporadically occurs or disappears, the ESPCN yields
poor performance, sometimes even worse than SRCNN [30].
As can be seen from Figs. 5 and 7, the details in southwestern
Yunnan failed to be captured by ESPCN rather than SRCNN. As
mentioned before, southwestern Yunnan embraces complicated
elevation because of the intertwining valleys and mountains; as
a result, the texture of vegetation can be very complex.

C. Limitations of the MRCNN Method

Through the analysis of five typical biomes, we can find that
some challenges for the MRCNN method still exist. Regardless
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of biome types, MRCNN constantly reconstructs an underes-
timated NDVI, which can be seen in Fig. 12. What is more,
sometimes MRCNN can lead to similar performance or slightly
worse than SRCNN and ESPCN, for example, in summer,
winter, and growing seasons in SAV and WSA biomes. This may
be due to the ignoration of seasonal changes within the training
samples. In our proposed method, we have extensively changed
the architecture of the neural network, but this may surrender to
the requirements of very reliable samples [100]. Future article
should comprehensively investigate the relationships between
the MRCNN learning process and rigorous sample selection.
The proposed method also requires significant computational
resources and high-quality input data, which may not be readily
available in some scenarios.

Furthermore, handling the long-term data series large volume
and complex algorithms can pose challenges. Despite these
constraints, the MRCNN represents a significant advancement
in enhancing the spatial resolution of NDVI, supplementing
the data gap of MODIS availability before 2000 in support of
decision-making in environmental preservation and sustainable
development. Continued research and improvement are neces-
sary to optimize the method’s use and contribute to environmen-
tal science and ecology advancements.

The vegetation index, a critical measure for understanding
the health and status of various plant life, is influenced by
an extensive array of factors that significantly complicate its
analysis and interpretation. Among these factors are the ambient
temperature, the amount of precipitation an area receives, and
the moisture content present in the soil. This complexity is
further underscored in this article, which focuses on how the
vegetation index is affected by introducing additional types of
data, namely DEM and detailed maps that categorize land into
different classifications based on their characteristics and use.
The importance of these other data types lies in their ability to
provide more nuanced insights into how elevation and land use
variations can impact vegetation’s health and distribution across
different regions. Future article endeavors are planned to expand
upon this foundation by incorporating even more data sources.
These efforts aim to deepen our understanding of the factors that
influence the vegetation index, improving our ability to monitor,
predict, and manage the natural environment more effectively.

VI. CONCLUSION

The present article introduces the MRCNN method, a deep-
learning algorithm designed to enhance the spatial resolution of
the NDVI from 5 to 1 km using historical imagery. Employing
a multiscale network and a ResNet, this method facilitates
extracting relevant features and the establishment of robust
spatial–temporal correlation distributions between NDVI data
of different resolutions. The inclusion of the DEM dataset and
CLCD dataset as prior knowledge further refined the downscal-
ing framework. Contributions of this article can be enumerated
as follows: 1) the pioneering integration of the ResNet network
with a multiscaled network for downscaling tasks; 2) the gener-
ation of a high-resolution 1-km NDVI dataset spanning 1982 to
2015 enhances the spatial resolution and temporal coverage of

NDVI products, particularly those produced before 2000; and
3) providing detailed and accurate spatial information about
vegetation changes facilitates a more comprehensive vegetation
analysis. Rigorous testing confirms the compatibility of the
products generated by the MRCNN method with the 1-km
MODIS NDVI products.

By employing deep-learning-based downscaling techniques
on 0.05°AVHRR NDVI data from 1982 to 2015, this article
demonstrates the use of neural network architecture in obtaining
a 1-km NDVI. The significance of this achievement lies in its
ability to facilitate more accurate feature classification before
2000 and to enable the analysis of changes in the spatial and tem-
poral attributes of these features over time. Empirical evidence
supports that the downscaled data consistently capture temporal
1-km NDVI data from 1982 to 2015. This ability to acquire
comprehensive and continuous datasets is crucial for analyzing
pre-2000 changes in vegetation coverage. In the spatial domain,
resolution has been significantly enhanced from 0.05° to 1 km,
an advancement of great scientific importance. While models,
such as bicubic, SRCNN, and ESPCN, have contributed to
the prediction of historical MODIS NDVI, they exhibit slight
underperformance across various time scales. In contrast, the
MRCNN method presented in this article demonstrates superior
predictive capability, accurately capturing historical MODIS
NDVI data for Yunnan Province and assisting in reconstructing
long-term MODIS NDVI datasets. Notably, this article marks the
first application of 1-km MODIS data spanning 1982 to 2015,
a breakthrough anticipated to advance research in related fields
significantly.

ACKNOWLEDGMENT

The authors acknowledge the data support from National
Earth System Science Data Center, National Science & Tech-
nology Infrastructure of China (http://www.geodata.cn), the
National Aeronautics and Space Administration (NASA), the
National Geospatial-Intelligence Agency, the United States Ge-
ological Survey and NASA, and Moderate-Resolution Imaging
Spectroradiometer (https://modis.gsfc.nasa.gov/). The GLASS
products can be downloaded at www.glass.umd.edu. The CLCD
dataset introduced in this article is freely available at https:
//doi.org/10.5281/zenodo.4417810. DEM can be obtained from
CGIAR—CSI via the hyperlink: http://srtm.csi.cgiar.org (Jan-
uary 13, 2024, retrieved).

REFERENCES

[1] C. De Bernardis, F. Vicente-Guijalba, T. Martinez-Marin, and J. M.
Lopez-Sanchez, “Contribution to real-time estimation of crop pheno-
logical states in a dynamical framework based on NDVI time series:
Data fusion with SAR and temperature,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 9, no. 8, pp. 3512–3523, Aug. 2016.

[2] A. Huete et al., “Overview of the radiometric and biophysical perfor-
mance of the MODIS vegetation indices,” Remote Sens. Environ., vol. 83,
no. 1/2, pp. 195–213, 2002.

[3] Q. Meng, W. H. Cooke, and J. Rodgers, “Derivation of 16-day time-series
NDVI data for environmental studies using a data assimilation approach,”
GISci. Remote Sens., vol. 50, no. 5, pp. 500–514, 2013.

[4] B. Chen et al., “Changes in vegetation photosynthetic activity trends
across the Asia–Pacific region over the last three decades,” Remote Sens.
Environ., vol. 144, pp. 28–41, 2014.

http://www.geodata.cn
https://modis.gsfc.nasa.gov/
www.glass.umd.edu
https://doi.org/10.5281/zenodo.4417810
https://doi.org/10.5281/zenodo.4417810
http://srtm.csi.cgiar.org


7086 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

[5] S. Piao et al., “Plant phenology and global climate change: Cur-
rent progresses and challenges,” Glob. Change Biol., vol. 25, no. 6,
pp. 1922–1940, 2019.

[6] X. Zhang et al., “Monitoring vegetation phenology using MODIS,”
Remote Sens. Environ., vol. 84, no. 3, pp. 471–475, 2003.

[7] R. Liu, R. Shang, Y. Liu, and X. Lu, “Global evaluation of gap-filling
approaches for seasonal NDVI with considering vegetation growth trajec-
tory, protection of key point, noise resistance and curve stability,” Remote
Sens. Environ., vol. 189, pp. 164–179, 2017.

[8] X. Tang, E. L. Bullock, P. Olofsson, S. Estel, and C. E. Woodcock, “Near
real-time monitoring of tropical forest disturbance: New algorithms and
assessment framework,” Remote Sens. Environ., vol. 224, pp. 202–218,
2019.

[9] A. Kawabata, K. Ichii, and Y. Yamaguchi, “Global monitoring of inter-
annual changes in vegetation activities using NDVI and its relationships
to temperature and precipitation,” Int. J. Remote Sens., vol. 22, no. 7,
pp. 1377–1382, 2001.

[10] J. Chen et al., “A simple method for reconstructing a high-quality NDVI
time-series data set based on the Savitzky–Golay filter,” Remote Sens.
Environ., vol. 91, no. 3/4, pp. 332–344, 2004.

[11] P. M. Atkinson, C. Jeganathan, J. Dash, and C. Atzberger, “Inter-
comparison of four models for smoothing satellite sensor time-series
data to estimate vegetation phenology,” Remote Sens. Environ., vol. 123,
pp. 400–417, 2012.

[12] J. J. Walker, K. M. De Beurs, R. H. Wynne, and F. Gao, “Evaluation of
Landsat and MODIS data fusion products for analysis of dryland forest
phenology,” Remote Sens. Environ., vol. 117, pp. 381–393, 2012.

[13] K. J. Wessels, F. Van Den Bergh, and R. J. Scholes, “Limits to detectability
of land degradation by trend analysis of vegetation index data,” Remote
Sens. Environ., vol. 125, pp. 10–22, 2012.

[14] L. Jiang, Y. Liu, S. Wu, and C. Yang, “Analyzing ecological environment
change and associated driving factors in China based on NDVI time series
data,” Ecol. Indicators, vol. 129, 2021, Art. no. 107933.

[15] Y. Ju and G. Bohrer, “Classification of wetland vegetation based on NDVI
time series from the HLS dataset,” Remote Sens., vol. 14, no. 9, 2022,
Art. no. 2107.

[16] H. Gim et al., “Improved mapping and change detection of the start of the
crop growing season in the US corn belt from long-term AVHRR NDVI,”
Agricultural Forest Meteorol., vol. 294, 2020, Art. no. 108143.

[17] W. Ni et al., “Seasonal effects on aboveground biomass estimation
in mountainous deciduous forests using ZY-3 stereoscopic imagery,”
Remote Sens. Environ., vol. 289, 2023, Art. no. 113520.

[18] R. De Jong, S. de Bruin, A. de Wit, M. E. Schaepman, and D. L. Dent,
“Analysis of monotonic greening and browning trends from global NDVI
time-series,” Remote Sens. Environ., vol. 115, no. 2, pp. 692–702, 2011.

[19] X. Zhu, G. Xiao, D. Zhang, and L. Guo, “Mapping abandoned farmland
in China using time series MODIS NDVI,” Sci. Total Environ., vol. 755,
2021, Art. no. 142651.

[20] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295–307, Feb. 2016.

[21] S. M. A. Bashir, Y. Wang, M. Khan, and Y. Niu, “A comprehensive review
of deep learning-based single image super-resolution,” PeerJ. Comput.
Sci., vol. 7, 2021, Art. no. e621.

[22] T. Tong, G. Li, X. Liu, and Q. Gao, “Image super-resolution using
dense skip connections,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 4799–4807.

[23] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual
networks for single image super-resolution,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops, 2017, pp. 136–144.

[24] L. Hassan-Esfahani, A. M. Ebtehaj, A. Torres-Rua, and M. Mckee,
“Spatial scale gap filling using an unmanned aerial system: A statistical
downscaling method for applications in precision agriculture,” Sensors,
vol. 17, no. 9, 2017, Art. no. 2106.

[25] R. Nomura and K. Oki, “Downscaling of MODIS NDVI by using a
convolutional neural network-based model with higher resolution SAR
data,” Remote Sens., vol. 13, no. 4, 2021, Art. no. 732.

[26] J. Talreja, S. Aramvith, and T. Onoye, “DANS: Deep attention network for
single image super-resolution,” IEEE Access, vol. 11, pp. 84379–84397,
2023.

[27] T. I. Ibrahim, S. Al-Maliki, O. Salameh, I. Waltner, and Z. Vekerdy,
“Improving LST downscaling quality on regional and field-scale by
parameterizing the DisTrad method,” ISPRS Int. J. Geo-Inf., vol. 11,
no. 6, 2022, Art. no. 327.

[28] M. Rhif, A. B. Abbes, B. Martínez, I. R. Farah, and M. A. Gilabert, “Op-
timal selection of wavelet transform parameters for spatio-temporal anal-
ysis based on non-stationary NDVI MODIS time series in mediterranean
region,” ISPRS J. Photogrammetry Remote Sens., vol. 193, pp. 216–233,
2022.

[29] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution
convolutional neural network,” in Proc. 14th Eur. Conf. Comput. Vis.,
2016, pp. 391–407.

[30] W. Shi et al., “Real-time single image and video super-resolution using
an efficient sub-pixel convolutional neural network,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 1874–1883.

[31] H. Luan, “Establishing the downscaling and spatiotemporal scale con-
version models of NDVI based on fractal methodology,” in Fractal
Analysis-Selected Examples. London, U.K.: IntechOpen, 2020.

[32] X. Mao, C. Shen, and Y. Yang, “Image restoration using very deep convo-
lutional encoder-decoder networks with symmetric skip connections,” in
Proc. 30th Int. Conf. Neural Inf. Process. Syst., Barcelona, Spain, 2016,
pp. 2810–2818.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[34] M. Sdraka et al., “Deep learning for downscaling remote sensing images:
Fusion and super-resolution,” IEEE Geosci. Remote Sens. Mag., vol. 10,
no. 3, pp. 202–255, Sep. 2022.

[35] D. C. Lepcha, B. Goyal, A. Dogra, and V. Goyal, “Image super-resolution:
A comprehensive review, recent trends, challenges and applications,” Inf.
Fusion, vol. 91, pp. 230–260, 2023.

[36] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense network
for image super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2018, pp. 2472–2481.

[37] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution
using very deep convolutional networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2016, pp. 1646–1654.

[38] Y. Xiao, Y. Wang, Q. Yuan, J. He, and L. Zhang, “Generating a long-term
(2003−2020) hourly 0.25° global PM2. 5 dataset via spatiotemporal
downscaling of CAMS with deep learning (DeepCAMS),” Sci. Total
Environ., vol. 848, 2022, Art. no. 157747.

[39] T. Yu, R. Yang, Y. Huang, J. Gao, and Q. Kuang, “Terrain-guided flatten
memory network for deep spatial wind downscaling,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 15, pp. 9468–9481, Oct. 2022.

[40] T. Vandal et al., “DeepSD: Generating high resolution climate change
projections through single image super-resolution,” in Proc. 23rd Assoc.
Comput. Mach. SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2017,
pp. 1663–1672.

[41] Y. Sha, D. J. Gagne, G. West, and R. Stull, “Deep-learning-based gridded
downscaling of surface meteorological variables in complex terrain. Part
I: Daily maximum and minimum 2-m temperature,” J. Appl. Meteorol.
Climatol., vol. 59, no. 12, pp. 2057–2073, 2020.

[42] Z. Ma et al., “A global 250-m downscaled NDVI product from 1982 to
2018,” Remote Sens., vol. 14, no. 15, 2022, Art. no. 3639.

[43] J. Fan et al., “The spatio-temporal evolution characteristics of the vege-
tation NDVI in the Northern slope of the Tianshan mountains at different
spatial scales,” Sustainability, vol. 15, no. 8, 2023, Art. no. 6642.

[44] X. Li, X. He, and X. Pan, “Application of Gaofen-6 images in the
downscaling of land surface temperatures,” Remote Sens., vol. 14, no. 10,
2022, Art. no. 2307.

[45] W. Jing, Y. Yang, X. Yue, and X. Zhao, “A comparison of different regres-
sion algorithms for downscaling monthly satellite-based precipitation
over North China,” Remote Sens., vol. 8, no. 10, 2016, Art. no. 835.

[46] C. Chen, B. Hu, and Y. Li, “Easy-to-use spatial random-forest-based
downscaling-calibration method for producing precipitation data with
high resolution and high accuracy,” Hydrol. Earth Syst. Sci., vol. 25,
no. 11, pp. 5667–5682, 2021.

[47] K. He, W. Zhao, L. Brocca, and P. Quintana-Seguí, “SMPD: A soil
moisture-based precipitation downscaling method for high-resolution
daily satellite precipitation estimation,” Hydrol. Earth Syst. Sci., vol. 27,
no. 1, pp. 169–190, 2023.

[48] C. Yoo et al., “Downscaling MODIS nighttime land surface temperatures
in urban areas using ASTER thermal data through local linear forest,”
Int. J. Appl. Earth Observ. Geoinf., vol. 110, 2022, Art. no. 102827,
doi: 10.1016/j.jag.2022.102827.

[49] X. Xie, A. Li, H. Jin, G. Yin, and J. Bian, “Spatial downscaling of gross
primary productivity using topographic and vegetation heterogeneity
information: A case study in the Gongga mountain region of China,”
Remote Sens., vol. 10, no. 4, 2018, Art. no. 647.

[50] Z. Xiao, S. Liang, T. Wang, and Q. Liu, “Reconstruction of satellite-
retrieved land-surface reflectance based on temporally-continuous vege-
tation indices,” Remote Sens., vol. 7, no. 8, pp. 9844–9864, 2015.

[51] Z. Xiao, S. Liang, X. Tian, K. Jia, Y. Yao, and B. Jiang, “Reconstruction
of long-term temporally continuous NDVI and surface reflectance from
AVHRR data,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 10, no. 12, pp. 5551–5568, Dec. 2017.

[52] K. Didan, A. B. Munoz, R. Solano, and A. Huete, “MODIS vegetation
index user’s guide (Collection 6),” NASA, Washington, DC, USA, 2015.

https://dx.doi.org/10.1016/j.jag.2022.102827


SUN et al.: NEW SPATIAL DOWNSCALING METHOD FOR LONG-TERM AVHRR NDVI 7087

[53] J. Yang and X. Huang, “The 30 m annual land cover dataset and its
dynamics in China from 1990 to 2019,” Earth Syst. Sci. Data, vol. 13,
no. 8, pp. 3907–3925, 2021.

[54] V. Kovalskyy and D. P. Roy, “The global availability of Landsat 5 TM and
Landsat 7 ETM+ land surface observations and implications for global
30 m Landsat data product generation,” Remote Sens. Environ., vol. 130,
pp. 280–293, 2013.

[55] M. A. Wulder et al., “The global Landsat archive: Status, consolidation,
and direction,” Remote Sens. Environ., vol. 185, pp. 271–283, 2016.

[56] S. Goward et al., “Historical record of Landsat global coverage,” Pho-
togrammetric Eng. Remote Sens., vol. 72, no. 10, pp. 1155–1169, 2006.

[57] G. Chander, D. L. Helder, R. Malla, E. Micijevic, and C. J. Mettler,
“Consistency of L4 TM absolute calibration with respect to the L5 TM
sensor based on near-simultaneous image acquisition,” in Proc. Earth
Observ. Syst. XII, 2007, pp. 161–172.

[58] T. R. Loveland and J. L. Dwyer, “Landsat: Building a strong future,”
Remote Sens. Environ., vol. 122, pp. 22–29, 2012.

[59] R. Cao et al., “A simple method to improve the quality of NDVI time-
series data by integrating spatiotemporal information with the Savitzky–
Golay filter,” Remote Sens. Environ., vol. 217, pp. 244–257, 2018.

[60] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[61] W. Yang, F. Kogan, W. Guo, and Y. Chen, “A novel re-compositing ap-
proach to create continuous and consistent cross-sensor/cross-production
global NDVI datasets,” Int. J. Remote Sens., vol. 42, no. 16,
pp. 6023–6047, 2021.

[62] A. P. Trishchenko, J. Cihlar, and Z. Li, “Effects of spectral response func-
tion on surface reflectance and NDVI measured with moderate resolution
satellite sensors,” Remote Sens. Environ., vol. 81, no. 1, pp. 1–18, 2002.

[63] J. E. Pinzon and C. J. Tucker, “A non-stationary 1981–2012 AVHRR
NDVI3g time series,” Remote Sens., vol. 6, no. 8, pp. 6929–6960, 2014.

[64] X. Fan and Y. Liu, “A global study of NDVI difference among moderate-
resolution satellite sensors,” ISPRS J. Photogrammetry Remote Sens.,
vol. 121, pp. 177–191, 2016.

[65] F. Tian et al., “Evaluating temporal consistency of long-term global
NDVI datasets for trend analysis,” Remote Sens. Environ., vol. 163,
pp. 326–340, 2015.

[66] Y. Sang et al., “Comment on recent global decline of CO2 fertilization
effects on vegetation photosynthesis,” Science, vol. 373, no. 6562, 2021,
Art. no. g4420.

[67] C. Jiang et al., “Inconsistencies of interannual variability and trends in
long-term satellite leaf area index products,” Glob. Change Biol., vol. 23,
no. 10, pp. 4133–4146, 2017.

[68] S. O. Los, “Estimation of the ratio of sensor degradation between NOAA
AVHRR channels 1 and 2 from monthly NDVI composites,” IEEE Trans.
Geosci. Remote Sens., vol. 36, no. 1, pp. 206–213, Jan. 1998.

[69] K. M. de Beurs and G. M. Henebry, “Trend analysis of the Pathfinder
AVHRR land (PAL) NDVI data for the deserts of Central Asia,” IEEE
Geosci. Remote Sens. Lett., vol. 1, no. 4, pp. 282–286, Oct. 2004.

[70] Z. Wang et al., “Large discrepancies of global greening: Indication of
multi-source remote sensing data,” Glob. Ecol. Conservation, vol. 34,
2022, Art. no. e2016.

[71] Z. Zhu et al., “Global data sets of vegetation leaf area index (LAI) 3g and
fraction of photosynthetically active radiation (FPAR) 3g derived from
global inventory modeling and mapping studies (GIMMS) normalized
difference vegetation index (NDVI3g) for the period 1981 to 2011,”
Remote Sens., vol. 5, no. 2, pp. 927–948, 2013.

[72] X. Zhang et al., “Exploration of scaling effects on coarse resolution land
surface phenology,” Remote Sens. Environ., vol. 190, pp. 318–330, 2017.

[73] X. Chen, D. Wang, J. Chen, C. Wang, and M. Shen, “The mixed pixel
effect in land surface phenology: A simulation study,” Remote Sens.
Environ., vol. 211, pp. 338–344, 2018.

[74] L. Liu et al., “How does scale effect influence spring vegetation phenol-
ogy estimated from satellite-derived vegetation indexes?,” Remote Sens.,
vol. 11, no. 18, 2019, Art. no. 2137.

[75] J. Tian, X. Zhu, J. Wu, M. Shen, and J. Chen, “Coarse-resolution satellite
images overestimate urbanization effects on vegetation spring phenol-
ogy,” Remote Sens., vol. 12, no. 1, 2020, Art. no. 117.

[76] W. Chen and G. M. Henebry, “Change of spatial information under
rescaling: A case study using multi-resolution image series,” ISPRS J.
Photogrammetry Remote Sens., vol. 64, no. 6, pp. 592–597, 2009.

[77] D. G. Goodin and G. M. Henebry, “The effect of rescaling on fine spatial
resolution NDVI data: A test using multi-resolution aircraft sensor data,”
Int. J. Remote Sens., vol. 23, no. 18, pp. 3865–3871, 2002.

[78] D. Peng et al., “Investigation of land surface phenology detections in
shrublands using multiple scale satellite data,” Remote Sens. Environ.,
vol. 252, 2021, Art. no. 112133.

[79] K. L. Roth, D. A. Roberts, P. E. Dennison, S. H. Peterson, and M. Alonzo,
“The impact of spatial resolution on the classification of plant species
and functional types within imaging spectrometer data,” Remote Sens.
Environ., vol. 171, pp. 45–57, 2015.

[80] N. E. Silvero et al., “Soil property maps with satellite images at multiple
scales and its impact on management and classification,” Geoderma,
vol. 397, 2021, Art. no. 115089.

[81] A. P. Lopes et al., “Leaf flush drives dry season green-up of the Central
Amazon,” Remote Sens. Environ., vol. 182, pp. 90–98, 2016.

[82] J. Y. Park et al., “Quantifying leaf phenology of individual trees and
species in a tropical forest using unmanned aerial vehicle (UAV) images,”
Remote Sens., vol. 11, no. 13, 2019, Art. no. 1534.

[83] B. Martínez and M. A. Gilabert, “Vegetation dynamics from NDVI time
series analysis using the wavelet transform,” Remote Sens. Environ.,
vol. 113, no. 9, pp. 1823–1842, 2009.

[84] R. K. Paul and P. S. Birthal, “Investigating rainfall trend over India
using the wavelet technique,” J. Water Climate Change, vol. 7, no. 2,
pp. 353–364, 2016.

[85] S. M. Vicente-Serrano et al., “Vegetation greening in Spain detected
from long term data (1981–2015),” Int. J. Remote Sens., vol. 41, no. 5,
pp. 1709–1740, 2020.

[86] M. Rhif, A. Ben Abbes, I. R. Farah, B. Martínez, and Y. Sang, “Wavelet
transform application for/in non-stationary time-series analysis: A re-
view,” Appl. Sci., vol. 9, no. 7, 2019, Art. no. 1345.

[87] H. Achour, A. Toujani, T. Rzigui, and S. Faïz, “Forest cover in Tunisia be-
fore and after the 2011 Tunisian Revolution: A spatial analysis approach,”
J. Geovisualization Spatial Anal., vol. 2, pp. 1–14, 2018.

[88] A. Dixit and S. Majumdar, “Comparative analysis of Coiflet and
Daubechies wavelets using global threshold for image denoising,” Int.
J. Adv. Eng. Technol., vol. 6, no. 5, 2013, Art. no. 2247.

[89] M. Rhif, A. Ben Abbes, B. Martinez, and I. R. Farah, “An improved trend
vegetation analysis for non-stationary NDVI time series based on wavelet
transform,” Environ. Sci. Pollut. Res., vol. 28, no. 34, pp. 46603–46613,
2021.

[90] A. Hasnaoui and M. Krott, “Forest governance and the Arab spring: A
case study of state forests in Tunisia,” Forest Policy Econ., vol. 105,
pp. 99–111, 2019.

[91] X. Ma et al., “Spatial patterns and temporal dynamics in savanna vegeta-
tion phenology across the North Australian Tropical Transect,” Remote
Sens. Environ., vol. 139, pp. 97–115, 2013.

[92] B. Martínez, S. Sánchez-Ruiz, M. Campos-Taberner, F. J. García-Haro,
and M. A. Gilabert, “Exploring ecosystem functioning in Spain with
gross and net primary production time series,” Remote Sens., vol. 14,
no. 6, 2022, Art. no. 1310.

[93] J. M. Costa-Saura, Á. Balaguer-Beser, L. A. Ruiz, J. E. Pardo-Pascual,
and J. L. Soriano-Sancho, “Empirical models for spatio-temporal live
fuel moisture content estimation in mixed mediterranean vegetation areas
using Sentinel-2 indices and meteorological data,” Remote Sens., vol. 13,
no. 18, 2021, Art. no. 3726.

[94] S. Sánchez-Ruiz, B. Martínez, M. Campos-Taberner, F. J. García-Haro,
and M. A. Gilabert, “Análisis de tendencia en la GPP anual sobre
la España peninsular,” in Proc. XVIII Congreso Asociación Española
Teledetección, 2019, pp. 24–27.

[95] C. Senf and R. Seidl, “Mapping the forest disturbance regimes of Europe,”
Nature Sustain., vol. 4, no. 1, pp. 63–70, 2021.

[96] J. Schilling, E. Hertig, Y. Tramblay, and J. Scheffran, “Climate change
vulnerability, water resources and social implications in North Africa,”
Regional Environ. Change, vol. 20, pp. 1–12, 2020.

[97] M. F. Allawai and B. A. Ahmed, “Using remote sensing and GIS in
measuring vegetation cover change from satellite imagery in Mosul
City, North of Iraq,” in Proc. IOP Conf. Ser.: Mater. Sci. Eng., 2020,
Art. no. 12062.

[98] C. M. Ward, J. Harguess, B. Crabb, and S. Parameswaran, “Image quality
assessment for determining efficacy and limitations of super-resolution
convolutional neural network (SRCNN),” in Proc. Appl. Digit. Image
Process. XL, 2017, pp. 19–30.

[99] J. Gu, X. Sun, Y. Zhang, K. Fu, and L. Wang, “Deep residual squeeze and
excitation network for remote sensing image super-resolution,” Remote
Sens., vol. 11, no. 15, 2019, Art. no. 1817.

[100] G. M. Foody and M. K. Arora, “An evaluation of some factors affecting
the accuracy of classification by an artificial neural network,” Int. J.
Remote Sens., vol. 18, no. 4, pp. 799–810, 1997.



7088 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Mengmeng Sun received the B.S. degree in sur-
veying and mapping engineering from the Henan
Polytechnic University, Jiaozuo, China, in 2016, and
the M.E. degree in surveying and mapping engineer-
ing from the Henan Polytechnic University, Jiaozuo,
China, in 2020. She is currently working toward the
Ph.D. degree in geographical information systems
with the Faculty of Geographical Science, Beijing
Normal University, Beijing, China.

Her research interests include NDVI estimation
and spatial downscaling algorithms.

Xiang Zhao received the Ph.D. degree in cartography
and geographic information systems from the Beijing
Normal University, Beijing, China, in 2006.

From 2008 to 2010, he was a Postdoctoral Fellow
with the College of Resources Science and Tech-
nology, Beijing Normal University. His research in-
terests include high-performance computing system
construction and quantitative remote sensing applica-
tions. He also did some research on long time-series
remote sensing data trend analysis.

Jiacheng Zhao received the Ph.D. degree in cartog-
raphy and geographical information systems from the
Beijing Normal University, Beijing, China, in 2023.

He has joined the Nanjing University of Informa-
tion Science and Technology, Nanjing, China, and
is currently working on different biophysical traits
of trees/crops and their responses to climate change.
His research interests include remote sensing, biogeo-
sciences, global change, and landscape modeling.

Naijing Liu received the Ph.D. degree in cartography
and geographical information systems from the Bei-
jing Normal University, Beijing, China, in 2023.

He is a currently a joint Postdoc with the POW-
ERCHINA Northwest Engineering Corporation Lim-
ited, Xi’an, China and the Beijing Normal Univer-
sity, Beijing, China. His research interests include
interactions between renewable energies and local
environments.

Siqing Zhao was born in Beijing, China, in March
1999. She received the B.S. degree in geoscience
from the Capital Normal University, Beijing, China,
in 2021. She is currently working toward the graduate
degree in geographical information systems with the
Faculty of Geographical Science, Beijing Normal
University, Beijing.

Her research interests include ecological remote
sensing, conservation priority analysis, and the fu-
ture direction of ecosystem protection under global
changes.

Yinkun Guo received the bachelor’s degree in sur-
veying and mapping engineering from the China Uni-
versity of Mining and Technology, Beijing, China, in
2017. He is currently working toward the master’s
degree in cartography and geographical information
systems with the Beijing Normal University, Beijing.

He has recently worked on evaluating the impact
of urbanization on ecological quality. His research
interests include land cover classification with deep-
learning methods, plant diversity, and ecological eval-
uation in urbanization areas.

Wenxi Shi received the B.S. degree in geography
from the Nanjing University of Posts and Telecom-
munications, Nanjing, China, in 2022.

She is currently studying with the Department
of Geographic Sciences, Beijing Normal University,
Beijing, China. Her research interests include remote
sensing time-series analysis, change detection, and
accuracy verification of remote sensing products.

Longping Si received the B.S. degree in computer
science and technology from the North China Institute
of Aerospace Engineering, Langfang, China, in 2012.

He is currently working with the Beijing Normal
University, Beijing, China. His research interests in-
clude high-performance computing cluster manage-
ment and remote sensing product production.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


