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Guided Filter of Random Patches Network and
Relaxed-Collaborative-Representation-Based

Hyperspectral Image Classification
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Abstract—Feature extraction and accurate classification are
crucial tasks in the land-cover classification of the hyperspectral
image (HSI). We propose a guided filter (GF) of a random patches
network (RPNet) and a relaxed collaborative representation
(RCR)-based HSI classification (HSIC) method called GRR. The
shallow and deep features are extracted using RPNet that requires
no pretraining stage. In addition to the obtained feature set, the
original HSI and extracted features are then filtered by GF to
preserve the edge details. After that, all the distinct feature sets are
separately concatenated with the original HSI to keep the original
structure of the data. The high-dimensional feature sets are then
processed by a linear discriminant analysis (LDA) to increase class
separability and to select the most representative features. Since
few train samples are available in the HSIC task, the efficiency
of LDA is improved using superpixel segmentation to generate
pseudosamples. In the final stage, the reduced-dimension feature
sets are classified by the use of superpixel-guided RCR, which
utilizes the resemblance and discrimination of the feature sets
efficiently. The extensive experiments on the real HSIs are carried
out to validate the efficacy of the proposed method.

Index Terms—Guided filter (GF), hyperspectral image classif-
ication (HSIC), random patches network (RPNet), relaxed
collaborative representation (RCR).

I. INTRODUCTION

HYPERSPECTRAL remote sensing is a measurement tech-
nique that collects data from the land surface over a broad

spectrum [1]. The availability of rich spectral information allows
the identification of materials. Therefore, it is used in many areas
such as mineral detection [2], [3], [4], target detection [5], [6],
[7], classification of land surfaces [8], [9], [10], [11], etc.

Hyperspectral image classification (HSIC) methods can be
categorized into spectral and spectral–spatial classifiers. Spec-
tral classifiers utilize spectral information of a single pixel.
Support vector machines (SVM) [12], sparse representation
classifier (SRC) [13], and collaborative representation classi-
fier (CRC) [14] are popular spectral-based classifiers. While

Manuscript received 14 December 2023; revised 21 January 2024 and
23 February 2024; accepted 3 March 2024. Date of publication 5 March
2024; date of current version 18 March 2024. (Corresponding author: Tugcan
Dundar.)

The authors are with the Department of Electrical and Electronics Engi-
neering, Gaziantep University, 27310 Gaziantep, Türkiye (e-mail: tugcandun-
dar@gantep.edu.tr; tanerince@gantep.edu.tr).

Digital Object Identifier 10.1109/JSTARS.2024.3373600

only one single-pixel information is used in spectral classi-
fiers, neighborhood information of a pixel is also utilized in
spectral–spatial classifiers [15]. SRC assumes the test sample
is a linear combination of all train samples. However, CRC
formulates the test sample as a collaboration of all train data.
Wei et al. [14] indicated that the collaborative representation of
training samples is as important as sparsity. Therefore, several
CRC-based HSIC methods have been proposed [16], [17], [18],
[19], [20]. Li et al. [16] use a distance-weighted Tikhonov
regularization to measure the similarity between the test sample
and atoms in the dictionary and, then, couple it to a CRC-based
nearest-regularized subspace (NRS) classifier. The joint collabo-
rative representation (JCR) version of NRS is proposed in [17] by
averaging the spectra of the neighborhood of the test sample and
the spectrum of training examples in each class. A weighted JCR
(WJCR) is proposed in [18] by assigning appropriate weights
to the neighbor of the test pixel. Chen et al. [19] proposed
a weighted regularized collaborative representation optimized
classifier, which combines the advantages of CRC, NRS, and
WJCR. Shen et al. [20] calculate class-specific group weights
of train samples to reveal the impact of different classes and
proposed a grouped CRC algorithm.

Not only spectral and spatial features but also different fea-
tures are extracted then followed by a CRC-based classification.
3-D discrete wavelet transform [21] is applied in [22] to the
original hyperspectral image (HSI) to extract features, and then,
these are classified using CRC. Jia et al. [23] employ 3-D Gabor
features [24] and classify the features using CRC. Yang and
Qian [25] utilized multiple features such as the spectral value
feature (SVF), extended multiattribute profile (EMAP) [26], and
Gabor features to represent HSI better than the raw data. Then,
both the residuals of SRC and CRC were combined to classify a
given test sample. In [27], extracted EMAP features were filtered
by the predefined 3-D Gabor filters, and the resulting features
were classified with CRC. The obtained pixelwise classification
map was regularized using multiscale superpixels constituted
from the EMAP features. Liu et al. [28] proposed the Tikhonov
regularized CRC-based multitask correlation adaptive represen-
tation classifier using local binary pattern (LBP) [29], Gabor,
differential morphological profiles (DMP) [30], and SVF. The
designed optimization problem was solved for each modality
and the label of a given sample was assigned to the class
with minimum residual calculated over all modalities. All of
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these methods transform the original feature space into another
space and find an optimal representation between test and train
samples. Meanwhile, the distinct contribution of each feature to
the classification stage is ignored due to the classical CRC-based
representation.

In order to overcome the aforementioned issues, the
CRC-based method called relaxed collaborative representation
(RCR) [31] has been introduced. The objective function of RCR
is to utilize the resemblance and discrimination of extracted
features and; in addition, it finds an optimal solution for the
representation coefficients at the same time. RCR has been used
in anomaly detection [32], [33] and classification [34], [35], [36]
problems due to the efficient usage of the extracted features.
Li et al. [34] extracted different features such as SVF, spectral
gradient feature [37], Gabor, and DMP features from the HSI. In
order to use the similarities and distinctiveness of the features,
the RCR-based classification called JCR with multitask learning
(JCRC-MTL) was performed. In addition, the contextual infor-
mation of a test pixel was considered using a fixed-size square
patch to increase the classification results of the pixel-based
RCR. In [35], multifeature-superpixel-based RCR with band
weighting (MSRCR-BW) using EMAP, LBP, and Gabor fea-
tures was proposed. Each spectral band of HSI was considered
as an image and each image was segmented into the same su-
perpixel regions. Instead of a random selection of train samples,
the dictionary was composed of the samples selected from each
superpixel. Then, the extracted feature set of each superpixel was
classified with RCR. In addition to the feature weighting, HSI
bands were also weighted by RCR in the MSRCR-BW method.
Gao et al. [36] proposed region-based self-balancing dictionary
learning for RCR (RSBDL-RCR), which learns a comprehensive
dictionary at first and classifies the samples with RCR using
a superpixel segmentation strategy. Instead of calculating the
residuals of RCR, two new indicators called self-contribution
representing the discrimination capability and average contribu-
tion indicating the significance of each class were used to assign
a class label. The proposed RCR-based JCRC-MTL, MSRCR-
BW, and RSBDL-RCR HSIC methods give satisfactory clas-
sification results. However, the methods use feature extraction
algorithms, such as LBP, Gabor, DMP, and EMAP. Each has
different parameters that need to be tuned to obtain the features
better. After parameter adjustments are fulfilled, features need
to be extracted by calculating them separately, which increases
the computation time of the proposed methods considerably. In
addition, JCRC-MTL creates a fixed-size patch around each test
sample to obtain neighborhood information, which may increase
the computation time and may cause misclassification near the
class boundaries. In MSRCR-BW, the dictionary is generated
by selecting samples from each superpixel. If the train samples
are randomly selected from the data, some superpixels may not
contain samples. Additionally, since each spectral band of HSI
is treated as a single image and band-by-band representation
coefficients are calculated with RCR, the high dimension of
the dataset negatively affects the computation time. Due to the
dictionary learning stage of RSBDL-RCR, it imposes quite a
computational burden.

In recent years, a fast and efficient deep-learning-based HSIC
method called random patches network (RPNet) [38] requiring
no pretraining stage has been proposed. RPNet selects random
convolution kernels from HSI and convolves the HSI with the
chosen kernels. After repeating the process up to the predefined
number of layers, both shallow and deep features of HSI are
extracted in simple, fast, and efficient way. Then, all the features
are stacked together and classified by SVM. Over the years,
different RPNet-based HSIC methods have been proposed. In
random patches convolution and local covariance (RPCC) [39],
the dimension of HSI was reduced by a maximum noise fraction
(MNF) [40]. Then, RPNet was used to extract spatial features
and local covariance matrices were utilized to extract spectral
features. The obtained feature sets were concatenated and classi-
fied with SVM. Cheng et al. [41] presented spectral–spatial RP-
Net (SSRPNet), which extracts LBP features on the dimension-
reduced HSI and stacks the extracted features with HSI bands.
After that, the dimension was again reduced with principal com-
ponent analysis (PCA) [42] and fed into RPNet. Then, all the ob-
tained spectral–spatial features were classified by a graph-based
learning method. Shenming et al. [43] proposed the Gabor filter
with random patch convolution (GRPC), which applies PCA,
linear discriminant analysis (LDA) [44], and Gabor filter. The
dimension-reduced and filtered HSI was processed by RPNet;
then, both the output of the Gabor filter and RPNet were stacked
to be classified with SVM. RPNet with the recursive filtering
(RPNET-RF) [45] method was proposed to improve the result of
RPNet using RF, which is an edge-preserving filter. The dimen-
sion of RPNet feature was reduced and filtered by PCA and RF,
respectively. The filtered output was joined with the original HSI
and the combined features were assigned labels with SVM. Mul-
tiscale superpixelwise RPNet (MSRPNet) was proposed in [46],
which employs 2-D singular spectrum analysis (2D-SSA) [47]
for noise elimination and spectral—spatial and superpixelwise
PCA (S3-PCA) [48] for acquiring local and global features.
Then, RPNet was used to obtain shallow and deep features of the
output of S3-PCA. In the last step, RPNet and raw HSI features
were gathered and classified with SVM. RPNet and its variants
provide promising performance in terms of accuracy and compu-
tation time. Since the raw HSI spectral bands and obtained fea-
tures are concatenated in the RPNet-based methods, the resultant
feature matrix has high dimensions, which adversely affect the
classification [49]. In addition, the similarity and diversity of the
extracted features are not efficiently utilized due to the SVM.

Motivated by the success of RPNet and RCR, a novel HSIC
method called GRR is proposed. It unifies the favorable aspects
of RPNet, which extracts shallow and deep features in the HSI,
and RCR, which is capable of the classification of the feature sets
efficiently. In addition, the proposed method takes into account
the spatial structure of the HSI by the use of GF and superpixel
segmentation. Each available RCR-based HSIC methods utilize
different conventional feature extraction algorithms that require
many mathematical formulations to compute and the selection
of the right feature extraction algorithm is also a challenging
task. Moreover, RPNet-based HSIC methods use solely SVM to
classify HSI, which ignores the relation between the features
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and spatial structure of the HSI. In order to cope with the
aforementioned issues, the proposed GRR combines the superior
aspects of RPNet and RCR and then enhances the classification
performance with additional stages such as guided filtering of
the features, superpixel-guided pseudosample generation, and
superpixel-based classification. The stages of the proposed GRR
can be summarized as follows. First, PCA is applied to reduce
the dimension of HSI, which is next processed by RPNet to
extract shallow and deep features. Then, RPNet features and
raw HSI features are filtered by GF to retain the sharp edges
of the features, which improves the accuracy [50], [51], [52],
[53]. At the end of this stage, unique feature sets are obtained
as namely; RPNet, GF of RPNet, and GF of raw HSI. In order
to incorporate the original structure of the data, the raw HSI
is separately concatenated with these feature sets. Then, the
high dimensionality of the obtained feature sets is reduced
by LDA, which provides the selection of more representative
features and the facility of more separable classes. Since LDA
is a supervised method and its performance is directly related
to the plenty of train samples, superpixel-guided pseudosample
generation is utilized to increase the available samples before the
LDA process. Finally, all the dimension-reduced feature sets are
classified with RCR using the segmented HSI. The superpixel-
guided classification enables the use of spatial structures and
fast classification compared to the pixelwise classification.

The contributions of the proposed method can be listed as
follows.

1) A simple and fast HSI feature extraction method is devel-
oped to explore the shallow and deep features efficiently,
which is computationally less expensive compared to tra-
ditional methods.

2) Sharp feature edge details are preserved in the process by
means of GF on both raw HSI and RPNet features.

3) Separate concatenation of the extracted features with the
raw HSI allows us to maintain the original structure of HSI
inside each feature set.

4) Superpixel-guided pseudosample generation approach for
LDA provides to identify the samples correctly even if the
number of available train samples is low.

5) RCR-based classification on the segmented HSI assures
the efficient use of the extracted features, spatial neigh-
borhood information, and computation time.

The rest of this article is organized as follows. Section II
describes and formulates the stages of the proposed GRR. The
experimental setup and results are presented in Section III.
Finally, Section IV concludes this article.

II. GF OF RPNET AND RCR

The proposed GRR starts with the extraction of features
using RPNet. Then, these features and original HSI features
are separately filtered using GF to retain the edge details in the
features. Since HSIC suffers from the limited training samples,
superpixel-guided pseudosamples are generated to overcome
this problem. These pseudosamples are processed using LDA to
reduce the high dimension of each feature set and increase the
class discrimination capability. Finally, the superpixel-guided

RCR classification is performed to predict the class labels. A
visual representation of the proposed GRR is presented in Fig. 1.
The following sections describe and formulate each stage of the
GRR in detail.

A. RPNet Feature Extraction

RPNet differs from the conventional deep-learning-based
methods [54], [55], [56] since it does not require a pretraining
stage and many train samples. It randomly selects convolution
kernels from the HSI and convolves the whole HSI with a
cascaded structure containing dimension reduction, whitening,
patch extraction, convolution, and activation operations, re-
spectively. In order to decrease computation time and increase
the effectiveness of the convolution operation, RPNet first re-
duces the dimension using PCA, then a whitening operation is
performed to ensure that the variances of each spectral band
are similar and the correlation between the spectral channels
are minimized [57]. Then, random t pixels are chosen from
the whitened data and t convolution kernels are created using
each selected pixel as center. Afterward, the whitened data are
convolved with the obtained kernels to extract t feature maps.
Finally, the extracted features are fed into the activation operator
called rectified linear units (ReLU). RPNet reimplements all the
processes throughout the predefined number of layers.

LetH ∈ R
r×c×b be the 3-D representation of HSI where r and

c are row and column size, respectively, and b is the spectral size.
Let HP ∈ R

r×c×h represent the first h principal components of
H computed by PCA and the result of whitening operation on
HP is denoted as HW ∈ R

r×c×h. The convolution operation
using convolution kernels C1,2,...,t ∈ R

w×w×h with a patch size
of w is formulated as

Nj =

h∑
i=1

Hi
W ∗ Cij ; j = 1, 2, . . ., t (1)

where ∗ is the 2-D convolution operator, Nj ∈ R
r×c represents

the jth feature matrix, Hi
W ∈ R

r×c denotes the ith dimension
of HW , and Cij indicates the jth patch of dimension i. We
concatenate all Nj matrices into N ∈ R

r×c×t to include all
features in each layer. In order to advance sparsity in N , ReLU
is applied, and then, the features U1 ∈ R

r×c×t of the first layer
are extracted as

U1 = max(0,N −M) (2)

where M ∈ R
r×c×t is a 3-D matrix calculated as the mean of

N and duplicated t times in the third dimension as

M(:, :, j) =
1

t

t∑
j=1

N (:, :, j), j = 1, 2, . . ., t. (3)

The feature U1 represents the output of the first layer of RPNet
and, thus, holds the low-level features. To acquire the high-level
features, the output of the previous layer is given as input to the
next layer. Let U (�−1) denote the extracted feature set of layer
(�− 1) and be the input for layer �. In this case, only the input
H of the first layer is replaced by U (�−1) for the subsequent
layers and all the calculations starting from PCA are repeated
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Fig. 1. Flowchart of the proposed GRR.

until the predefined number of layers l is reached. Hence, both
the shallow and deep features U1,2,...,l are extracted from the
layers and stacked into the U = {U1,U2, . . . ,U l} ∈ R

r×c×tl.

B. Guided Filter

GF is a key step for extracting and emphasizing edge details in
an image. The main principle of GF is to obtain more structural
filter output compared to the input by using a guidance image.
The guidance image can be either a gray-level or a colorful
image. However, the first three principal components of PCA are
usually chosen as a guidance image [51], [52] in HSIC because
local linearity in the color image is more effective than the gray
image [50]. In addition, it is required to apply GF to each spectral
band separately when the input has more than a single channel
as in the case of color image [50].

Since there is a local linear relation between the output and
guidance image in a patch ωz whose center is positioned at the
pixel z [50], the local linear transformation by use of color
guidance image G ∈ R

r×c×3 in a local patch is evaluated as
follows:

qu = α�
z gu + βz ∀u ∈ ωz (4)

where the scalar qu ∈ R
1×1 is the filter output at the pixel loca-

tionu inωz ,αz ∈ R
3×1 andβz ∈ R

1×1 are the filter coefficients,
gu ∈ R

3×1 is the color vector of G at pixel u, and the operand
(·)� is transpose operation. In order to obtain the coefficients
αz and βz , the following linear-ridge-regression-based energy
function is formed:

E(αz, βz) =
∑
u∈ωz

(
(α�

z gu + βz − pu)
2 + εα2

z

)
(5)

where the parameter ε controls the amount of smoothing and
pu ∈ R

1×1 is the pixel value of the input image P ∈ R
r×c at

the pixel u. After the optimal coefficients αz and βz in a local
patch are found, the filter output qu is easily determined [50]. If
the filtering process is repeated for all pixels, the filtered output
P̃ ∈ R

r×c of the input P is obtained.
GRR applies GF on raw HSI and RPNet features simulta-

neously. Suppose that the guidance images of raw HSI and
RPNet features are given as GH ∈ R

r×c×3 and GU ∈ R
r×c×3,

respectively. Since GF is applicable for single-band images, each
spectrum of both H and U are separately filtered with the help
of GH and GU by following (4) and (5); then, the filtered outputs
H̃ ∈ R

r×c×b and Ũ ∈ R
r×c×tl are obtained as mentioned earlier.

After the GF process, the features of the proposed GRR are
constructed as

FHH̃ = {H, H̃} ∈ R
r×c×2b

FHU = {H,U} ∈ R
r×c×(b+tl)

FHŨ = {H, Ũ} ∈ R
r×c×(b+tl)

where the features FHH̃, FHU , and FHŨ are obtained by con-
catenation of the raw HSI H with the guided filtered HSI H̃,
extracted RPNet features U , and guided filtered RPNet features
Ũ , respectively.

C. Pseudosample Generation

Since all obtained feature sets are high-dimensional, LDA
is later utilized to reduce the dimension, increase the class-
discrimination, and decrease the computation time. The perfor-
mance of LDA is completely related to the available dictionary
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because it is a supervised technique; however, HSIC suffers
from the lack of train samples [1]. Therefore, we propose a
simple yet efficient superpixel-based temporary pseudosample
generation method to alleviate this problem. First, entropy rate
superpixel (ERS) segmentation [58] is utilized to segment the
HSI into many nonoverlapping spatial regions using the first
principal component of H as the base image. Then, the number
of superpixels K = m/T 2 is determined where T controls the
approximate number of pixels in each segmented region and
m = r × c denotes the number of pixels in the image.

Let n train samples given as d1,...,n ∈ R
b×1 are used to con-

struct training dictionary matrix D = [d1,d2, . . . ,dn] ∈ R
b×n

with P classes and the pth class has np samples where n =∑P
p=1 np. Suppose L(·) is an operator indicating the label of a

given sample or region and S = (s1, s2, . . . , sK) be the set of
superpixels sk=1,2,...,K where each includes many pixels inside.
Then the following process is repeated for each sk as

L(sk) =

{
mode(L{dsk}), if any d1,...,n ∈ sk
Ø, otherwise

(6)

where L(sk) refers to the label of superpixel sk and {dsk} is
a set of train samples inside sk. The null set Ø implies that the
superpixel sk does not contain any train samples inside; thus, no
label is assigned. The function mode(L{dsk}) counts the train
labels inside sk, if present, then finds the most repeated label
inside sk.

Consequently (6) states that if a superpixel contains train
samples, then the label of that superpixel is assigned as the most
frequent label of train samples inside; otherwise, the superpixel
has no label. With the help of pseudosample generation, the num-
ber of training samples is temporarily increased fromD ∈ R

b×n

to D̂ ∈ R
b×η (η � n) to implement LDA effectively.

D. Linear Discriminant Analysis

LDA is a supervised technique that projects the high-
dimensional data into low-dimensional domain while maximiz-
ing class discrimination simultaneously. As it is stated in [59],
the main drawback of LDA arises when the available train
sample size is small compared to the dimension of the data.
This issue makes the solution singular; therefore, LDA cannot be
implemented. Since the pseudosample is temporarily generated
and, thus, the dictionary is enlarged, we successfully overcome
this problem.

Assume that the enlarged dictionary D̂ contains η train sam-
ples as D̂ = [d̂1, d̂2, . . . , d̂η] ∈ R

b×η and each class p has ηp
samples, i.e., η =

∑P
p=1 ηp. The mean of each classmp ∈ R

b×1

and the mean of all train samples m ∈ R
b×1 are calculated as

mp =
1

ηp

ηp∑
ι=1

d̂pι (7)

m =
1

P

P∑
p=1

mp (8)

where d̂pι refers to the ιth sample in the pth class. Then,
the intraclass scatter matrix TW ∈ R

b×b and interclass scatter

matrix TB ∈ R
b×b are calculated as

TW =
P∑
p=1

ηp∑
ι=1

(d̂pι −mp)(d̂pι −mp)
� (9)

TB =

P∑
p=1

ηp(mp −m)(mp −m)�. (10)

In order to increase interclass variance and decrease intraclass
variance, the following is maximized in accordance with the
transformation matrix V ∈ R

b×b as

max
V

{
V�TBV

V�TWV

}
(11)

where V is simply calculated by using a generalized eigenvalue
problem as follows:

TBV = ΦTWV (12)

where the columns of V are the generalized eigenvectors asso-
ciated with the generalized eigenvalues, which are the diagonal
elements of Φ. After computing V and Φ, the eigenvalues are
arranged in descending order with their corresponding eigenvec-
tors. Then, only the first P − 1 columns of the sorted eigenvec-
tors are selected because the matrix TB has a rank of P − 1 and
also the first P − 1 sorted eigenvalues are nonzero. As a result,
the first P − 1 columns of the sorted V, i.e., Vd ∈ R

b×(P−1), is
used as the transformation matrix for dimensionality reduction.

Suppose that the obtained features FHH̃, FHU , and FHŨ
are converted to the 2-D feature matrices as FHH̃ ∈ R

2b×m,
FHU ∈ R

(b+tl)×m, andFHŨ ∈ R
(b+tl)×m and their correspond-

ing temporarily enlarged dictionaries are also given as D̂HH̃ ∈
R

2b×η , D̂HU ∈ R
(b+tl)×η , and D̂HŨ ∈ R

(b+tl)×η , i.e., (η < m),
respectively. After the equations from (7) to (12) are calcu-
lated for D̂HH̃, D̂HU , and D̂HŨ , the transformation matrices
are obtained as VdHH̃ ∈ R

2b×(P−1), VdHU ∈ R
(b+tl)×(P−1), and

VdHŨ ∈ R
(b+tl)×(P−1) independently. Then, in order to reduce

the high dimensionality of the features, the transformations are
evaluated as follows:

F̌HH̃ = V�
dHH̃

FHH̃ (13)

F̌HU = V�
dHUFHU (14)

F̌HŨ = V�
dHŨ

FHŨ (15)

where F̌HH̃ ∈ R
(P−1)×m, F̌HU ∈ R

(P−1)×m, and F̌HŨ ∈
R

(P−1)×m are the low-dimensional spaces of FHH̃, FHU ,
and FHŨ , respectively. Before classification, all of the low-
dimensional feature sets F̌HH̃, F̌HU , and F̌HŨ are normalized
to have columnwise unit norm.

E. Relaxed Collaborative Representation

RCR relies on the observation that the representation coef-
ficients of the extracted feature sets should share similarities
but also should reflect dissimilarities to emphasize different
characteristics of the features. RCR is mainly proposed for the
pixelwise classification. However, it is time consuming to handle
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the HSIC task due to the presence of many unlabeled pixels.
Therefore, the segmented HSI in the pseudosample generation
stage is used for RCR. In this way, the computation time is
reduced and the neighborhood information is utilized simulta-
neously. Suppose that ϑ different features are extracted for each
pixel and each feature is represented as v = 1, 2, . . . , ϑ. In the
case of GRR, F̌HH̃, F̌HU , and F̌HŨ are the feature sets and
ĎHH̃ ∈ R

(P−1)×n, ĎHU ∈ R
(P−1)×n, and ĎHŨ ∈ R

(P−1)×n

are the corresponding dictionaries of the feature sets, respec-
tively.

Let Xv
k be the vth feature representation coefficient matrix

affiliated with the corresponding dictionary Av
k and the samples

Yv
k in the kth superpixel. Then, the objective function of RCR

is given as follows:

arg min{Xv
k},{ψv}

ϑ∑
v=1

(‖Yv
k −Av

kX
v
k‖2F + λ‖Xv

k‖2F

+ τψv‖Xv
k − X̄v

k‖2F
)

s.t. prior {ψv}v=1,2,...,ϑ

(16)

where λ and τ are the positive regularization parameters. The
termsψv and X̄v

k denote the weight of each feature and the mean
of all coefficient matrices {Xv

k}v=1,2,...,ϑ, i.e.,
∑ϑ
v=1 X

v
k/ϑ,

respectively. The regularization ψv‖Xv
k − X̄v

k‖2F ensures that
all the coding matrices {Xv

k} are similar because each feature
coding matrix Xv

k is tried to minimize as close to the mean
coefficient matrix X̄v

k. On the other hand, the weight ψv is
utilized to emphasize the contribution of each future. According
to the work in [31], the proper selection of prior{ψv}depends on
three cases such as strong, moderate, and weak priors. In the case
of moderate and weak priors, the problem (16) is valid, which
requires an additional calculation to optimize {ψv}. However,
since the proper weight of each future is known beforehand for
the case of strong prior, the problem (16) is reduced to optimize
only the coding matrices {Xv}.

To decrease the computation time of the proposed GRR and
assign appropriate weight to each feature, suppose the obtained
features after LDA process are preclassified by SVM. Then, the
overall accuracy (OA) results of the features, which is the ratio of
correct predictions divided by the amount of unlabeled samples
to be classified, are used to determine the weightsψv as follows:

{ψv}v=1,2,...,ϑ =
OAv∑ϑ
v=1 OAv

(17)

where OAv represents the OA result of the vth feature. In
addition, (17) assures that the sum of the weights is equal to unity.
The optimization problem in (16) can be thought as minimizing
only {Xv

k} because the weights are {ψv} prelearned using the
preclassification of the features. Therefore, (16) can be rewritten
as

arg min{Xv
k}

ϑ∑
v=1

(‖Yv
k −Av

kX
v
k‖2F + λ‖Xv

k‖2F

+ τψv‖Xv
k − X̄v

k‖2F
)

(18)

which has a closed-form solution [31], [34] for v = 1, 2, . . . , ϑ
as follows:

Xv
k = X0,v

k + τ
ψv∑ϑ
γ=1 ψ

γ
Bv
kQk

ϑ∑
γ=1

ψγX0,v
k (19)

X̄v
k =

ϑ∑
v=1

ψvXv
k

/
ϑ∑
v=1

ψv (20)

where Bv
k = ((Av

k)
�Av

k + I(λ + τψv))−1, X0,v
k = Bv

k(A
v
k)

�

Yv
k , Qk = (I−∑ϑ

γ=1 ψ̄
γBγ

k)
−1, ψ̄γ = τ(ψγ)2/

∑ϑ
v=1 ψ

v,
and I ∈ R

n×n is the identity matrix. After the optimal solutions
of {Xv

k} are found, the reconstruction residual error e for class
p is calculated as

ep =

ϑ∑
v=1

ψv‖Yv
k −Av

kp
Xv
kp
‖2F (21)

where Av
kp

and Xv
kp

represent the dictionary and coding matrix
of the vth feature in the kth superpixel belonging to pth class,
respectively. Then, the labels of the samples inside a superpixel
set is determined as

L(Yv
k) = arg min

p=1,2,...,P
ep (22)

whereL(Yv
k) indicates the label of the samplesYv

k . As a result of
calculating all the equations from (16) to (22) for all superpixels,
the classification map of a given HSI is obtained. Algorithm 1
presents the pseudocode of the proposed GRR.

III. EXPERIMENTAL ANALYSIS AND RESULTS

This section describes the datasets, analyzes the effects of the
parameters, and presents the results of the fair comparisons with
the recent methods. All of the experiments are separately con-
ducted on the Indian Pines (IP)[60], Pavia University (PU)[61],
and large-scale WHU-Hi-HongHu (WHHH)[62] HSIC datasets.
The parameters of the GRR are the number of random patches
t, number of principal components h, patch size w, layer depth
l, superpixel patch size T , RCR regularizers λ, and τ . While
adjusting a parameter to an optimum value in a specified range,
the remaining parameters are kept constant. In order to validate
the effectiveness of the GRR, we select some recent methods
called JCRC-MTL [34], RPNet [38], RPCC [39], SSRPNet [41],
GRPC [43], RPNet-RF [45], and MS-RPNet [46] for the com-
parison. In addition, an SVM-based version of GRR (GR-SVM),
which classifies the features with SVM instead of RCR is also
taken into account to prove the effectiveness of the GRR. The
experiments were realized on a PC with an Intel Core i7-6700HQ
3.50-GHz processor and 16 GB of RAM.

A. IP Dataset

The IP dataset was obtained from the IP test zone in North-
western Indiana [60]. It has a spatial size of 145× 145 pixels
where spatial resolution is 20 m/pixel and covers 220 spectral
bands ranging between 0.4−2.5 μm in 10 nm steps. However,
The bands numbered [104–108, 150–163, 220] are discarded
due to the water absorption. Therefore, the IP with a size
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Algorithm 1: Pseudocode of the Proposed GRR.
Input:

1) Hyperspectral image H
2) RPNet parameters: t, h, w, and l
3) Superpixel segmentation parameter: T
4) RCR parameters: λ and τ

S1: Extract the RPNet features
for each layer � up to l

1) Apply PCA to H and obtain HP with first h PCs.
2) Whiten the data HP and obtain HW .
3) Extract t convolution kernels C1,2,...,t from HW .
4) Convolve the HW with each of C1,2,...,t by (1) and
then concatenate the features into the N .

5) Obtain the feature U� of the corresponding layer
after applying the ReLU activation function to N by
(2) and (3).

6) If � < l, repeat the process by changing H with U�.
end

S2: Stack the features into U = {U1,U2, . . . ,U l}
S3: Apply GF on U and H by (4) and (5), then obtain Ũ
and H̃.

S4: Stack the extracted features U , Ũ , and H̃ with H
separately and construct the feature sets FHU , FHŨ , and
FHH̃.

S5: Segment H into many superpixels with ERS and
generate pseudosamples by (6).

S6: Apply LDA on the pseudosamples from (7) to (12) and
evaluate the dimension-reduced feature sets F̌HU , F̌HŨ ,
and F̌HH̃ from (13) to (15).

S7: Preclassify the features by SVM to assign appropriate
feature weights to each future.

S8: Superpixel-guided RCR classification
for each superpixel region k up to K

1) Solve the RCR problem from (16) to (20) and find
coefficient matrices {Xv

k}.
2) Evaluate the residuals by (21).
3) Assign a label to superpixel by (22).

end
Output: Predicted class labels of the H.

of 145× 145× 200 containing 16 land-cover classes is used
throughout the experiments. Table I summarizes the class-wise
information. The optimal parameters are adjusted using 5% and
95% of randomly selected samples from each class as train and
test samples, respectively. All of the experiments are repeated
ten times and the results are averaged due to the randomly chosen
train and test samples.

Fig. 2 presents the influences of the parameters t, h, l, and w
on the performance of GRR in terms of OA and AA. As it is seen
from Fig. 2(a), the results of OA and AA reach the maximum at
t = 60. The effect of number of principal components suddenly
arises from 3 to 7; then, the individual results of OA and AA
seem almost stable. Both OA and AA have the highest values
when h = 13 according to Fig. 2(b). The depth l of the network
significantly increases the classification performance changing

TABLE I
SIXTEEN GROUND-TRUTH CLASSES OF THE IP DATASET

Fig. 2. IP dataset: OA and AA results of the proposed GRR under different
(a) random patches t, (b) principal components h, (c) layer depths l, and (d)
patch sizes w.

from 3 to 5. After this value, OA and AA results slightly increase
toward l = 9 and reach the maximum at this point as can be seen
from Fig. 2(c). The optimal value of the patch size is chosen
as w = 7 because AA gradually falls after this point and OA
seems stable according to Fig. 2(d). Hence, the optimal values
are adjusted as t = 60, h = 13, l = 9, and w = 7 for the RPNet-
based feature extraction stage.

To generate the pseudosamples for LDA and classify the
features with RCR, GRR utilizes superpixel segmentation. Fig. 3
shows the impact of the different superpixel patch sizes T in
terms of the OA and AA results. While OA reaches its maximum
at T = 8, AA reaches the maximum at T = 4. When T = 4, the
OA is almost 1% lower than at T = 8. Meanwhile, the AA
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Fig. 3. IP dataset: OA and AA results of the proposed GRR under different
superpixel patch size T for the LDA.

Fig. 4. IP dataset: The maps of (a) superpixel segmentation, (b) train samples,
(c) pseudosamples for LDA, and (d) ground-truth.

Fig. 5. IP dataset: OA and AA results of the proposed GRR under the different
values of the regularizers (a) λ and (b) τ .

decreases by approximately 0.5% when T = 8 compared to
T = 4. Therefore, T is selected as 8 for the convenience. Fig. 4
shows the segmentation map, selected random train samples,
generated pseudosamples, and ground-truth image.

The selection of regularization parameters for the RCR-based
classification is important. Therefore, these parameters are var-
ied through λ = [1e−3, 1e2] and τ = [1e−3, 1e2] to see the
effect on the OA and AA results, which is shown in Fig. 5.
Except for λ = 1e2, the OA values are quite similar; however,
the AA result starts to drop after λ = 1e−1. Hence, the optimal
value of λ is set as 1e−1. Similarly, the OA values are almost the
same between τ = 1e−1 and τ = 1e2; however, the AA value
gets the highest value at τ = 1e0. Therefore, the optimal value
of τ is tuned as 1e0.

Table II reports the comparison results by selecting 5% and
95% of samples from each class used as train and test samples,
respectively. The quantitative results are evaluated in terms of
classwise accuracies, OA, AA, and kappa (κ) with standard
deviations along with computation times. As seen, the proposed
GRR achieves the best overall performance followed by GR-
SVM. This proves that the RCR-based classification provides
better results than the SVM-based classification. The OA, AA,
and κ of GRR are approximately 1%, 2%, and 1.5% higher
than the GR-SVM. It can be observed that GRR classifies the
samples better than other methods under comparison. Efficient
feature extraction and RCR-based robust classification greatly
affect the performance. JCRC-MTL, which extracts the features
with traditional methods and then applies RCR, has lower ac-
curacies than GRR. As seen, GRR outperforms JCRC-MTL by
nearly 2.8% and 8% in terms of OA and AA, respectively. The
advantage of the GRR can be seen from class 9, which has
only one training sample. While GRR completely classifies all
the test samples accurately, the other methods produce lower
results except for GR-SVM. The best OA attained by RPNet-
based methods is SSRPNet due to the graph-learning-based
classification of the samples in their methods. Moreover, feature
extraction or feature processing stages in RPNet-based models
improve the results as well as GRR. For the computation time of
the algorithms, GRPC is the fast method followed by RPNet-RF.
Among the all methods, the running time of the JCRC-MTL
is quite high due to the samplewise patch construction and
classification stages. GRR has a slightly higher computation
time than GR-SVM due to the fact that RCR requires additional
computations.

The classification maps of the methods are shown in Fig. 6.
Since all the methods except RPNet utilize additional spatial
feature processing stages, the corresponding classification maps
have smooth edges. The effect of the use of edge preserving filter
GF and superpixels can be seen in the classification map of the
proposed GRR because the borders of the classes are preserved
better than the others. In addition, all methods except GRR failed
to correctly classify class 9, which contains few samples and has
a small area within the land cover. Finally, the classification map
of GRR is closest to the ground-truth map visually.

Fig. 7 shows the OA results by changing the train sample
percentage. After 7% train percent, the OA results of the GRR,
GR-SVM, and SSRPNet are close to each other. For the per-
centage limits below 7%, GRR has the highest OA than the
others. When only 1% of the IP dataset is selected as the training
sample, GRR provides almost 5% higher OA than the methods
that provide the closest OAs such as SSRPNet and JCRC-MTL.
Therefore, it can be concluded that GRR has the ability to
efficiently classify the samples under a few labeled samples
compared to the methods under comparison.

B. PU Dataset

The PU dataset was collected by ROSIS sensor over the
PU located in Northern Italy. The PU dataset consists of
610× 340 pixels and 103 spectral bands spanned between 0.43
and 0.86 μm. It has a spatial resolution of 1.3 m/pixel and
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TABLE II
CLASSIFICATION ACCURACY RESULTS WITH 5% LABELED SAMPLES OF THE IP DATASET

Fig. 6. IP dataset. (a) False-color image. (b) Ground-truth. Classification maps with OAs obtained by (c) RPNet (91.97%), (d) RPNet-RF (93.39%), (e) RPCC
(93.94%), (f) GRPC (94.51%), (g) MS-RPNet (95.19%), (h) JCRC-MTL (95.31%), (i) SSRPNet (96.71%), (j) GR-SVM (96.92%), and (k) GRR (98.24%).

covers 9 ground-truth classes. Table III presents the class-based
information of the scene. Among the available samples, 1% and
99% of each class are randomly partitioned as train and test
samples, respectively. Simulations are repeated 10 times, and
then, the results are averaged.

The optimal parameters of RPNet-based feature extraction
are evaluated using the same strategy used in the case of IP
where the parameters t, h, l, and w are varied. Fig. 8 shows the
variations of OAs and AAs with respect to the different values
of the parameters. According to Fig. 8(a), the number of random
patches t = 50 provides the highest OA and AA. After this
value, both OA and AA decrease dramatically. Starting from
the smallest value in the range of h, the number of principal
components continuously increases the result until h = 13. In
accordance with Fig. 8(b), it seems that there is a slow decline

TABLE III
NINE GROUND-TRUTH CLASSES OF THE PU DATASET
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Fig. 7. IP dataset: OA results of the different methods under varying training
percentages.

Fig. 8. PU dataset: OA and AA results of the proposed GRR under different
(a) random patches t, (b) principal components h, (c) layer depths l, and (d)
patch sizes w.

for OA and AA after this value. The optimal value of the layer
number l is determined as 5 because the amount of increase in
OA is remarkable and the result of AA is satisfactory as seen
in Fig. 8(c). Since the geometrical structures of the classes in
the PU dataset are very different, i.e., asphalt, meadows, bare
soil, and shadows, the patch sizes w of the convolution kernels
significantly affect the results, which can be seen from Fig. 8(d)
clearly. However, both OA and AA reach the highest value when
w = 11 at which the features of the geometrical structures are
better maintained. Eventually, the optimal parameters are tuned
as t = 50,h = 13, l = 5, andw = 11 for the RPNet-based feature
extraction in the PU dataset.

Fig. 9 represents the changes in OA and AA values with
the corresponding superpixel patch sizes when T varies from

Fig. 9. PU dataset: OA and AA results of the proposed GRR under different
superpixel patch size T for the LDA.

Fig. 10. PU dataset: The maps of (a) superpixel segmentation, (b) train
samples, (c) pseudosamples for LDA, and (d) ground-truth.

Fig. 11. PU dataset: OA and AA results of the proposed GRR under the
different values of the regularizers (a) λ and (b) τ .

3 to 11. The selection of T is significant because it is used in
generating pseudosamples of LDA as well as the classification
of the samples. As it can be observed, the OA value increases
from T = 3 to T = 10; then, it starts to decrease. Meanwhile,
the AA value first decreases from T = 3 to T = 6, then it
increases up to T = 10 at which the AA is maximum. Hence,
the optimal value is selected as T = 10 for best results. Fig. 10
depicts the segmentation map, random train samples, generated
pseudosamples, and ground-truth, respectively.

The optimal regularization parameters λ and τ are selected
using the same idea in the IP case. Fig. 11(a) shows the OAs
and AAs, which are quite close for λ = 1e−3 and λ = 1e0,
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TABLE IV
CLASSIFICATION ACCURACY RESULTS WITH 1% LABELED SAMPLES OF THE PU DATASET

both are maximum at λ = 1e−3. After λ = 1e−3, both OAs
and AAs decrease seriously. Fig. 11(b) shows the OAs and AAs
by varying τ in a specified interval. There are no remarkable
changes in the OAs; however, the AA is at the highest value
when τ = 1e1. Consequently, the optimal parameters are set to
λ = 1e−3 and τ = 1e1, respectively.

Table IV presents the comparative classification results of
the methods under 1% labeled samples in each class of the PU
using the optimal parameters. The proposed GRR achieves the
best or the second-best classwise accuracies for many classes.
Compared to the GR-SVM, the OA, AA, and κ of GRR is about
1% better due to the RCR-based classification. The results of
JCRC-MTL are approximately 3% lower than the results of
GRR. It means that the extracted features of GRR are more
meaningful than the features of the JCRC-MTL. This is because
the original and guided filtered RPNet features. Among all
RPNet-based methods, GRR has the highest OA, AA, and κ. For
example, the results of the SSRPNet are the highest one among
RPNet, RPNet-RF, RPCC, GRPC, MS-RPNet, and SSRPNet.
However, GRR outperforms the SSRPNet by nearly 2%, 6%,
and 3% in terms of OA, AA, and κ, respectively. Since the
spatial size of the PU is much larger than the IP, the computation
time of the methods is directly affected as seen in Table IV.
For example, the runtime of the RPCC increases considerably
compared to the IP dataset because the local covariance matrix
calculation requires much time for the spatial size of the PU.
2D-SSA and S3-PCA steps of the MS-RPNet methods take
much time due to the large spatial dimension of the PU. The
abundance of the test samples negatively affect the computation
time of the JCRC-MTL because the patch construction around
each test sample is time consuming. For the SSRPNet, the
weight calculation between the nodes in graph-based learning
consumes much time for the large spatial size of the PU. In
the proposed GRR, most of the computation time is spent on
the GF process because the edge details are extracted in a local
window. Compared to the GR-SVM, GRR takes approximately
4.5 s longer due to the superpixel-based classification with RCR.
Among the all methods, RPNet has the lowest running time
followed by the RPNet-RF.

In order to see the performance of methods visually, classi-
fication maps of all methods are provided in Fig. 12. It can be
observed that the classification map of GRR is quite close to
the reference map and false-color image. In addition, the edges
of the classes and the small local spatial regions are preserved
and classified better compared to the other methods since GF
preserves edge details and superpixel-guided RCR classifies the
samples better.

An additional comparative experiment is realized under dif-
ferent numbers of train samples, such as 10, 40, 70, and 100
per class. According to Fig. 13, the proposed GRR is able to
classify the dataset better than the other methods under a few
labeled samples. As the number of train samples increases, the
OA results of other methods get close to the OA of GRR.

C. WHHH Dataset

The large-scale WHHH dataset was obtained over HongHu
City, China, in 2017. It has a size of 940 × 475 × 270 whose
wavelength changes from 0.4 to 1μm. The dataset has quite high
spatial and spectral resolutions, such as 4.3 cm and 6 nm, respec-
tively. There are 22 land-cover classes, which include different
crop types. Table V summarizes the class-based information of
the dataset. Due to the plenty of available samples, only 0.5%
of the samples are used as train and the rest are utilized as test
samples in each class. All of the experiments are reiterated 10
times; then, the results are averaged.

Fig. 14 shows the variation of OA and AA results with respect
to the t, h, l, and w, respectively. According to Fig. 14(a),
the number of random convolution kernels t is selected as 120
because the higher OA and AA results are obtained. The number
of principal components h increases the results up to h = 15 as
seen in Fig. 14(b); then, both OA and AA values decrease. The
layer depth l is an important parameter that has an effect on the
extraction of deep features. Fig. 14(c) depicts the impact of l on
the OA and AA results. It is seen that l = 9 provides the highest
results. The optimal value of the patch sizew is determined as 25
due to the highest values of OA and AA according to Fig. 14(d).
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Fig. 12. PU dataset. (a) False-color image. (b) Ground-truth. Classification maps with OAs obtained by (c) RPNet (92.03%), (d) RPNet-RF (93.34%), (e) RPCC
(93.53%), (f) GRPC (94.27%), (g) MS-RPNet (95.32%), (h) JCRC-MTL (96.18%), (i) SSRPNet (96.59%), (j) GR-SVM (97.51%), and (k) GRR (98.58%).

Fig. 13. PU dataset: OA results of the different methods under varying training
samples per class.

Consequently, the optimal parameters are adjusted as t = 120,
h = 15, l = 9, and w = 25, respectively.

The effect of superpixel patch size T is analyzed in Fig. 15.
As it is seen, an increase in T decreases the OAs and AAs. This
may be due to the small spatial regions such as class 2 and small
regions belonging to a class located inside a different class such
as class 14 found in class 13 and class 7–10 found in class 14. In
such cases, there would be misclassification because the large
superpixel patch size could contain different classes. According
to Fig. 15, T = 5 is the best choice to achieve higher OA and AA
values. Fig. 16 illustrates the segmentation map with respect to

TABLE V
TWENTY-TWO GROUND-TRUTH CLASSES OF THE WHHH DATASET

T = 5, randomly chosen train samples, formed pseudosamples,
and reference ground-truth map.

The impact of the RCR regularization parameters λ and τ
is presented in Fig. 17. It is seen from Fig. 17(a) that the
OA results are similar between λ = 1e−3 and λ = 1e1, then
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Fig. 14. WHHH dataset: OA and AA results of the proposed GRR under
different (a) random patches t, (b) principal components h, (c) layer depths l,
and (d) patch sizes w.

Fig. 15. WHHH dataset: OA and AA results of the proposed GRR under
different superpixel patch size T for the LDA.

Fig. 16. WHHH dataset: The maps of (a) superpixel segmentation, (b) train
samples, (c) pseudosamples for LDA, and (d) ground-truth.

Fig. 17. WHHH dataset: OA and AA results of the proposed GRR under the
different values of the regularizers (a) λ and (b) τ .

suddenly decrease after λ = 1e1. By the way, the AA results
are similar between λ = 1e−3 and λ = 1e−1, and start to fall
after λ = 1e−1. Hence, the best parameter is decided as λ =
1e−1. For the parameter τ , it is seen that both OA and AA attain
the maximum at τ = 1e0 according to Fig. 17(b). Therefore,
the optimal parameters are tuned as λ = 1e−1 and τ = 1e0,
respectively.

A fair comparison results are indicated in Table VI by ran-
domly distributing 0.5% train samples per class. It is observed
that the proposed GRR has the highest OA, AA, and κ values
followed by the results of the GR-SVM. It can be concluded
that superpixel-based RCR provides superior results compared
to SVM since RCR utilizes the extracted features efficiently and
superpixel segmentation provides spatially correlated regions.
Compared to the JCRC-MTL, GRR outperforms the results in
terms of OA, AA, and κ by approximately 3%, 8.5%, and 4%,
respectively. It shows that extracted features with RPNet and
superpixel-based RCR provide better performance than tradi-
tional feature extraction methods and patch-based RCR. The
other RPNet-based methods such as RPNet-RF, RPCC, GRPC,
MS-RPNet, and SSRPNet obtain higher accuracy results than
RPNet due to the additional spatial filtering operations. The
efficacy of the proposed GRR can be observed from classes
2 and 15 whose spatial regions are small and available train
samples are low. Except for GRR with 94.40% class accuracy,
the other methods have class accuracies lower than 90% for
class 2. In class 15, GRR and GR-SVM have results greater than
90% while other methods remain below this percentage. Due to
the large-scale of WHHH dataset, the computation time of all
methods increases compared to the IP and PU datasets. Due to
the great number of test samples and patch-based classification,
JCRC-MTL is the slowest method followed by SSRPNet. The
evaluation of node weights in graph-based SSRPNet requires a
high-computational cost. In the method MS-RPNet, the 2D-SSA
and S3-PCA algorithms take long time; therefore, the com-
putational time is high. Among all methods, RPNet-RF is the
fastest method followed by RPNet. The computation times of
the proposed GR-SVM and GRR are lower than the JCRC-MTL,
SSRPNet, and MS-RPNet; however, higher than the others since
the guided filtering operation spends time due to the large scale
of the dataset. Compared to the GR-SVM, the computation time
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Fig. 18. WHHH dataset. (a) False-color image. (b) Ground-truth. Classification maps with OAs obtained by (c) RPNet (91.78%), (d) RPNet-RF (92.34%), (e)
RPCC (92.58%), (f) GRPC (93.18%), (g) MS-RPNet (93.97%), (h) JCRC-MTL (94.51%), (i) SSRPNet (94.92%), (j) GR-SVM (95.83%), and (k) GRR (97.12%).

TABLE VI
CLASSIFICATION ACCURACY RESULTS WITH 0.5% LABELED SAMPLES OF THE WHHH DATASET
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Fig. 19. WHHH dataset: OA results of the different methods under varying
training samples per class.

of the GRR is higher due to the preclassification with SVM for
the weight assignment of the RCR.

Fig. 18 presents the classification maps of the methods. It is
seen that all methods except RPNet have smooth classification
maps due to the spatial filtering. By considering both false-color
and ground-truth images, the proposed GRR provides more
correct spatial borders and less misclassification of the samples.
In addition, the oversmoothing of class borders is lesser than
the others. It implies that the GF-based filtering and superpixel-
based classification preserve the local spatial structures.

In order to see the performance of the methods under equal
train samples per class such as 25, 50, 75, and 100, Fig. 19
is introduced in terms of OA. When using 25 train samples
per class, GRR provides OA above 90% while other methods
remain between 80% and 85%. Although the OAs of other
methods approach the OA of GRR as the number of train samples
increases, the proposed GRR always provides the best result.
Therefore, GRR achieves the best classification performance
not only in the separation of percentage-based train samples but
also in the partition of equal numbers of train samples per class.

IV. CONCLUSION

This article proposed an efficient spectral–spatial HSIC
method utilizing RPNet and RCR. First, shallow and deep fea-
tures are extracted using RPNet. GF is utilized to extract edge
detailed features of RPNet and original HSI spectral features,
respectively. Then, RPNet features and edge-detailed features of
RPNet and original HSI are separately stacked with the original
HSI spectral features. In this way, the feature sets containing
different attributes extracted from the same HSI are obtained.
Since the dimension of a stacked feature set is high, LDA is
applied to reduce the dimension and increase class separability.
In order to maximize the class separability capacity of LDA
under a few train samples, pseudosamples are formed by means

of superpixel segmentation. Finally, the dimension-reduced fea-
ture sets are fed into the superpixel-guided RCR classifier to
use the similarity and distinction of the extracted features better.
The conducted experiments on the real HSI datasets verified the
effectiveness of the proposed GRR method.

The method still needs some improvements to achieve better
classification performance. Instead of using fixed-size convolu-
tion kernels in RPNet, shape-adaptive kernels can be used. In
this way, the more representative features may be obtained. In
addition, single-scale superpixel segmentation in the classifica-
tion stage can be replaced by multiscale segmentation. In this
manner, spectral–spatial features of both small and large areas
within the HSI can be better characterized.
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