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Change Detection in Remote-Sensing Images Using
Pyramid Pooling Dynamic Sparse Attention Network

With Difference Enhancement
Zhong Li , Bin Ouyang, Shaohua Qiu , Xinghua Xu, Xiaopeng Cui, and Xia Hua

Abstract—Benefits from the powerful local modeling capability
of deep convolutional neural networks (CNNs), remote-sensing im-
age change detection (CD) has made significant progress. In recent
years, the rise of transformers has further driven improvements
in global feature extraction for bitemporal remote-sensing images.
Some prior efforts have tried to integrate CNN and transformer,
but they suffer from the limitation of inefficiently aggregating local
features and contextual information. Besides, they struggle to refine
change boundaries and exhibit inferior performance in detecting
multiscale and subtle changes. To tackle these interrelated prob-
lems, we propose a difference-enhanced pyramid pooling dynamic
sparse attention network (DPDANet) for CD, which integrates the
potential of CNN and pyramid pooling dynamic sparse attention
(PDSA) mechanism. Specifically, a pretrained EfficientNetV2-S
network is first used to extract multilevel local fine-grained fea-
tures. Then, a global semantic enhancement network based on
well-designed PDSA mechanism is proposed to extract rich global
contextual information. The proposed difference enhancement
module combines long short-term memory and deformable con-
volution to emphasize relevant and irrelevant changes, capturing
precise boundary details of the changing region. A decoder is then
employed for step-by-step upsampling of encoded features, with
skip connections between local multiscale features and globally en-
hanced features. Expensive experiments on four public CD datasets
demonstrate that DPDANet outperforms state-of-the-art methods
by reducing missed detections and false detections and achieving
more accurate boundaries of the changing area.

Index Terms—Attention mechanism, change detection (CD),
deep learning, remote sensing.

I. INTRODUCTION

R EMOTE-SENSING image change detection (CD) aims to
achieve Earth observation by analyzing bitemporal images

from the same scene and extracting regions of interest changes. It
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is widely used in fields, such as environmental surveillance [1],
agricultural monitoring [2], [3], urban planning [4], [5], and
disaster assessment [6].

The current remote-sensing image CD tasks face several
common challenges. First, changes in lighting and seasons can
cause nonuniform spectral features on the object’s surface,
leading to uncertainty in CD. In addition, scenes may have
multiple scale changes, and small target changes may be easily
drowned out by noise, making it urgent to improve the ability
to extract multiscale features while ensuring robustness and
generalization ability. Finally, the number of pixels in changing
areas is typically less than that in invariant areas, resulting in
an imbalance problem that needs to be addressed to improve
detection accuracy.

Traditional CD methods primarily utilize spectral information
from remote-sensing images to identify changes, which can be
divided into two main types: 1) pixel-based [7], [8], [9] and 2)
object-based [10]. Specifically, pixel-based methods generate
change maps through a direct comparison of pixel values from
multitemporal images and subsequent division by a predefined
threshold. However, this type of method only considers the
spectral changes of a single pixel and ignores the contextual
information. As a result, it requires extremely high registration
accuracy and empirical threshold division and is easily affected
by environmental noise. Object-based methods, on the other
hand, focus on both spectral and spatial information. However,
due to the uncertainty of the changing object, its classification
error is significant, which affects the detection accuracy. It
is clear that conventional methods of CD based on pixels or
objects have restricted feature extraction capabilities and are not
fully efficient in leveraging the information contained in high-
resolution images. Moreover, both of these methods require sig-
nificant manual intervention and are more vulnerable to external
noise.

With the continuous advancement of deep learning
technology, convolutional neural networks (CNNs) have been
successfully utilized in CD tasks. These works mainly employ
CNN to extract deep features from remote-sensing images,
which encompass abundant spectral and spatial details. These
features are then used to establish semantic feature descriptions
and achieve the detection of interested changes. Zhang et al. [11]
proposed a spatial logical aggregation network based on
morphological transformations, which utilizes spatial
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morphological differences to enhance fine-grained boundaries.
Li et al. [12] introduced a graph feature extraction module
to extract topological structural information, which is then
combined with rich spectral and spatial information. Wang
et al. [13] proposed a multiscale interactive fusion network that
utilizes a multiscale interactive information extraction block to
extract rich scale information, and a global dependence fusion
module to capture long-term dependencies. Wang et al. [14]
proposed a multistage self-guided separation network. It
addresses the interclass sample similarity issue caused by
target-background imbalance through target-background
separation strategy and contrastive regularization. Nevertheless,
owing to the limited receptive field of convolution, CNN lacks
the ability to model long-range spatiotemporal dependence
and global context, making it susceptible to various noise
changes. To address this limitation, CNN continues to evolve
toward deeper and more complex structures. Some works have
introduced spatial, channel, and multifrequency attention [15],
[16] mechanisms to compensate for the shortcomings of
global relationship modeling. Although these methods have
achieved impressive results, they have also resulted in a
significant increase in parameters. With the powerful ability of
transformers to model global contexts and capture long-range
dependencies, outstanding performance has been demonstrated
by vision transformers in CD tasks. However, one main issue
with transformer-based methods is that the boundaries of
the generated change maps are relatively blurry, which may
be caused by the loss of spatial information during token
embedding and feature reconstruction [17]. Moreover, applying
a transformer to remote-sensing image feature mapping can
be computationally expensive due to the attention operation
of the self-attention (SA) mechanism on the flattened feature
vectors.

To alleviate the problems of high computational complexity
and large memory usage, Li et al. [18] developed a lightweight
and efficient CD model by optimizing the network struc-
ture and employing the lightweight backbone network Mo-
bileNetV2 [19] instead of the commonly used cumbersome
backbone, i.e., VGG [20] and ResNet [21]. Zhang et al. [22]
introduced CycleMLP [23] into the CD field, abandoning tra-
ditional convolution and SA operations. The introduction of
CycleMLP brings about a computational complexity that is
linearly correlated with the input size, offering a more efficient
strategy. For transformer-based CD methods, numerous schol-
ars have advocated for the incorporation of different levels of
sparsity into the SA mechanism. This approach aims to direct
each query to concentrate on a restricted set of key–value pairs,
thereby mitigating computational complexity. Zhang et al. [24]
employed the Swin transformer [25] block as the basic unit to
construct a CD model. They utilized a shift window strategy
to calculate the SA of local windows, effectively reducing the
computational complexity associated with SA. Currently, sev-
eral additional sparse patterns have been proposed, including
static sparse patterns such as dilated windows [26] and axial
stripes [27], as well as dynamic sparse patterns such as bilevel
routing [28]. These sparse attention mechanisms enable efficient

and effective modeling of long-range spatiotemporal dependen-
cies while maintaining the spatial information inherent in the
input image.

To enhance model accuracy and facilitate practical deploy-
ment, this article proposes an end-to-end encoding–decoding
CD model [i.e., difference-enhanced pyramid pooling dy-
namic sparse attention network (DPDANet)] from the perspec-
tive of the effectiveness of feature extraction and integration,
as well as reducing computational overhead, by combining
EfficientNetV2-S and pyramid pooling dynamic sparse attention
(PDSA). Fang et al. [29] demonstrated the significance of low-
level features in capturing detailed spatial information through
experiments. However, traditional backbone networks such as
ResNet and UNet use plain convolutions to produce regular
reception fields. Limited by the characteristics of the network,
it is easy to lose low-level detail information during the feature
extraction process. We propose using pretrained EfficientNetV2-
S as the backbone network to alleviate this problem, which can
enhance feature extraction efficiency and mitigate the limitations
associated with inadequate training data [30]. In addition, to
refine the fine-grained segmentation results of different seman-
tics and enhance change information, we propose a difference
enhancement module (DEM) that imposes constraints on the
change boundaries. Inspired by the dynamic perception sparse
attention mechanism proposed by Zhu et al. [28], we propose
a global semantic enhancement module (GSEM) based on the
designed PDSA that achieves dynamic sparsity from coarse to
fine. It is worth noting that the objects of our dynamic sparse
encoding are key–value pairs after pyramid pooling at different
scales. Through pyramid pooling operations, the encoded feature
sequence of the backbone is compressed, thereby reducing the
memory occupation of subsequent dynamic sparse encoding
while reducing the computational load of the model and cap-
turing highly abstract multiscale information. In summary, the
main contributions of this article can be summarized as follows.

1) We propose an end-to-end network architecture that in-
geniously integrates the powerful local feature extraction
capability of EfficientNetV2-S with our proposed PDSA
mechanism, enabling efficient modeling of global contex-
tual information. This architecture enables comprehensive
learning of multiscale features and global semantic rela-
tionships.

2) We propose a GSEM based on PDSA, which can signif-
icantly reduce the computational load of plain multihead
SA (MHSA) while extracting more representative multi-
scale contextual information and mitigating the impact of
noise changes.

3) To tackle the issue of blurred boundaries between distinct
semantics, we propose a DEM. It maximizes the difference
between semantic changes of interest and noise changes
to obtain precise boundaries of change regions, thereby
improving the detection ability for small target changes.

4) The experimental results demonstrate that our DPDANet
achieves state-of-the-art (SOTA) performance on four
public datasets for remote-sensing image CD. It can ef-
fectively detect the changing regions of interest and obtain
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more accurate boundaries, which are significantly superior
to other benchmark models.

The rest of this article is organized as follows. Section II re-
views the relevant work in the field of CD. Section III introduces
the proposed PDSANet method in detail. Section IV reports
on the experiment and analysis of the results. Section V presents
the discussion. Finally, Section VI concludes this article.

II. RELATED WORK

A. CNN-Based CD Methods

With the powerful feature representation capabilities of CNN,
remote-sensing image CD methods based on CNN have become
increasingly popular in recent years. These methods typically
enhance the semantic representation of the network through
changes to the network structure, optimization of the loss func-
tion, and the addition of attention mechanisms. Du et al. [31]
proposed a bilateral semantic fusion twin network that integrates
shallow and deep semantic features to obtain complete and re-
fined boundaries of changing regions. Zhang et al. [32] replaced
traditional convolution operations with dilated convolution [33],
which increased the receptive field and improved the effect
of CD. UNet++ [34] uses dense skip connections to extract
multiscale features and mitigate pseudochanges. Li et al. [18]
proposed a lightweight network based on progressive feature
fusion and supervised attention, achieving efficient aggregation
of multilevel features through designed neighbor aggregation,
progressive change identification, and supervised attention mod-
ules. To further improve the performance of CNN models, some
works have adopted more complex backbone networks, such
as ResNet18 [35] and ResNet50 [36]. In addition, attention
mechanisms have been introduced into CD tasks to enhance the
features of changes of interest and weaken invariant features,
including spatial attention, channel attention, and position at-
tention. Fang et al. [37] proposed a channel attention module to
fuse features at different levels. Peng et al. [38] incorporated
dense attention connections between features from different
layers to extract more comprehensive and impactful features.
Chen et al. [39] proposed a pyramid spatiotemporal attention
model to improve network detection performance by extracting
features at different scales.

The aforementioned methods have improved the accuracy of
CD to some extent. Nevertheless, the receptive field of CNN is
constrained by its convolution operation, which only considers
its connected image pixels, thus limiting its capability to extract
global semantic features. Consequently, CNN-based methods
are vulnerable to noise changes such as lighting and shad-
ows, leading to reduced effectiveness of the semantic features.
Despite the introduction of attention mechanisms to enhance
the features of channel or spatial scales, the ability to learn
global contextual relationships remains constrained, with a high
computational complexity.

B. Transformer-Based CD Methods

The transformer model was initially applied in the field of
natural language processing (NLP) [40] and later extended

to image classification [41], image recognition [42], semantic
segmentation [43], and other fields, achieving performance com-
parable to or even beyond the CNN model. Unlike CNN, trans-
former employs stacked MHSA modules to simulate the global
relationship between labeled image blocks. ViT [44] was the
first pure transformer network used for computer vision. Chen
et al. [45] first introduced a transformer into the field of image
CD. They proposed a bitemporal image transformer (BIT) that
achieves CD through contextual modeling within a spatiotem-
poral range. While the sequential processing of BIT is beneficial
for ensuring efficiency, it does not consider direct information
exchange between CNN and transformer. In addition, obtaining
changes in the original resolution directly through upsampling
can easily lead to the omission of fine-grained details. Feng
et al. [46] proposed a network based on intrascale crossover
and interscale feature fusion, integrating CNN and transformer
in parallel to enhance the synergy between local and global
features. However, the parallelized structure requires a large
amount of resource consumption. Zhang et al. [24] proposed
a Siamese U-shaped transformer network for CD. They used a
pretrained swin transformer on the ImageNet dataset to initialize
the parameters of the proposed model, which further improved
the performance.

ViT demands high computational resources, and its com-
plexity increases quadratically with a size of input features or
images. To lower the computational complexity, Li et al. [18]
implemented a moving window strategy to compute SA within
local windows, progressively expanding the network’s receptive
field through layer stacking. In addition, sparse patterns have
been integrated into the SA mechanism by certain researchers,
including dilated windows [26] and cross-shaped windows [27].
PVT [47] and MViT [48] used a single pooling operation in
the MHSA module to downsample the feature maps, using
the pooled feature to simulate the token-to-region relationship.
Drawing inspiration from the work in [28], we implement dy-
namic sparsity from coarse to fine. It is worth noting that the
objects of our dynamic sparse encoding are key–value pairs after
pyramid pooling at different scales. The pyramid pooling oper-
ation reduces the memory storage of dynamic sparse encoding
and introduces highly abstract multiscale information.

III. PROPOSED METHOD

A. Network Architecture

As illustrated in Fig. 1, the proposedDPDANet consists of
three parts, including 1) feature extraction, 2) multiscale feature
aggregation, and 3) prediction head. Given bitemporal images
with a spatial resolution of 256 × 256 and channel number of 3.
DPDANet first uses weight-shared EfficientNetV2-S as a feature
extractor to extract multiscale local detail features. Then, the
feature sequences of the bitemporal images are concatenated
together, and the global semantic relationship is modeled using
a GSEM to obtain contextual rich global features. Next, the
multiscale low-level features are refined through the designed
DEM to improve the distinguishability of changing features.
Subsequently, advanced semantic features and enhanced low-
level features of different scales are gradually fused. Finally, a
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Fig. 1. Overall architecture of the proposed DPDANet model.

Fig. 2. Architecture of EfficientNetV2-S.

lightweight CNN is utilized to remap the refined features back to
the original pixel space dimensions, generating a binary change
map.

B. Feature Extraction Based on EfficientNetV2-S

In image CD tasks, cumbersome CNN backbone networks
such as ResNet [35], [36], UNet [49], VGG19 [20], and Xcep-
tion [50] are commonly used as feature extractors. Google
researchers have introduced a more efficient CNN model, named
EfficientNetV2. This model is uniformly adjusted based on the
depth, width, and image resolution of the network, without
the need for complex manual parameter tuning. It achieves
better performance than other benchmarks on ImageNet and
has fewer parameters. The building blocks of EfficientNetV2
consist of shallow fused mobile inversed bottleneck convolution

(Fused-MBConv) modules and deep mobile inversed bottle-
neck convolution (MBConv) [19] modules, which have fewer
parameters than traditional convolutional layers. In addition,
the squeeze and excitation (SE) module of MBConv can en-
hance the detection ability of small target changes. We employ
EfficientNetV2-S as the backbone network to extract multiscale
local features and accelerate the training process through the
weight of pretraining.

The architecture of EfficientNetV2-S is presented in Fig. 2.
It first uses a 3 × 3 convolutional layer for preliminary fea-
ture extraction. Then, efficient feature extraction is achieved
by repeatedly stacking Fused-MBConv modules and MBConv
modules. Finally, it uses a 1 × 1 convolutional layer to output
the final deep feature. Considering that different levels of the
network can capture details and structural features of images
at different scales, thus enhancing the model’s adaptability to
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Fig. 3. Left: Details of the PDSA module. Right: The overall architecture of
the GSEM.

objects of varying sizes and shapes in remote-sensing images, we
aggregate multiscale features to improve the model’s robustness
in complex scenes [51], [52], [53]. Specifically, we use the first
layer of Block2, Block3, Block5, and Block6 as the skip layer to
produce multiscale features. Subsequently, the output features
from the final convolutional layer undergo encoding via the
GSEM.

C. Global Semantic Enhancement Module

The multiscale local features extracted by CNN lack global se-
mantic information, which can limit their effectiveness in certain
applications. For instance, in remote-sensing images CD tasks,
misclassification can occur due to information redundancy. To
tackle this issue, we propose a novel approach that incorporates
pyramid pooling and dynamic sparsity into the remote-sensing
image CD task. By utilizing a carefully designed PDSA module
to construct GSEM, we aim to learn more efficient contextual
information while reducing the computational complexity of
global SA and improving the computational efficiency of the
model.

1) PDSA Module: The structure of PDSA is shown in
Fig. 3(a). Given an input feature map X ∈ RH×W×C , we first
divide it intoS × S nonoverlapped patches to achieve reshaping.
Then, a pyramid feature map is generated by applying four
average pooling layers with varying pooling ratios (empirically
set as [12, 16, 20, 24] in this article) on the reshaped X ′. This
procedure can be defined as follows:

Pi = AvgPooli(X
′), i = 1, 2, 3, 4 (1)

where Pi denotes the generated pyramid feature map. i repre-
sents the quantity of pooling layers. Subsequently, the pyramid
feature map is fed into depthwise convolution [54] for relative

position encoding. This procedure can be defined as follows:

P enc
i = DWConv(Pi) + Pi, i = 1, 2, 3, 4 (2)

where DWConv(·) denotes depthwise convolution, with a kernel
size of 3× 3. P enc

i denotes Pi after relative position encoding.
Next, these pyramid feature maps were flattened and concate-
nated together. This procedure can be defined as follows:

P = LN(Concat(f(P enc
i ))), i = 1, 2, 3, 4 (3)

where f denotes the flattening operation. Concat denotes series
connection. LN denotes layer normalization [55].

Dynamic sparsity is sought through the construction of a
directed graph. Specifically, region-level queries and keys,
Qr,Kr ∈ RS2×C , are derived by applying per-region average
on Q and K, respectively. We then calculate the matrix mul-
tiplication between Qr and Kr to get the adjacency matrix
Mr ∈ RS2×S2

. This procedure can be defined as follows:

Mr = Qr(Kr)T . (4)

The adjacency matrix shows the degree of correlation between
different regions. On this basis, we use the rowwise topk operator
to achieve pruning, retaining only the first k connections of each
region (k defaults to 4) and obtain the index matrix Ir ∈ RS2×k

Ir = topk(Mr). (5)

Therefore, for each query token in the region, it only focuses
on the corresponding Ir(i,1), I

r
(i,2), . . . , I

r
(i,k). We extract the

corresponding key and value tensor of interest through the gather
operator. This procedure can be defined as follows:

Kg = gather(PW k, Ir) (6)

V g = gather(PW v, Ir) (7)

where W k and W v denote the weight matrix of linear trans-
formations that generate K and V , respectively. Kg, V g ∈
RS2× kHW

S2 ×C denote the gathered key and value tensor of in-
terest after dynamic sparse encoding, respectively. Thus, in the
MHSA module, the tensor calculation for query (Q), key (K),
and value (V) is transformed as follows:

(Q,K, V ) = (X ′W q,Kg, V g) (8)

where W q denotes the weight matrix of the linear transforma-
tions that generates Q. Finally, we further calculate the correla-
tion between Q and K by applying dot product operation and
Softmax activation, which is used as the weight of V to calculate
attention feature A. This procedure can be defined as follows:

A = Softmax

(
QKT

√
dk

)
V (9)

where dk denotes the dimension of the vector. The operation of
the root sign serves as an approximate standardization. Since
after the pyramid pooling operation, the lengths of K and V are
shorter than X , and Q only calculates attention with a portion
of key–value pairs that have a strong correlation; thus, PDSA is
more efficient than traditional MHSA. Furthermore, due to the
highly abstract multiscale information contained in K and V ,
their ability in global context modeling is more prominent.
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Fig. 4. Illustration of the DEM.

2) Global Semantic Enhancement Module: The designed
GSEM refers to the standard structure of ViT, which is composed
of a PDSA module and a multilayer perceptron (MLP) module,
as shown in Fig. 3(b). First, the embedded token sequence of
the input bitemporal images is layer normalized to ensure that
the input values are not too large to be processed. Then, input
it to the PDSA module and residual connect its output with the
embedded sequence. Subsequently, another layer normalization
is applied, and the feedforward network uses MLP for feature
projection, followed by a residual connection. The previous
calculation process can be defined as follows:

Xatt = PDSA(LN(X)) +X (10)

Xout = MLP(LN(Xatt)) +Xatt (11)

where X , Xatt, and Xout denote the input, output of the PDSA
module, and the encoded output of GSEM, respectively.

D. Difference Enhancement Module

Multiscale feature extraction enhances the feature expression
ability of the model to a certain extent. However, during the
procedure of feature encoding and decoding, it is easy to en-
counter the problem of high-frequency detail information loss,
which leads to the blurring of boundaries between different
levels of semantics and, thus, easily loses small target changes.
To alleviate this issue, a DEM, consisting of two convolutional
units and an SA module, is proposed by Li et al. [56] to provide
weights for deep features. However, limited by the convolutional
receptive field, its enhancement effect is limited.

To further refine the differences between bitemporal features
and maximize the difference between changed semantics and
unchanged semantics, we design a DEM through two stages, as
shown in Fig. 4.

In the first stage, we enhance differential information through
an adaptive weighting mechanism. Inspired by Bai et al. [17],
we introduce long short-term memory (LSTM) to analyze the
temporal correlation between input bitemporal images as the
adaptive weighting adjustment. In addition, bitemporal images
often exhibit spatial–spectral differences caused by variations
in lighting and viewing angle. Linear differential analysis meth-
ods struggle to provide accurate CD results, whereas LSTM,
as a nonlinear differential analysis method, effectively learns
spectral–temporal feature representations between image pairs,
thereby enhancing the difference information. When the distance
between the original feature pairs is large, assign a higher weight.
Since a larger distance implies a higher probability of being part
of a changing region. On the contrary, a lower weight will be

assigned. This procedure can be defined as follows:

Di = |F1 − F2| �Wi (12)

where F1 and F2 denote the bitemporal features of the input,
respectively. W denotes the adaptive weight matrix. D denotes
the enhanced feature bias.

In the second stage, we propose using deformable convo-
lution to further expand the semantic differences between the
changed regions and unchanged regions. Subsequently, feature
fusion is completed through skip connection propagation to
obtain enhanced features. Different positions in the image may
correspond to objects with different scales or irregular shapes,
and using traditional convolution inevitably has the drawback of
fixed geometric structures. In particular, deformable convolution
can change the range of the receptive field by introducing
an offset ΔIn to make the convolution kernel scalable. Tak-
ing the 3× 3 convolution for instance, for 9 positions B =
{(−1,−1), (−1, 0), . . . , (1, 1)} with an expansion coefficient
of 1, output features in position I0 can be defined as follows:

y(I0) =
∑
In

w(In) · x(I0 + In +ΔIn) (13)

where I0 denotes a point on the input feature map x. In denotes
the offset of each point in the convolutional kernel relative to its
center point.w(In)denotes the weight at the corresponding posi-
tion in the convolutional kernel. Our intuition is that deformable
convolution can learn and match changed semantic boundaries
with different directions and irregular shapes, maximizing the
difference between changed areas and unchanged areas, thereby
enhancing the discriminative capability of bitemporal image
features.

E. Multiscale Fusion Decoder

The output by the GSEM is high-level semantic features,
focusing on mining the global spatiotemporal relationships be-
tween objects. The multiscale low-level features extracted by
EfficientNetV2-S contain rich local detail information, which
can help better reconstruct the spatial structure of changed
regions. Considering the symmetric structure of the encoder–
decoder, the designed decoder of DPDANet consists of four
upsampling modules. We adjust the number of channels through
3× 3 convolution and use bicubic interpolation for upsampling.
During the decoding process, multiscale feature aggregation is
accomplished by merging the upsampled deep features with the
resolution-matched shallow features through skip connections,
resulting in more compact and integrated feature representa-
tions.

F. Loss Function

During the generation process of the change map, there may
be a serious imbalance in the number of pixels between the
changed regions and unchanged regions in the image. Tra-
ditional loss function processing may merge a few changed
pixels into a much larger group of unchanged ones, resulting
in the missed detection of small target changes. To alleviate
the impact of unbalanced samples, we introduce an adaptive
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weighted binary cross-entropy loss function and a weighted dice
loss function [57].

The binary cross-entropy loss is often used in the binary
classification problem. To alleviate the issue of unbalanced sam-
ples, the weight is introduced into the changed and unchanged
categories to obtain an adaptive weighted binary cross-entropy
loss function. Its definition is as follows:

Lwbce = − 1

N

N∑
i=0

wctilog(pi) + wu(1− ti)log(1− pi) (14)

wc = fscale

(
nc∑
i=0

(1− pi)/nc

)
(15)

wu = fscale

(
nu∑
i=0

pi/nu

)
(16)

where ti denotes the truth value of the pixel i, and pi denotes
the predicted value, with a value of 1 when a change occurs and
0 when no change occurs. Note that, weights are represented
by pixel proportions. wc and wu denote the weight of the
changed category and unchanged category, respectively. nc and
nu denote the total number of changed pixels and unchanged
pixels, respectively. fscale denotes the proportional function.
The adaptive weighted binary cross-entropy loss function can
effectively avoid the tendency toward a certain category of the
model, resulting in more robust results.

Dice loss is a region-based loss function commonly used in
image segmentation tasks, which can alleviate the problem of
sample imbalance. Its definition is as follows:

Ldice = 1− 2×∑N
i=0 tipi∑N

i=0(ti + pi) + ε
(17)

where ε denotes a constant (set to 1e-7 by default). We use
the combination of the previous two loss functions as the op-
timization objective to enhance the training stability of small
target changes and improve the detection accuracy. Then, the
loss function in this article can be defined as follows:

L = Lwbce + λLdice (18)

where λ denotes the weight used to balance Lwbce and Ldice,
which is set to 1 based on experience in this article.

IV. EXPERIMENTS

In this section, we first introduce the adopted datasets, then
the implementation details of the proposed DPDANet, and the
evaluation metrics are described briefly. Finally, we give the
experimental results and the detailed analysis.

A. Dataset Descriptions

To evaluate the proposed DPDANet, we conduct extensive
experiments on four public datasets: 1) CDNet-2014 [58], 2)
LEVIR-CD [35], 3) SYSU-CD [59], and 4) CDD [60].

1) The CDNet-2014 dataset contains a total of 31 video
sequences, captured by ordinary optical cameras and near-
infrared cameras with different resolutions, covering dif-
ferent indoor and outdoor scenes. This dataset contains
11 categories, fully considering covariate factors, such
as dynamic background, camera shaking, shadows, in-
frared, and lighting. We followed the same dataset split
as described in [58] and extracted samples from different
scenarios within each category. Specifically, the training,
validation, and test sets images consisted of 73 276,
18 319, and 18 319 pairs of images, respectively. To facil-
itate comparisons with other algorithms, we normalize all
image sizes to 256× 256.

2) The LEVIR-CD dataset contains 637 pairs of remote-
sensing images with a size of 1024 × 1024 and the spatial
resolution of 0.5 m, covering covariance factors such
as season and lighting changes. We followed the same
dataset split as described in [35], yielding 445/64/128
pairs of images for the training, validation, and test sets,
respectively. Considering hardware limitations, we cut the
image into small patches of size 256 × 256 in a nonover-
lapping manner. Thus, the training set, validation set, and
test set are expanded to 7120/1024/2048 pairs of images,
respectively.

3) The SYSU-CD dataset is a large-scale remote-sensing
image CD dataset recently released by Sun Yat-sen Uni-
versity. It contains 20 000 pairs of images with a size
of 256 × 256. We followed the same dataset split as de-
scribed in [59], yielding 12 000/4000/4000 pairs of images
for the training, validation, and test sets, respectively. This
dataset provides various types of complex change scenes,
including ships, roads, urban buildings, and changes in
vegetation.

4) The CDD dataset is a real seasonal variation dataset cap-
tured by Google Earth, consisting of 7 pairs of 4725 ×
2700 pixel images and 4 pairs of 1900 × 1000 pixel
images with a spatial resolution of 3–100 cm/pixel. The
dataset captures various changes caused by buildings,
roads, cars, and other factors. To prepare the dataset, we
followed the methodology described in [60]. We split all
images into 256 × 256 image patches, and then 15 998
pairs of images were obtained through image enhancement
methods. The number of the training set, validation set, and
test set images is 10 000/2998/3000 pairs, respectively.

B. Implementation Details and Evaluation Metrics

We implement the proposed DPDANet using Python in con-
junction with the PyTorch library and conduct all experiments
on a single NVIDIA Tesla A100 GPU. We use random hori-
zontal flipping, random vertical flipping, and random cropping
to enhance the training data. We use EfficientNetV2-S as the
backbone network and accelerate the training process through
the pretrained weight. Due to the limitation of hardware, the
batch size is set to 8. We randomly initialize the network and
use the Adam optimizer with an initial learning rate of 1e-4,
a momentum of 0.999, and a weight decay of 5e-4 for model
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optimization. We train 200 epochs to achieve convergence of
the model.

To accurately evaluate the performance of our proposed
model, we use four common quantitative evaluation metrics:
1) precision (P ), 2) recall (R), 3) F1-score, and 4) Intersection
over Union (IoU). Their definitions are as follows:

P =
TP

TP + FP
(19)

R =
TP

TP + FN
(20)

F1-score =
2PR

P +R
(21)

IoU =
TP

TP + FP + FN
(22)

where true positive (TP), false positive (FP), and false nega-
tive (FN) represent the number of unchanged pixels detected
correctly, unchanged pixels unpredicted, and changed pixels
unpredicted, respectively.

C. Comparative Experiments

1) Comparative Methods: To verify the performance of the
proposed DPDANet, we select seven SOTA methods for experi-
mental comparison, including spatiotemporal attention network
(STANet) [59], BIT [45], multiscale twin parallel convolutional
network (MSPSNet) [61], densely connected Siamese network
(SNUNet) [29], improved separable deep network (ISNet) [62],
Siamese U-shaped MLP-based network (SUMLP) [22], and
W-shaped hierarchical network (WNet) [63].

a) STANet: STANet is a multiscale feature extraction network
based on ResNet, which proposes spatiotemporal attention
modules and pyramid spatiotemporal attention modules to
refine feature representations.

b) BIT: BIT is a transformer-based network. It adopts a
postfusion strategy and can achieve excellent performance
with the outstanding long-range context modeling ability
of the transformer.

c) MSPSNet: MSPSNet is a multiscale Siamese network
based on a parallel convolutional structure, which uses
channel attention to enhance the information representa-
tion of features.

d) SNUNet: SNUNet is a densely connected Siamese net-
work used for very high resolution image CD. It suppresses
localization errors to a certain extent by refining features
at different semantic levels.

e) ISNet: ISNet is an improved separable deep learning net-
work that extracts highly discriminative hierarchical fea-
tures through a proposed boundary maximization strategy
combined with channel and spatial attention.

f) SUMLP: SUMLP is a Siamese U-shaped CD network
entirely based on MLP architecture. It adopts CycleMLP
blocks as the basic units of the network and eliminates
convolutional andSA operations, achieving excellent per-
formance.

g) WNet: WNet is a W-shaped Siamese network for high-
resolution remote-sensing image CD. It integrates a

Siamese CNN and a Siamese transformer in the encoder,
aiming to simultaneously model multiscale local details
and global context relationships.

2) Qualitative Comparison: Figs. 5–8 show the visual qual-
itative comparison results of different methods on the CDNet-
2014, LEVIR-CD, SYSU-CD, and CDD datasets, respectively.
For better visualization, we adopt several colors to represent
TP (white), TN (black), FN (red), and FP (green). Overall,
profit by the proposed DEM to address boundary blur issues,
the edge details in the change map produced by DPDANet are
superior and exhibit a closer resemblance to the ground truth
image.

In the perspective change scenario of the CDNet-2014 dataset,
the accurate location of changed areas and effective suppression
of perspective change interference are achieved by DPDANet,
whereas STANet, BIT, MSPSNet, and SNUNet struggle to
completely locate the changed areas, resulting in numerous
false detections and missed detections, as demonstrated in the
second row of Fig. 5. In scenes with insufficient lighting at night,
DPDANet can maintain the integrity of the boundaries as much
as possible and generate refined change maps, as shown in the
fourth row of Fig. 5. In the scenario of small target CD, both
SUMLP and WNet showed varying levels of missed detections,
whereas DPDANet successfully detected the farthest appearing
car, as shown in the sixth row of Fig. 5. This highlights the
exceptional performance of the developed PDSA mechanism in
effectively detecting subtle changes in small targets.

We selected samples of small-sized buildings from the
LEVIR-CD dataset for visual comparison. In the presence of
strong illumination variations, both WNet and our DPDANet
demonstrated significantly lower false detections and missed
detections, resulting in clearer boundaries between buildings,
as shown in the fourth and sixth rows of Fig. 6.

In the complex scenes of the SYSU-CD dataset, BIT and
SNUNet exhibited relatively inferior performance in detecting
newly constructed buildings within forest areas, as shown in the
second and fourth rows of Fig. 7. However, in the majority of
cases, DPDANet outperformed its counterparts by successfully
capturing more comprehensive regions of change. Our proposed
model was able to differentiate pseudochanges occurring within
road areas that bear resemblance to the appearance of buildings.

In the season-varying CDD dataset, STANet, BIT, and MSP-
SNet demonstrate the ability to detect relatively prominent
changes. However, they exhibit limitations in capturing fine-
grained changes, such as cars (fourth row in Fig. 8) and small
roads (sixth row in Fig. 8), potentially due to their subpar fea-
ture integration capabilities. In contrast, our DPDANet exhibits
excellent noise suppression performance, resulting in change
maps with more compact interiors and well-defined boundaries
that closely approximate the ground truth labels.

3) Quantitative Comparison: Tables I–IV present the quanti-
tative comparison results of the proposed model and benchmark
models in the CDNet-2014, LEVIR-CD, SYSU-CD, and CDD
test sets, respectively. It can be found that quantitative com-
parison results confirm the intuitive visual comparison results.
Our DPDANet outperformed other benchmark models in various
metrics in CDNet-2014, SYSU-CD, and CDD datasets and



7060 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 5. Qualitative comparisons on CDNet-2014 dataset. (a) T0 temporal image. (b) T1 temporal image. (c) Ground truth. (d) STANet. (e) BIT. (f) MSPSNet.
(g) SNUNet. (h) ISNet. (i) SUMLP. (j) WNet. (k) Proposed DPDANet. Color: white for TP (i.e., “changed”), black for TN (i.e., “unchanged”), red for FN, and
green for FP.

TABLE I
QUANTITATIVE COMPARISON RESULTS ON CDNET-2014 DATASET

TABLE II
QUANTITATIVE COMPARISON RESULTS ON LEVIR-CD DATASET

TABLE III
QUANTITATIVE COMPARISON RESULTS ON SYSU-CD DATASET

TABLE IV
QUANTITATIVE COMPARISON RESULTS ON CDD DATASET
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Fig. 6. Qualitative comparisons on LEVIR-CD dataset. (a) T0 temporal image. (b) T1 temporal image. (c) Ground truth. (d) STANet. (e) BIT. (f) MSPSNet.
(g) SNUNet. (h) ISNet. (i) SUMLP. (j) WNet. (k) Proposed DPDANet. Color: white for TP (i.e., “changed”), black for TN (i.e., “unchanged”), red for FN, and
green for FP.

achieved the best overall performance in the LEVIR-CD dataset,
demonstrating the strong generalization capability of our model.

Specifically, in the CDNet-2014 dataset, DPDANet demon-
strates outstanding performance with a P of 97.89%, R of
91.13%, F1-score of 93.05%, and IoU of 84.79%. Notably,
these metrics outperform the second-best model (WNet) in the
same category by margins of 0.93% in P , 3.32% in R, 0.9% in
F1-score, and 2.2% in IoU. These results solidify the superiority
of DPDANet in terms of quantitative evaluation compared to
its closest competitor. In the LEVIR-CD dataset, the P and
F1-score of WNet are 91.16% and 90.67%, respectively. This
indicates that its multilevel local fine-grained features and global
long-range contextual dependencies effectively enhance feature
representation. While our DPDANet achieved optimal P , and
F1-score. The positive outcomes can be attributed to three key
factors. First, the utilization of both CNN and transformer in
DPDANet effectively capitalizes on their respective advantages,
facilitating comprehensive learning of local multiscale features
and global semantic relationships. Second, the developed DEM
successfully highlights the regions of change between bitempo-
ral images, effectively reducing instances of missed detections
and false detections and mitigating the issue of blurred bound-
aries. Third, the proposed PDSA mechanism offers an efficient
approach to modeling global semantic relationships while mini-
mizing the interference caused by noise variations. Collectively,
these factors contribute to the generation of promising results.

TABLE V
PARAMETER COMPARISON OF DIFFERENT MODELS

4) Parameter Comparison: We compare the number of pa-
rameters (Params.), the computational complexity (floating-
point operations, FLOPs), and the inference time on GPU be-
tween DPDANet and several benchmark models, as shown in
Table V. Thanks to the token sequence length reduction and
the sparse indexing operations enabled by the PDSA mecha-
nism, DPDANet exhibits significantly reduced computational
complexity compared to similar models such as BIT and WNet.
In comparison to other models, our proposed model does not
exhibit particularly noticeable advantages in terms of parameter
size and inference time. This is primarily due to the high memory
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Fig. 7. Qualitative comparisons on SYSU-CD dataset. (a) T0 temporal image. (b) T1 temporal image. (c) Ground truth. (d) STANet. (e) BIT. (f) MSPSNet.
(g) SNUNet. (h) ISNet. (i) SUMLP. (j) WNet. (k) Proposed DPDANet. Color: white for TP (i.e., “changed”), black for TN (i.e., “unchanged”), red for FN, and
green for FP.

Fig. 8. Qualitative comparisons on CDD dataset. (a)T0 temporal image. (b)T1 temporal image. (c) Ground truth. (d) STANet. (e) BIT. (f) MSPSNet. (g) SNUNet.
(h) ISNet. (i) SUMLP. (j) WNet. (k) Proposed DPDANet. Color: white for TP (i.e., “changed”), black for TN (i.e., “unchanged”), red for FN, and green for FP.
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TABLE VI
ABLATION STUDY ON MODULE VERIFICATION

access overhead associated with the depthwise convolutions em-
ployed by the EfficientNetV2-S backbone network. Factors such
as memory access and memory occupation play a crucial role in
influencing the inference time of the model. In light of the height-
ened accuracy of our model, the effect of increased parameters
can be regarded as minimal. In comparison to the similar model
WNet, the proposed DPDANet showcases a notable reduction of
25.31% in parameter size. Moreover, it achieves a commendable
decrease of 24.80% in inference time on GPU. These results
effectively confirm the superior performance of DPDANet. In
sum, our model’s parameter size, FLOPs, and inference time
stay in an acceptable range.

D. Ablation Study

In this section, we conduct extensive ablation experiments on
the DPDANet model on three datasets.

1) Module Verification Experiment: We conducted ablation
experiments on the CDNet-2014 dataset to validate the effec-
tiveness of each component in DPDANet. By systematically
removing or replacing different modules, we assessed their con-
tributions to the overall performance. The experimental results
are summarized in Table VI, where “w/o” is the abbreviation
for “without,” indicating the removal of a module from the
network. Specifically, “DEM” refers to our proposed DEM while
“DEM [56]” refers to the DEM proposed in [56]. “GSEM”
represents the global semantic enhancement module, “SA” de-
notes the traditional SA module, and “MSA [25]” represents the
moving-window SA module.

a) Effectiveness of DEM: Our motivation in designing the
DEM was to refine the difference between bitemporal features,
maximizing the dissimilarity between changed and unchanged
semantics and enhancing the discriminability of changed re-
gions. To evaluate the effectiveness of our proposed DEM, we
conducted experiments by initially omitting this module and
directly passing the concatenated bitemporal features to the cor-
responding layers of the decoder. The quantitative comparison
results are presented in Table VI. The results demonstrably
indicate a significant decline in performance when the DEM
is removed. Moreover, we substituted our DEM with the DEM
introduced in [56]. The results reveal that the P , F1-score, and
IoU exhibited decreases of 1.61%, 0.56%, and 1.58%, respec-
tively. These experimental findings substantiate the feasibility
and superiority of our DEM.

TABLE VII
INFLUENCE OF DIFFERENT BACKBONES

b) Effectiveness of GSEM: In the design of the GSEM, we
propose a PDSA mechanism, which efficiently captures multi-
scale contextual information by leveraging dynamic sparsity.
To assess the performance enhancement provided by GSEM on
the overall network, we, respectively, employed ordinary SA
(SA) and moving-window SA (MSA) as substitutes for PDSA
in constructing the GSEM. As presented in Table VI, removing
the GSEM led to a significant performance decline. The inclu-
sion of SA and MSA contributed to promising performance
improvements. Nevertheless, GSEM with PDSA consistently
outperformed SA and MSA across all metrics. These findings
demonstrate that GSEM, based on the proposed PDSA mech-
anism, excels in modeling global contextual relationships and
exhibits stronger robustness to environmental noise variations.

c) Influence of Different Backbones: We conducted addi-
tional experiments to verify the influence of different backbone
networks on our model. Specifically, we employed ResNet18,
ResNet50, and ResNet101 as substitutions for the default
EfficientNetV2-S. From the results in Table VII, it was ob-
served that DPDANet with EfficientNetV2-S outperformed DP-
DANet with ResNet18, showed comparable performance to
DPDANet with ResNet50, and slightly underperformed com-
pared to ResNet101. It is evident that deeper backbone net-
works generally offer detection performance gains but also come
with a significant increase in computational burden. The results
indicate that EfficientNetV2-S effectively serves as a decent
backbone network, delivering satisfactory performance while
reducing the computational load.

2) Parameter Verification Experiment: We validated the im-
pact of training epoch number, patch size, and depth of GSEM
on the performance of DPDANet on three datasets.

a) Effect of Training Epoch Number: Fig. 9 shows the
detection results of DPDANet on the LEVIR-CD and SYSU-CD
validation sets. As can be seen from these figures, the model
can achieve good validation results in a short period of time
and achieve convergence when reaching a certain epoch. Con-
tinuing to increase the number of epochs for training will not
significantly improve the performance of the model. Therefore,
in our experiments, we uniformly set the epoch number to 200
and attenuate the learning rate after 50 epochs.

b) Effect of the Patch Size: In the CDNet-2014 dataset,
we set the patch sizes to 8, 16, and 32, respectively, to study
their impact on CD accuracy, as shown in Table VIII. The
experimental results indicate that the detection performance of
the model is positively correlated with patch size. The proba-
ble reason is that the patch size determines the length of the
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Fig. 9. Effect of training epoch number on (a) LEVIR-CD validation set and
(b) SYSU-CD validation set.

TABLE VIII
EFFECT OF THE PATCH SIZE

generated token sequences. The longer the token sequence, the
richer feature information it contains. However, considering the
training efficiency, we set the patch size to 16 to balance the
computational complexity and performance of the model.

c) Effect of the GSEM Depth: As shown in Table IX, the
increase in GSEM depth slightly improves the detection perfor-
mance of the model, but meanwhile brings about a rapid increase
in parameter and computational complexity. Accordingly, in our
experiments, the GSEM depth was set to 6 to balance efficiency
and accuracy.

TABLE IX
EFFECT OF THE GSEM DEPTH

E. Feature Visualization Experiment

We extracted a pair of images from the LEVIR-CD test set as
an example, and Fig. 10 shows the feature visualization results
of the 160th channel of four important nodes. Specifically, these
four nodes refer to the concatenation and fusion of the outputs
of the multiscale DEM and the GSEM. For the convenience
of comparison, we normalized the feature maps of different
nodes to the same size. Red indicates giving higher attention to
potentially changed areas, whereas black indicates giving lower
attention to unchanged areas.

It is evident that the proposed model has been learning the
representation of changes at different stages. As the network
depth increases, multiscale deep features are extracted progres-
sively. The DEM and GSEM modules exhibit strong capability
in discerning between changed and unchanged areas within the
input feature map by combining global semantic information and
local features. This enhances the expression of edges in changed
areas and improves the performance of small target detection.

V. DISCUSSION

Our proposed DPDANet has demonstrated superior perfor-
mance compared to existing comparative models through exten-
sive experimental validation. As proposed, the EfficientNetV2-S
backbone network enriches local detailed information through
multiscale feature extraction and compensates for the deficiency
in modeling long-range contextual information. By maximizing
the semantic difference between changing and invariant regions,
DEM effectively mitigates edge-blurring issues. In addition, the
PDSA module, which combines pyramid pooling and dynamic
sparse encoding, reduces the computational complexity of SA
and captures more comprehensive long-range contextual infor-
mation, thus enhancing the model’s detection performance under
complex environmental noise conditions.

Despite these achievements, our proposed method still has
certain limitations, predominantly in terms of model parameter
size and inference time. Due to the utilization of depthwise
convolution as the basic units in the EfficientNetV2-S backbone
network, it exhibits a high memory access overhead, leading to
considerably slower inference times compared to regular con-
volutions. These factors have a notable impact on the real-time
performance and operational efficiency of deploying the model
on edge devices. Our future research will pursue two main
directions. First, we will further investigate the development
of efficient and lightweight backbone networks for enhanced
feature extraction. Second, we will propose novel loss functions
to address the issue of edge blurring from the perspective of
optimizing the loss function.
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Fig. 10. Feature visualization. (a) Bitemporal images. (b) Ground truth. (c), (d), (e), and (f) 160th feature map of the first, second, third, and fourth scale outputs,
respectively.

VI. CONCLUSION

In this article, we propose a new remote-sensing image CD
network based on difference-enhanced pyramid pooling dy-
namic sparse attention (i.e., DPDANet). It is committed to solv-
ing multiscale and subtle CD, as well as blurry boundary issues.
DPDANet utilizes EfficientNetV2-S as the baseline to extract
multiscale local features, and integrates two proposed modules,
DEM and GSEM, to improve its capability of detecting subtle
changes and addressing blurry boundary issues. DEM obtains
adaptive weight by introducing LSTM to analyze the temporal
correlation of bitemporal images and combines deformable con-
volution to enhance the differential features of different seman-
tics. GSEM simplifies SA computation by employing pyramid
pooling operations and dynamic sparse encoding, reducing com-
putational complexity while enhancing the modeling of global
semantic relationships. We introduce a hybrid loss to complete
the training process. Our DPDANet achieves SOTA performance
on four public CD datasets, showcasing strong generalization
ability and robustness against complex environments.
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