6616

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Generative Adversarial Differential Analysis for
Infrared Small Target Detection

Zongfang Ma

Abstract—Infrared small target detection refers to the extraction
of small targets in a complex, low signal-to-noise ratio background.
Depthwise convolution makes it difficult to comprehensively char-
acterize small infrared targets and ignores the importance of image
background for the detection task. In this article, we propose
the generative adversarial differential analysis (GADA) model for
infrared small target detection, the core of which aims to weaken
the reliance on target features and enhance the use of background
information. Specifically, we first construct pseudobackground la-
bels by the fast marching method. Then, the background-guided
generative adversarial network is used to learn the background
data distribution. On this basis, the differential image containing
interest regions of small targets is obtained by differential analysis.
Finally, the detection results are obtained by performing an elab-
orate characterization of the interest regions. The effectiveness of
GADA is verified with three public datasets. Compared to several
state-of-the-art methods, GADA achieves better performance in
terms of F'1, IoU,and AUC.

Index Terms—Change detection, generative adversarial network
(GAN), image segmentation, infrared small target detection.

I. INTRODUCTION

A. Background

INGLE-FRAME infrared small target detection technology
S is used in several applications, including airborne early
warning, maritime surveillance, precision guidance, and other
fields [1], [2], [3]. Infrared images are imaged by the infrared
system to detect targets in a scene at a long distance. Therefore,
compared with general target detection tasks, infrared small
targets have the following characteristics: 1) Infrared small
targets are generally very small, with pixels occupying only a
few or dozens of pixel sizes. For example, a small target is less
than 80 pixels in the total spatial extent of a 256 x 256 image [4].
It results in the lack of information about the shape and texture
of infrared small targets; 2) Infrared small targets are usually
located in complex backgrounds or receive clutter interference.
Therefore, efficient and accurate detection of infrared small
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targets is still a challenging problem [5], [6]. In recent years,
researchers have developed several pioneering works based on
image processing and deep learning techniques. These methods
can be divided into the following two categories: one is based
on model-driven, and the other is based on data-driven.

The model-driven method involves manually designing algo-
rithms in response to assumptions about the physical properties
of infrared targets [7]. These methods can be subdivided into
three categories: filtering-based methods, human visual system-
based methods, and low-rank sparse recovery-based methods.
Filter-based methods include Max-median and Max-mean [8],
Top-Hat [9], and multiple morphological profiles (MMP) [10],
etc. This type of method uses filters to estimate the background
of the infrared image to achieve the purpose of suppressing the
background or using the frequency difference between the target
and the background to filter. The method is better for uniform
background suppression but is not as effective for complex
backgrounds. Human visual system, such as local contrast mea-
sure (LCM) [11] and multiscale patch-based contrast measure
(MPCM) [12], halo structure prior-based LCM (HSPLCM) [13],
and the idea combining an improved density peak global search
and local contrast calculation [14], mainly exploits the in-
trinsic properties of infrared small targets. The local texture
of the image changes when the small target appears instead of
the global texture, so the local features are used to complete
the detection task. However, it has poor suppression ability for
clutter and it is not suitable for low contrast targets. The methods
based on low-rank sparse recovery include the infrared patch-
image (IPT) model [15] and low-rank and sparse representation
(LRSR) model [16], and interpoint correlation enhancement
(IPCE) [17] etc. Since infrared small targets have sparse features
and the background has low-rank features, the detection task is
completed by optimizing the constraints. However, it still has a
high false alarm (FA) rate for small targets with different shapes
in complex backgrounds [18].

Data-driven models are used to extract the features of var-
ious types of data by learning from the data, and further im-
plementing tasks such as classification or detection of them.
MDvsFA cGAN [19] decomposes the infrared small object
segmentation problem into two subtasks of suppressing MD
and FA, respectively, and solving two tasks via generating
adversarial learning models. Asymmetric contextual modula-
tion (ACM) [20] proposes an ACM module to combine high-
level semantics with low-level features. Dense nested attention
network (DNANet) [21] designs a densely nested interaction
module for the combination of high-level and low-level features
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for progressive interaction and proposes cascade channel and
spatial attention modules to enhance multilevel features. Interior
attention-aware network (IAANet) [22] obtains the coarse target
region and filters the background through a region proposal net-
work, then outputs the attention-aware features before obtaining
the prediction results through classification.

B. Motivation

Due to the small size of the target, the data-driven-based
methods tend to lose the target feature information when per-
forming deep convolution and also ignore the utilization of
the background information. The methods based on principal
component analysis point out that an infrared image can be
represented as a superposition of background, target, and clutter.
Therefore, we would like to construct a network that generates
infrared images without target components and then quickly
locate small targets by the difference between the generated
image and the original image. The generated image and the
original image can be viewed as representations of the same
region at different times, and the small target is the difference
between these two representations. As aresult, the infrared small
target detection problem can be transformed into a time series
change detection problem, avoiding the difficulty of directly
extracting small target features from the convolution.

C. Contributions

In this article, we propose a generative adversarial differential
analysis network to improve the detection accuracy of infrared
small targets. The background-guided generative adversarial
network is used to generate the background image of the in-
frared image. The region of interest containing small targets
is obtained by analyzing the difference between the infrared
image and the background image through the change detection
method. Finally, the detection task is accomplished by precision
extraction of the interest region. The main contributions of this
work are summarized as follows:

1) To improve the detection performance of infrared small
targets, GADA converts the infrared small target detec-
tion problem into a time-series change detection problem,
which has the advantage of weakening the dependence on
target features and enhancing the utilization of background
information.

2) The GAN-based generative adversarial differential analy-
sis module and U-Net-based precision extraction module
are designed to separate the target from the background
image more efficiently and obtain better detection results.

3) To address the problem of missing background images in
the infrared image dataset, an image inpainting technique
based on the fast marching method is used to obtain a large
number of weak labels, which are used to constrain the
background distribution of the generated infrared image.

The rest of the article is organized as follows. Section II
reviews several related works. Section III describes the details
of GADA. Section IV validates the reliability of GADA through
comparative experiments and discussion. Finally, Section V
concludes the article
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II. RELATED WORK
A. Convolutional Generative Adversarial Networks

Generative adversarial network (GAN) is a combination of
neural networks and game theory for learning approximate
distributions of real data from a large number of sampled inputs.
It generally consists of a generator and a discriminator. The
generator is used to learn the distribution of real data to generate
an image that approximates the distribution of real data, and
the discriminator is used to determine whether the image is
real data or generated data. In practice, the parameters of the
generator and the discriminator alternately change each other,
so that they reach a Nash equilibrium, and then no longer change
their weights. DCGAN [23] is an extension model of GAN,
which is a model proposed by combining CNN and GAN. By
adjusting the structure of the network to make the network more
stable and have better generalization.

In the infrared small target detection task, Wang et al. [19]
designed the MDvsFA cGAN. Using the network architecture
of conditional GAN, two generators were designed to minimize
miss detection (MD) and FA, respectively. Zhao et al. [24]
designed the IRSTD-GAN. This network treats small targets as a
special kind of noise, which is predicted from the original image
based on the data distribution learned by GAN. In summary, the
GAN-based techniques have been demonstrated to be effective
for the task of infrared small target detection.

B. Image Inpainting

Image inpainting aims to restore pixel features to damaged
parts of a mutilated image. Image inpainting serves a wide range
of applications, such as removing text and logos from still images
or videos, reconstructing scans of damaged images by removing
scratches or stains, or creating artistic effects [25].

The image inpainting technique based on the fast marching
method is to process the pixel points at the edges of the area
to be repaired first, and then layers are pushed inward until all
pixel points have been repaired. The gray values of the pixel
point to be repaired need to be calculated from all the points in
the domain. This process can be expressed as

> gen. @@ ) (9) + VI(g)(p— q)]
2qeB.(p ¥ (P 4)

where p denotes the pixel point to be repaired, B. denotes a
small field selected with p as the center, ¢ denotes a known pixel
point in the field, and the pixel value of point p is calculated
from point g. Different pixel points have different influences on
the pixel point to be repaired due to factors such as distance. w
denotes the weight function by which the influence of different
pixel points in the domain is limited.

I(p) =

ey

C. Change Detection

Change detection refers to identifying the differences between
remote sensing images acquired over the same geographical
zone but taken at two distinct times [26]. Classical change detec-
tion methods can be constructed based on different operators and
algorithms, such as univariate image differencing [27], change
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vector analysis (CVA) [28], ratioing [29], distance or similarity
measures [30], etc. CVA is able to explore the dissimilarity
between features corresponding to changed and unchanged re-
gions.

In GADA, the infrared small target image and the background
image are considered as the representation of the same region
at different times. Based on this, the infrared small target detec-
tion problem is converted into a time series change detection
problem. The recognition of change region is a replaceable
part of GADA. In recent years, the rapid development of deep
learning-based change detection methods has made its appli-
cation in small target detection frameworks more possible. For
example, Samadi et al. [31] proposed a method that combines
morphological images with two original images to provide a
suitable data source for DBN training. Shu et al. [32] proposed
a two-stage patch-based deep learning method using a label
update strategy. Initial labels and masks are generated in the
preclassification stage. Then a two-stage update strategy is
used to recover the changed regions gradually. Du et al. [33]
proposed a new end-to-end TransUNet++SAR network, which
incorporates a vision module in the network architecture. These
methods have led to enlightening explorations in infrared small
target detection.

D. Image Segmentation

Image segmentation techniques refer to the division of an im-
age region into two or more meaningful regions or the definition
of boundaries for different semantic entities in an image [34].
Image segmentation is a classification task at the pixel level. It
essentially consists of an encoder and a decoder. The encoder is
used to extract the high-dimensional features of the image. The
decoder, on the other hand, generates semantic segmentation
masks from the high-dimensional feature vectors by upsampling
such as deconvolution, interpolation, etc., and maps them back
to the original image.

Infrared small target detection can be considered as a binary
semantic segmentation with an extreme imbalance of positive
and negative samples [35]. Currently, there are three main meth-
ods based on CNN, based on CNN+model-driven and based on
CNN+Transformer. Among them, CNN-based methods mainly
utilize classical segmentation networks. For example, inspired
by the feature extraction of DFN [36] and SENet [37], APGC-
Net [7], and AFFPN [38] adopt top-down channel attention
mechanism and bottom-up spatial attention mechanism to ex-
tract high-level semantic information and low-level feature
information respectively. CNN+model-driven methods mainly
utilize the difference in local contrast, and the combination
of the two improves local contrast or performs local contrast
learning. For example, a new multiscale local contrast learning
network [39] introduces local contrast learning in the network
to learn the local contrast features of small infrared targets. The
CNN-+transformer-based methods use the self-attention mech-
anism of the transformer to learn the interaction information
of image features in a wider range [35]. ITAANet [22] acquires
the target coarse region and filters the background, after which
the attention between the pixels in the coarse region is modeled
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by the transformer encoder. In conclusion, the methods based
on image segmentation are effective for infrared small target
detection.

III. METHODOLOGY
A. Overall Architecture

Fig. 1 shows the detailed structure of the GADA model. By
feeding a single infrared image into the generative adversarial
differential analysis module, we can get the infrared background
image and the differential image. Then, the target detection result
is obtained by the precision extraction.

Section III-B describes the architecture of the generative
adversarial differential analysis module. Feature extraction and
upsampling of infrared images by encoding and decoding re-
construct the data distribution of the original image to obtain
a background image. The differential image is obtained by
the differential operation between the original image and the
background image. Section III-C presents a detailed elaboration
of the precision extraction module. The difference image is fed
into this module to achieve small target detection.

B. Generative Adversarial Differential Analysis

As shown in (2), principal component analysis defines that
an infrared image consists of a superposition of a background, a
target, and clutter. We would like to construct a network that
generates an infrared image without small targets, and then
quickly locate the small targets by the difference between the
generated image and the original image

fo(z,y) = fr(z,y) + fe(,y) + [n(2,y) 2

where fp, fr, fB, and fxn denote the input image, the target
component image, the background component image, and the
noise component image, respectively.

As shown in part 2 of Fig. 1, the generative adversarial
network is used to build the generative module. We chose a deep
convolutional generative adversarial network, which consists
of a U-Net-based generator and a full convolutional discrim-
inator. Using the encoder and decoder of the generator, the
multilevel information of the image background is extracted
and the data distribution of the background is reconstructed.
The reconstructed details of the image are supplemented by the
skip connection. The discriminator utilizes real data samples to
determine the true probability of the reconstructed image and
further adjusts the network parameters.

The real samples required by the generative model are back-
ground images without small targets, which are not provided
in existing infrared datasets. Therefore, a pseudolabeled dataset
is constructed using the fast marching-based image restoration
technique mentioned in Section II. The region to be repaired
is identified from the labels in the infrared dataset, and the
complete background image is obtained using the restoration
technique. The restoration operation is shown below:

0; = I(p;

PicQi=1,2,m) 3)
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Fig. 2. Original image and the background image obtained by image
inpainting.

where ) denotes the area to be repaired and p; denotes the
ith pixel of the €. I denotes the fast marching method. The
generated pseudolabel images are shown in Fig. 2.

The generator uses U-Net as the basic model. As a classical
segmentation network, U-Net adopts a U-shaped structure and
the skip connection to better retain the image information. The
input infrared image x; is processed through the encoder, which

Overall architecture of the GADA, which contains an image inpainting module, a generative adversarial differential analysis module, and a precision

is mainly implemented using convolutional operations. The
image is downsampled with stride of 2. The output x5 is defined
as

29 = Conv(§(B(Conv(§(B(Conv(x1))))))) 4)

where Conv denotes the convolution operation with a convolu-
tion kernel of 3 x 3. B denotes the batch normalization. § denotes
the activation function. The LeakyRelu activation function with
the negative value set to 0.2 is used by default, but the Tanh
activation function is used in the last layer. zo to x4 are the
outputs of each layer of the encoder.

The feature map is fed to the decoder and the image size is
increased using deconvolution with the stride of 2. The output
is defined as

g = ConvTrans(0(B(Conv(§(B(Conv(z7))))))),  (3)

where ConvTrans denotes the ConvTranspose operation. z7 to
x12 are the outputs of each layer of the decoder.

The discriminator consists of a fully convolutional network.
There are seven layers of convolution and each layer consists of
convolution, normalization, and activation function, where the
stride is 2 and the last layer outputs the probability of true or
false using Sigmoid function.
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The generative adversarial differential analysis model con-
tains three parts of loss, which are generative adversarial loss,
reconstruction loss, and perceptual loss.

Generative Adversarial Loss: The generative adversarial loss
can be expressed as follows:

Léan = Ez~p, [l0g D(2)] + Ezvp.[log(1 = D(G(2)))]  (6)

where p, represents the distribution of real samples, p. rep-
resents the data distribution of the input image, then G is the
generator, and D is the discriminator.

Reconstruction Loss: Reconstruction loss aims to make the
generated image close to the real image at the pixel level. It can
be expressed as follows:

Lre =min|z — G(z2)| (7

where = denotes the real image and G(z) denotes the sample
generated by the generator.

Perceptual Loss: In order to make the generated background
image as close as possible to the original background image
and to focus more on the learning of texture features, perceptual
loss [40] is used to make the two more semantically similar.
We chose the block3-conv3 layer of the pretrained 19-layer
VGG network and extracted the corresponding feature maps for
computation. The details are shown as follows:

1

L re —
g CiH;W;

16;(x) — 6;(G ()13 ®
where j represents the jth layer of the network, C H W represents
the size of the extracted feature maps, ¢ represents the selected
pretrained network, x represents the real samples, and G(z)
represents the generated samples.

So, the total loss function of the generative model can be

expressed as
L= Lgan + alye + /Bﬁpre 9)

where « and (3 are empirical parameters.

It is observed that there is a large difference between the
generated image and the original image in the small target region.
Therefore, the pixel-by-pixel differencing method is utilized
to obtain the difference between the two images and get the
difference image containing the target. The representation is as
follows:

d: |.131 —$12| (10)

where x; denotes the original image and x1- denotes the gener-
ative image.

C. Precision Extraction of Small Target Regions

Due to the limitations of the generative model, the generated
background image is slightly different from the pseudolabel. The
difference map contains obvious small targets and a little inter-
ference information. It needs to be extracted by fine extraction
to get the final detection result. We choose the classical network
U-Net.

The encode is realized by convolution operation, which de-
creases the feature map size sequentially. The dropout operation
is added to prevent the overfitting phenomenon. The operation
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of each layer can be expressed as follows:

s = §(D(B(Conv(zy)))) 11

where D denotes the dropout operation.

The decoder recovers the image details and uses neighborhood
interpolation to gradually recover the image size. Supplement
the feature information of small targets by the skip connection.
The operations can be expressed as follows:

z = 6(B(Conv(C(U(x),y)))) (12)

where x denotes the feature map, y denotes the downsampled
feature map corresponding to x, and U denotes the interpolation
operation. C' denotes skip connection.

Instead of using the Lo loss function for the segmentation
results with the label image, the segmentation model chooses
dice loss [41]. Dice loss is a region-dependent loss function used
to solve the problem of positive and negative sample imbalance.
The larger the coefficient is, the more similar the samples are to
each other. The loss function is represented as follows:

2X NY|

Lice =1 — o7
X[+ Y]

13)
where | X | and | Y| denote the number of elements in the segmen-
tation result and the label image, respectively, | X N'Y'| denotes
the intersection between the segmentation result and the label
image.

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of GADA with
F1, IoU, and AUC metrics on three datasets. The experi-
mental setup, including the dataset, the baseline methodology,
and the evaluation metrics are described. Then, a comparison
with the baseline method is made to illustrate the superiority
of the GADA model. Finally, the comprehensive performance
of the method is verified by some discussion experiments.

A. Experimental Settings

1) Datasets: We conducted experiments on IRSTD-1k [18],
SIRST dataset [20], and MSISTD [42], respectively. SIRST
contains 427 infrared images. About 55% of the targets in
this dataset occupy only 0.02% of the image area, and about
35% of the targets are the brightest [20]. IRSTD-1 k contains
1000 infrared images. These images were captured by infrared
cameras in the real world and covered a variety of scenes with
backgrounds such as oceans, rivers, fields, mountains, cities, and
clouds, with heavy clutter and noise [18]. MSISTD contains
1077 images. It greatly expands the context of single-frame
small target detection from being limited to the detection of
aerial targets only to the detection of multiscene, multiscale,
and lower SCR targets [42]. For three datasets, they are divided
into training and testing sets in the ratio of 8:2.

2) Baseline Methods: We compared GADA with focused
infrared small target detection methods including new Tophat
[9], TPI [15], nonconvex rank approximation minimization
(NRAM) [43], ACM [20], improved multimode nuclear
norm joint local weighted entropy contrast (IMNN-LWEC)
[44], sparse regularization-based spatial-temporal twist tensor
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(SRSTT) [45], interior attention-aware network (IAANet) [22],
attention-guided pyramid context networks (AGPCNet) [7], and
low-level network (ILNet) [46]. Tophat [9] was achieved by
filtering to achieve background suppression. IPI [15] formulated
the infrared small target detection problem as an optimization
problem that recovers a low-rank sparse matrix. NRAM [43]
employed a nonconvex, tighter rank surrogate and a weighted
L1 norm to efficiently retain the target while suppressing the
background. ACM [20] was based on a deep learning network
that combines the high-level semantic information of the small
target with the low-level features. IMNN-LWEC [44] repre-
sented the infrared target detection task as an optimization
problem of tensor decomposition of the three components of
the background tensor, the target tensor, and the sparse structure
tensor in the spatio-temporal domain. SRSTT [45] increased the
difference between the background and the target by twisting
the tensor model and combining the structured sparse-induced
paradigm and the L;-paradigm as a parsing constraint for the
target. ITAANet [22] utilized a region proposal network (PRN)
to obtain the coarse target region and filter the background.
AGPCNet [7] utilized a designed context module CPM to better
adapt to the characteristics of small infrared targets, resulting in
a performance boost. ILNet [46] took the important underlying
features from shallow to deep layers and dynamically assigned
weights to shallow and deep layers.

3) Evaluation Metrics: Infrared small target detection
mainly uses pixel-level evaluation metrics such as IoU,
Precision, and Recall. IoU is used to evaluate the accuracy
of localization, which is calculated by the ratio of the inter-
section area to the concatenation area between the prediction
and the label. Simply achieving a high Precision or a high
Recall cannot indicate whether a method is good or bad, so we
select the F-measure [47] metric as the reconciled mean of the
two. F1 is calculated as shown in (14). The receiver operation
characteristics (ROC) curve reflects the dynamic relationship
between the false positive rate and the true positive rate. AUC
denotes the area under the curve, which is used to quantitatively
evaluate the classification performance of true and false
targets [48], [49].

Recall x Precision

F1=2x .
Recall + Precision

(14)

4) Implementation Details: In the generative adversarial dif-
ferential analysis module, Adam is selected as the optimizer.
The generator learning rate is 0.0001 and the discriminator
learning rate is 0.001. Epoch and batch size are set to 30 and
16, respectively. In the precision extraction module, the Adam
optimizer is used with the learning rate set to 0.0001, the epoch
of training is 40 and the batch size is 16.

B. Comparison to State-of-the-Art Methods

To demonstrate the superiority of GADA, we compare the
GADA with several state-of-the-art methods using visual and
numerical evaluation results.

1) Visual Evaluation: We selected the detection results of
six images from the SIRST, IRSTD-1 k, and MSISTD datasets,
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respectively, and compared them with nine state-of-the-art meth-
ods. The detection results are shown in Figs. 3-5. The red box
indicates the correct detection result, the green dashed circle
indicates the missed detection region, and the yellow dashed
circle indicates the FA region.

Fig. 3 shows the detection results of the dataset SIRST.
Image-1 shows a car driving on a highway surrounded by bushes,
where the bushes are more similar to the small target features.
New Tophat, IPI, and SRSTT are prone to generate FAs in the
bushes part. Also, New Tophat, IPI, NRAM, IMNN-LWEC, and
SRSTT do not retain the target contour well, and the detection
results are incomplete. Image-2 shows the sea surface under
sunlight, New Tophat, IPI, and NRAM are prone to generate
FAs in the area where the sea surface is illuminated to produce
highlights, and IMNN-LWEC has missed detection. Image-3
shows the sky with clouds. New Tophat, IPI, and SRSTT are
prone to generate FAs in the highlighted part of the cloud image.
Image-4 is a highway, the distant mountain peaks and the trees
along the roadside belong to the highlighted area. New Tophat,
IPI, NRAM, IMNN-LWEC, SRSTT, and IAANet are prone to
generate FAs in the tree part. NRAM and ILNet have missed
the detection phenomenon. Image-5 shows the sea surface with
waves rising, and New Tophat and IPI are prone to generate FAs
in the highlighted area of the waves. AGPCNet has missed the
detection phenomenon. Image-6 shows the sky with the pure
background. IPI has a small portion of FAs, and IMNN-LWEC
has missed detections for targets with weak intensity. The pre-
sentation of the results also shows that the traditional method has
more complete detection results for point-shaped targets, and
there is a problem of partial missing detection results for other
shaped targets, and the target contour is not well preserved.

Fig. 4 shows the detection results of the dataset IRSTD-1 k.
Image-1 shows a forest with obvious small targets and less inter-
ference information. The targets are detected by all methods, but
the ACM has FAs near the target point. Image-2 shows a lawn in
front of a house with highlighted regions, New Tophat, IPI, and
IAANet detect small targets with FAs, and NRAM and SRSTT
have missed detections. Image-3 shows a lake with reflections
of tall buildings and there are highlighted regions on the lake
in the image. New Tophat, IPI, ACM, and IMNN-LWEC have
FAs and IMNN-LWEC detects missing targets. Image-4 is a tall
building in the city. New Tophat, IPI, NRAM, IMNN-LWEC,
ACM, SRSTT, IAANet, and ACPCNet all falsely detect lights in
the tall building as targets. AGPCNet have missed the detection
phenomenon. The result obtained by ILNet is not obvious.
Image-5 shows the open space in front of the bushes, where IPI,
NRAM, IMNN-LWEC, SRSTT, IAANet, and AGPCNet have
missed detections due to the small size of the target and low
contrast with the surroundings, New Tophat and ACM detected
the target, but there is a FA in the bushes area. At the same
time, the result obtained by ILNet is not clear. Image-6 includes
streetlights and a sky containing clouds. The small target is more
obvious, but the streetlight is the highlighted area. Therefore
New Tophat, IPI, NRAM, IMNN-LWEC, SRSTT, and I[AANet
all produce FAs in the highlighted region.

Fig. 5 shows the detection results of the dataset MSISTD.
Image-1 shows the image captured by looking up at the shrubs.
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Detection results obtained on the MSISTD dataset using different detection methods.

TABLE I
F'1, IoU, AND AUC' VALUES OBTAINED BY DIFFERENT STATE-OF-THE-ART METHODS ON THE SIRST AND IRSTD-1K DATASETS.
SIRST IRSTD-1k MSISTD
F1(Precision, Recall) | ToU | AUC | F1(Precision, Recall) | ToU | AUC | F1(Precision, Recall) | ToU | AUC
New Tophat 0.52 (0.50, 0.72) 041 | 0383 0.27 (0.23, 0.63) 0.18 | 0.66 0.27 (0.23, 0.52) 0.19 | 0.59
IPI 0.62 (0.90, 0.50) 047 | 093 0.42 (0.49, 0.69) 032 | 0.80 0.46 (0.58, 0.54) 0.38 | 0.70
NRAM 0.70 (0.85, 0.65) 059 | 0.79 0.36 (0.52, 0.36) 025 | 0.59 0.37 (0.56, 0.33) 028 | 0.56
ACM 091, 0.69) 0.94 0.65 (0.61, 0.76) 0.51 | 0.89 0.61 (0.91, 0.48) 0.47

IMNN-LWEC 0.49 (0.85, 0.38) 036 | 0.74 0.46 (0.57, 0.48) 034 | 0.64 0.31 (0.64, 0.24) 022 | 0.62
SRSTT 0.59 (0.54, 0.76) 046 | 0.90 0.31 (0.31, 0.60) 023 | 0.68 0.34 (0.41, 0.38) 022 | 071
TAANet 0.69 (0.90, 0.59) 055 | 095 (0.69, 0.71) 0.53 | 0.911 0.64 (0.78, 0.61) 052 | 095
AGPCNet 0.54 (0.68, 0.51) 045 | 085 0.46 (0.48, 0.50) 036 | 0.82 0.50 (0.70, 0.43) 0.40 | 0.78
ILNet 0.59 (0.54, 0.76) 0.62 | 097 0.60 (0.81, 0.52) 0.906 0.91, 0.61) 0.90
GADA 0.82 (0.87, 0.82) 0.71 0.65 (0.68, 0.69) 0.53 0.71 (0.74, 0.74) 059 | 0.85

For all three, higher values indicate better performance. The best results are indicated in red color. The second results are indicated in green.

The shrub belongs to the highlighted region in the image. New
Tophat and IPI are able to detect small targets but there are
false detections. NRAM, IMNN-LWEC, SRSTT, and AGPCNet
have miss and false detections. Image-2 shows a region of
columns, where the columns are the highlighted areas in the
image. ACM, ILNet, and GADA can accurately detect the tar-
gets. IMNN-LWEC has MDs. The other methods all have false
detection in the highlighted areas while detecting small targets.
Image-3 shows three people on the playground. New Tophat, IPI,
and TAANet all have misdetections. IMNN-ILEC detection is
incomplete and there are also missed detections. Image-4 shows
the screen next to the high post. There are false detections by
New Tophat, IPI, NRAM, and IAANet. All methods can detect
small targets, but the detection results of NRAM and SRSTT are
not complete. Image-5 shows the sky image with buildings. New
Tophat, IPI, NRAM, IMNN-ILEC, SRSTT, and IAANet all have
areas of misdetection. There is also a missed detectionin SRSTT.

The NRAM detection result is incomplete. Image-6 shows the
grass by the roadside, the target is located in the grass and the
intensity is low. New Tophat, IPI, NRAM, ACM, IMNN-ILEC,
SRSTT, and IAANet all have false detection. AGPCNet has
missed the detection phenomenon. Also, the detection results
of the model-driven based methods are incomplete.

2) Numerical Evaluation: To more accurately demonstrate
the validity of our method, we quantitatively analyzed the ex-
perimental results using three metrics, F'1, [oU, and AUC, and
then plotted the ROC curves. Table I demonstrates the results of
various metrics and shows the comparison results between the
three datasets, with the best results marked in red and the second
results indicated in green.

As we can see from Table I, data-driven approaches are
usually more effective than model-driven approaches. On the
three datasets, GADA achieves the best results on £'1. The values
of F'1 are 0.82, 0.65, and 0.71. It shows that at the pixel level,
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Fig. 6.

GADA achieves an optimal balance between false positives
and missed detections. Also, we obtained better Precision and
Recall. Although ACM and ILNet can achieve high Precision
on different datasets, the Recall is low, which leads to a lower
overall performance of both.

IoU is a metric used to evaluate the localization accuracy.
In the experiment, we calculate the average IoU between each
real image and predicted image in the test set. In the evaluation
results of the three datasets, it can be seen that the JoU values of
the traditional detection methods are lower. When the infrared
image background is complex with heavy noise and clutter,
the traditional detection methods are prone to MDs and FAs,
resulting in a decrease in the intersection area and an increase
in the concatenation area. The IoU of the traditional methods
are all below 0.6 on the SIRST dataset, and below 0.4 on the
IRSTD-1 k and MSISTD datasets. The deep learning-based
method is better for background suppression. However, most
of the detection results show that the location can be detected
but the detection is incomplete, which leads to a low value of
IoU. The IoU values are 0.71, 0.53, and 0.59 for GADA on
three datasets, respectively. It indicates that the predicted images
obtained by GADA have a higher degree of overlap with the real
image.

The ROC curves are shown in Fig. 6, with the horizontal axis
indicating the false positive rate and the vertical axis indicating
the true positive rate. The value of AUC on the SIRST dataset
is 95%. The value of AUC on the IRSTD-1 k dataset is 91%,
which is lower as compared to the SIRST dataset. This is because
the dataset contains targets of different intensities and sizes and
backgrounds with more noise and clutter. The value of AUC on
the MSISTD dataset is 85%. The scenarios in this dataset are
more complex and have lower target scale and SCR compared
to the other two datasets.

C. Discussion

1) Parametric Analysis: In this part, we validate the setting
of the key parameters using experiments. Two parameters «
and /8 are proposed in (9), which represent the weights of
reconstruction loss and perception loss, respectively. Our aim
is to make the generated background image approximate the
original image and not contain small target images as much as
possible, so different values of the two parameters are tested.
The test results are shown in Table II.

00003 00004 00005  0.0006
False Positive Rate

0.0
00000 00001 00002 00003 00004 00005  0.0006
False Positive Rate

(©)

ROC curves of different methods on different datasets. (a) SIRST. (b) IRSTD-1k. (¢c) MSISTD.

TABLE II
QUALITATIVE RESULTS FOR DIFFERENT VALUES OF v AND (3 IN (9)

a-B Precision  Recall F1 ToU AUC
1-1 0.8094 0.7561  0.7429  0.6224  0.9356
1-5 0.8643 0.7376  0.7693  0.6601  0.9148

1-10 0.8296 0.6862  0.7244 0.6037  0.8895
5-1 0.8489 0.8298  0.8176  0.7061  0.9513
5-5 0.8723 0.8181  0.8224  0.7123  0.9488

5-10 0.7925 0.8277  0.7787  0.6608  0.9551

10-1 0.8282 0.8096  0.7904  0.6795  0.9206

10-5 0.8362 0.7765  0.7848  0.6729  0.9052

10-10 0.8362 0.7837  0.7824  0.6639  0.9623
The Bold values indicate the best value of each evaluation indicator at different
o -p values.
(a) (b)
Fig. 7. Three-dimensional demonstration of changes in evaluation metrics

IoU and F'1 for different combinations of parameters v, . (a) [oU. (b) F'1.

As can be seen from Table II, the weights of reconstruction
loss and perceptual loss are assigned as 1, 5, and 10, respectively.
As the assigned values increase sequentially, the test results
show an increasing and then decreasing tendency. The evaluation
indexes ['1 and IoU reach 0.8224 and 0.7123 when the values
of both o and 3 are 5. In the test results of other values, the
AUC can reach 0.96 when the values of both & and 3 are 10,
but the expressiveness of F'1 and IoU is much less than that of
the results when the values are both 5. At the same time, the
AUC can reach 0.95 when the values are both 5.

To visualize the effect of the two parameters on the experi-
mental results more intuitively, 3-D planes were plotted for the
values of ToU and F'1, respectively. As shown in Fig. 7, it can
be seen that the values of JoU and F'1 are located at the vertices
of the image when the weight values are both 5.

2) Computational Complexity Analysis: All experiments
were implemented on a computer with a 2.50-GHz Intel Core
17-11700 CPU and a Nvidia GeForce 3090GPU. This part has
discussed the computational complexity of different methods.
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TABLE III
COMPUTATIONAL COMPLEXITY OF DIFFERENT METHODS.

Methods New Tophat IPI NRAM ACM IMNN-LWEC
4.8 (C)
FPS (Hz) 47 (C) 0.2 (C) 0.7 (C) 0.4 (C)
23 (G)
Methods SRSTT IAANet  AGPCNet ILNet GADA
0.5 1. 2.3 1.1
FPS (Hz) 0.07 (C) © °©) © ©
11 (G) 8 (G) 13 (G) 21 (G)
(C) means the platform is CPU, (G) means the platform is GPU.
TABLE IV
F'1, IoU, AND AUC' VALUES OBTAINED BY DIFFERENT MODELS ON THE
SIRST DATASETS
Precision  Recall F1 I0U AUC
FCN 0.7661 0.4173  0.5151  0.3870  0.9445
U-Net 0.8723 0.8181  0.8224 0.7123  0.9488
U-Net++ 0.8120 0.7827  0.7542  0.6394  0.9323

FPS is used as an evaluation indicator that indicates the num-
ber of images that can be processed per second. The FPS of
the model-driven methods is computed on the CPU and the
data-driven methods are computed on both CPU and GPU. The
experimental results are shown in Table III.

From Table III, it can be seen that New Tophat has the highest
FPS value on CPU, but the method is simpler and has more false
positives and misses in the detection results. The data-driven
model has higher FPS values in ACM, lowest in IAANet, and
similar in AGPCNet, ILNet, and GADA. Both ACM and GADA
perform better on GPU.

3) Effect of Different Segmentation Models on GADA:
GADA uses the differential map for precision extraction to
achieve target localization. Therefore, after obtaining the dif-
ferential map, we need to choose a suitable image segmentation
network to complete the target detection task. In this part, the
effects of different segmentation models on the experimental
results are experimentally verified. Different networks were
tested on the SIRST dataset, such as FCN [50], U-Net, and
UNet++ [51].

From Table IV, FCN is not sensitive enough to image details,
resulting in segmentation results that are not fine enough. It does
not take into account the pixel-to-pixel relationship, resulting
in a lack of spatial consistency. Therefore, the Precision and
Recall of FCN segmentation results are low. The IoU values
are also lower due to more FAs in the detection results. UNet++
fuses several different layers of features, and the decoder can feel
the feature maps under different horizons. However, due to only
fusing the information of the next layer, there is a loss of edge
information and position information in the segmentation result.
The detection result of UNet++ is greatly improved compared
to FCN, but compared to U-Net, the detection result of U-Net is
more excellent.

V. CONCLUSION

In this article, we propose the GADA model for infrared small
target detection. Unlike existing CNN-based detection methods,
we do not directly extract small targets from the background
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containing a lot of noise and clutter. Instead, the approximate
background image and the image with a small target are obtained
by generative adversarial differential analysis. Then the predic-
tion results are obtained by precision extraction. We conducted
extensive experiments on three public datasets. Compared with
the baseline method, GADA has advantages in terms of F'1,
IoU, and AUC, and it can adapt to the task of detecting small
targets in a variety of different scenarios. The discussion section
shows that the detection results are better when the weight of the
loss function is 5 and the precision extraction network structure
is U-Net. In summary, GADA can better achieve the purpose of
target detection. In future works, we will improve the structure
of the generative adversarial network to make the generated
background more closely resemble the original image. To make
the differential image focus more on small targets to improve
the accuracy of image segmentation, we also aim to improve the
performance of the differential analysis.
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