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Similarity Learning for Land Use Scene-Level
Change Detection

Jinglei Liu , Weixun Zhou , Member, IEEE, Haiyan Guan , Senior Member, IEEE, and Wenzhi Zhao

Abstract—Scene-level change detection (SLCD) can provide se-
mantic change information at image level, thus it is of great
significance for monitoring land use changes. Supervised SLCD
approaches tend to outperform unsupervised ones. However, the
existing supervised methods rely on postclassification, which often
results in unsatisfactory performance due to classification error ac-
cumulation. We therefore formulate SLCD as a similarity learning
task, and propose a scene similarity learning network (SSLN) for
land use SLCD. To be specific, SSLN is a two-branch network with
ResNet as the backbone for feature extraction, where the global
feature difference and the multiscale local feature fusion modules
are considered in order to better mine the temporal correlation
between bitemporal scenes. Then, the trained SSLN is further
exploited to obtain the similarity of scene pairs for determining
the similarity threshold via threshold traversal algorithm. Finally,
the land use scenes are categorized into changed or unchanged
by comparing scene similarity with the threshold. Experimental
results on the publicly available MtS-WH dataset and our newly
released land use scene change detection dataset show that the
proposed approach achieves better performance than comparison
methods, indicating that our approach is a simple yet effective
solution to land use SLCD.

Index Terms—Land use, scene change detection, scene similarity,
similarity learning.

I. INTRODUCTION

R EMOTE sensing change detection (RSCD) aims to mon-
itor the changes of ground objects in a region through

repeated observation [1]. At present, RSCD has been widely
used in many fields [2], [3], such as urban planning [4], natural
resource management [5], [6], [7], and disaster assessment
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[8]. With the development of earth observation technology,
the spatial resolution of remote sensing images has shown a
trend of development from medium and low resolution to high
resolution. Compared with medium- and low-resolution images,
high-resolution images provide more detailed information of
ground objects, and thus it is a main data source for RSCD.

RSCD can be divided into pixel-level, object-level, and scene-
level change detection. Pixel-level change detection is focused
on independent pixels as detection units. There has been a large
number of works in this field [9], [10], [11], [12], [13], [14], [15].
Shi et al. [12] proposed a deep supervised based attention metric
network to reduce pseudovariation and noise. In [13], an iterative
training sample enhancement strategy was proposed, which
was combined with deep learning neural networks to improve
the performance of land cover change detection. In contrast,
object-level change detection is to detect the changes based
on semantic objects [16], [17]. Zhang et al. [16] proposed an
object-level change detection framework that detects changing
geographic entities such as new buildings or changing artificial
structures by paying more attention to the overall characteris-
tics and contextual associations of changing object instances.
Doi et al. [17] designed a network that can detect object-level
changes in image pairs, and can capture different scene changes
in image pairs with different viewpoints.

But different from pixel- and object-level change detection,
scene-level change detection (SLCD) is able to detect and iden-
tify changes at image-level, as shown in Fig. 1. It is observed
that the changes of pixels or objects cannot directly reflect
the changes of land use types. For example, though the bare
land (BL) has changed to industrial house in pixel-level and
object-level change detection, the land use type remains to be
industrial land (IL). With the continuous refinement of urban
functional areas, SLCD is of great significance for monitoring
the change of land use types and further planning of the city.
Therefore, land use SLCD has become a necessary and important
research direction in the field of RSCD.

The key of SLCD is to extract powerful scene feature rep-
resentations. Many existing approaches rely on handcrafted
features to perform change detection [18], [19]. Wu et al. [18]
presented a supervised scene change detection framework that
combined the bag-of-visual-word (BoVW) model with SVM
classifier. Specifically, the multitemporal scene images were
encoded by BoVW model and then fed into SVM to obtain
classification results. Du et al. [19] proposed an unsupervised
SLCD method based on latent Dirichlet allocation (LDA) and
multivariate alteration detection (MAD), where LDA and MAD

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0009-0007-3123-2882
https://orcid.org/0000-0002-3270-7268
https://orcid.org/0000-0003-3691-8721
https://orcid.org/0000-0002-3125-2310
mailto:859507654@qq.com
mailto:guanhy.nj@nuist.edu.cn
mailto:zhouwx@nuist.edu.cn
mailto:wenzhi.zhao@bnu.edu.cn
mailto:wenzhi.zhao@bnu.edu.cn


6502 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 1. Relationship between pixel-level, object-level, and scene-level change
detection.

were used to identify feature topics and detect scene-level
changes, respectively. However, the handcrafted features are
not feasible for image scenes with high complexity. In recent
years, inspired by the remarkable performance of deep learning
methods particularly convolutional neural networks (CNNs) on
various image recognition tasks [20], [21], [22], remote sens-
ing community has explored them for various tasks, including
scene classification, semantic segmentation, as well as change
detection [23], [24], [25].

To advance land use SLCD, scholars have proposed various
methods, which mainly include unsupervised methods and su-
pervised methods. Fang et al. [26] presented a novel automatic
binary SLCD approach based on deep learning. It combined the
direct predetection with postclassification-based predetection
to ensure the stability for generating change detection training
samples. However, it is often difficult for unsupervised methods
to achieve satisfactory performance due to the lack of labeled
samples. For supervised approaches, Fang et al. [27] proposed a
new framework for fusing differential aggregation networks and
class probability-based fusion strategies to fully capture tempo-
ral change features and generate final binary change detection
results by fusing three predicted class-based probability vectors.
In their recent work, Fang et al. [28] also presented a multibranch
fusion network capable of accepting both high-resolution images
and a kernel density map as input, helping to fully mine depth
features. Ru et al. [29] proposed a CorrFusion module by fusing
the highly correlated information between bitemporal features.
Though SLCD performance has been improved, CorrFusion
belongs to classification-based methods (CBM). For simple land
use scenes, the CBM can achieve good performance, which is,
however, not the case for land use scenes with high complexity.
This is because the change detection performance depends on the
classification results of bitemporal scenes. The incorrect classifi-
cation results of land use scenes in any phase will affect the final
change detection performance. The comparisons between the

existing works along with their main distinctive characteristics
are summarized in Table I.

To avoid the influence of incorrect classification results, schol-
ars have investigated similarity learning for image classification.
For example, Pinheiro [30] proposed a classification method
based on similarity learning, which performs classification by
calculating the similarity between prototype representations of
each category. Moreover, similarity learning is also used in other
fields [31], [32]. Zagoruyko and Komodakis [31] proposed a
method of learning general patch similarity function directly
from image data and its performance is much better than the
optimal method at that time. Simo-Serra et al. [32] presented a
feature description method based on deep learning, where the
Siamese network was used to extract features from blocks, and
L2 distance was selected to measure the differences between
features, in order to shorten the distance between matched block
features, and to increase the distance between unmatched block
features.

Apart from powerful scene representations, large-scale
datasets are also indispensable for developing supervised deep
learning-based land use SLCD methods. There are currently two
existing benchmark datasets, i.e., MtS-WH [18] and WH-MAVS
[33] in the literature. However, MtS-WH dataset contains 190
training samples and 1920 testing samples, respectively, in
each phase, thus is not suitable for deep learning-based land
use SLCD due to its small volume. Compared to MtS-WH,
WH-MAVS dataset is a large-scale dataset with 47 134 samples
in total, but it is not publicly available at present. Therefore,
an open-source large-scale benchmark is necessary in order to
advance SLCD research.

To solve the above-mentioned issues, we propose a simple
yet effective land use SLCD approach by addressing SLCD
from a different perspective. To be specific, we regard SLCD
as a similarity learning task and propose a scene similarity
learning network (SSLN). Unlike the existing CBM, our pro-
posed approach performs SLCD based on scene similarity,
and thus is independent of classification results. To conduct
binary change detection, the similarity threshold is first de-
termined via traversal of similarity values between bitempo-
ral scene pairs obtained by the trained SSLN, and the final
binary SLCD results are achieved by comparing the scene
pair similarity values with the similarity threshold. To evaluate
the performance of our proposed approach, we construct a
large-scale benchmark dataset, which is publicly available for
research purposes. In summary, our main contributions are as
follows.

1) We formulate land use binary SLCD as a similarity learn-
ing problem, and propose a simple yet effective SLCD
approach based on SSLN. To the best of our knowledge,
it is the first work that addresses the SLCD task from the
perspective of similarity learning.

2) To demonstrate the proposed approach, we collect and
release a large-scale land use scene change detection
(LUSCD) dataset, which is currently the largest publicly
available dataset for land use SLCD.

3) Our proposed approach achieves state-of-the-art perfor-
mance on MtS-WH and LUSCD datasets, outperforming
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TABLE I
COMPARISONS BETWEEN THE EXISTING WORKS ALONG WITH THEIR MAIN DISTINCTIVE CHARACTERISTICS

TABLE II
SOME IMPORTANT ITEMS AND CORRESPONDING ABBREVIATIONS

the CBM and offline similarity-based methods (OSBM),
proving the effectiveness of the proposed method.

The rest of the article is organized as follows. Section II
depicts the new LUSCD dataset in detail. Section III introduces
the proposed land use SLCD approach. Section IV discusses the
experimental results. Finally, Section V concludes the article. In
addition, we list some important items and their corresponding
abbreviations, as shown in Table II, for the readers’ convenience.

II. LARGE-SCALE LUSCD BENCHMARK DATASET

As shown in Table III, our LUSCD dataset is compared to the
two commonly used datasets, i.e., MtS-WH [18] and MH-MAVS
[33], in terms of the number of samples, image size, spatial
resolution, the number of categories, and the availability. It
is obvious that our newly constructed LUSCD dataset has the
advantages of large volume and open source. To make LUSCD
a more challenging dataset, the land use scenes are collected
from five China cities including Hangzhou, Shanghai, Wuhan,
Hefei, and Nanjing. Based on China’s “Code for classification
of urban land use and planning standards of development land
(GB50137-2011),” and the land use classes used in MtS-WH
[17] and MH-MAVS [33], the land use scenes are distributed in
the following 10 categories in our LUSCD dataset: residential
land (RL), public service and commercial land (PSCL), educa-
tional land (EL), IL, transportation land (TL), agricultural land
(AL), water body (WB), green space (GS), woodland (WL), and
BL. Regarding the training set and validation set, the land use

scenes of each category of phase 1 and phase 2 of the three cities,
i.e., Hangzhou, Shanghai, and Wuhan are combined to obtain
the scenes of phase 1 and phase 2 of each city. Then, the land
use scenes of each city are randomly divided into training set
and validation set with the ratio of 80% and 20%, respectively,
whereas for the testing set, the land use scenes of Hefei and
Nanjing are taken as testing set A and testing set B, respectively.
It is notable that the two testing datasets are collected from
different cities, thus is able to demonstrate the transferability
of deep learning methods.

Table IV illustrates the division of the training set, validation
set, and testing set in LUSCD. It can be seen that the training set
and validation set contain 18 108 and 4526 land use scene pairs,
respectively, whereas the testing sets A and B contain 5078 and
5062 land use scene pairs, respectively. Therefore, LUSCD is a
large-scale dataset that is appropriate for land use SLCD. Fig. 2
presents some changed and unchanged land use scenes of each
category.

III. PROPOSED METHOD

A. Problem Definition

Let X1 and X2 be the bitemporal scenes of the same region,
Y1, Y2 ⊂ {0, 1, . . . , L− 1} be their corresponding labels, where
L is the number of scene classes. For the classification-based
SLCD methods, the binary change information (changed or un-
changed) between X1 and X2 is obtained based on the predicted
labelsY ∗

1 andY ∗
2 . Specifically, the bitemporal scenesX1 andX2

are changed ifY ∗
1 �= Y ∗

2 , otherwiseX1 andX2 are not changed if
Y ∗
1 = Y ∗

2 . As we know, scenes from the same class tend to have
higher similarity than that from different classes. For example,
the similarity between two RL scenes is generally higher than
the similarity between RL and BL scenes. Based on this premise,
the scene pairX consisting ofX1 andX2 can be associated with
the label Y = {0, 1}, where “0” means X1 and X2 are dissimi-
lar (X1 andX2 are from different classes) and “1” meansX1 and
X2 are similar (X1 and X2 are from the same class). Therefore,
the binary SLCD can be regarded as a similarity learning prob-
lem, and the key is to find a mapping function g(·) defined as
follows:

g (X| (X1, X2)) = s (1)
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TABLE III
COMPARISON BETWEEN LUSCD AND THE EXISTING DATASETS

TABLE IV
DATA SPLITS OF TRAINING SET, VALIDATION SET, AND TESTING SET IN LUSCD DATASET

where s ∈ (0, 1) is the learned similarity value between X1 and
X2, which is also the predicted label of X . There is a substantial
chance thatX1 andX2 are not changed if s closes to 1, otherwise
X1 and X2 are changed if s closes to 0.

It is worth noting that s is essentially the probability of
whether X1 and X2 are similar, which is different from the
similarity (or distance) of feature vectors calculated in the Eu-
clidean space. However, we can regard s as the learned similarity
because it has the same range (i.e., [0, 1]) as the similarity value,
and a higher s indicates the higher similarity score between X1

and X2.

B. Process of the Proposed SLCD Approach

As shown in Fig. 3, our proposed SLCD approach contains
two phases. In Phase 1, the land use scene pairs in training
set are fed into SSLN to learn scene similarity. To ensure the
performance of SSLN, MSLFF module and GFD module are
designed and integrated into SSLN. In Phase 2, the trained SSLN
is exploited for searching similarity threshold T based on the
similarity values of bitemporal scenes in validation set. The final
binary scene-level change information of scenes in testing set is
obtained by comparing scene similarity value with threshold T .

C. Scene Similarity Learning With SSLN

1) Architecture of the Proposed SSLN: SSLN is a two-branch
weight-shared network with the pretrained ResNet50 [34] as

the backbone for feature extraction (the fully connected layer is
removed), as shown in Fig. 3. It is worth noting that some layers
in ResNet50 are omitted for convenience. SSLN can be coarsely
divided into feature extraction part and similarity learning part
consisting of two modules, i.e., global feature difference (GFD)
module and multiscale local feature fusion (MSLFF) module.

With respect to feature extraction, the scenes of Time 1 and
Time 2 are fed into one of the two branches, respectively. The
outputs of the last pooling layer are integrated into GFD module
to obtain global feature difference. The outputs of the last layer
in the last bottleneck of ResNet50 are integrated into MSLFF
module to obtain multiscale fused local features. Considering
that it is difficult to compare land use scenes from two phases
due to temporal effects, the outputs of modules GFD and MSLFF
(i.e., FG and FL) are combined to better learn scene similarity.
Specifically,FG andFL are converted into feature vectors, which
are fused and connected to a fully connected layer with a single
output. Here, a sigmoid function is used to convert the single
output into a value between(0, 1), indicating the similarity score
between two temporal scenes.

2) MSLFF Module: The features from shallow layers have
higher resolution, and thus contain more location and detail
information [35]. To take into account the scale difference
of ground objects within the scene, we designed the MSLFF
module. Local feature FL is achieved by MSLFF module, as
shown in Fig. 3.A1 andA2 are the output feature maps extracted
from the last layer of the last bottleneck of ResNet50 in the
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Fig. 2. Some changed and unchanged example images of each category in LUSCD dataset.

two branches, respectively. To take objects at different scales in
the scene into account, three filter kernels with different sizes
and pooling operation are used to obtain feature maps A1

j and
A2

j (j = 1, 2, 3), which are then concatenated to obtain Ai
4 as

follows:

Ai
4 = f

(
Ai

1, A
i
2, A

i
3

)
(i = 1, 2) (2)

where f(·) represents the concatenation operation. In order to
reduce the channel dimensions, Ai

4 (i = 1, 2) is converted to
Bi (i = 1, 2) by a 1∗1 convolution, followed by a product
operation to achieve F i(i = 1, 2). The process is defined by

F i = Ai �Bi (i = 1, 2) (3)

where� stands for elementwise product operation. Finally, local
feature FL is achieved by concatenating F 1 and F 2 as follows:

FL = f
(
F 1, F 2

)
(4)

where f(·) also represents the concatenation operation.
3) GFD Module: The difference features between the bitem-

poral images can clearly display the change information of the
images [2], [36]. In order to obtain global difference features
effectively and enhance the similarity learning ability of the
network, we designed a GFD module. Global feature difference
FG is achieved by GFD module in Fig. 3.

FG is defined by

FG = |D1 −D2| (5)

where D1 and D2 are the output feature maps of the two
branches, respectively. | · | is the absolute difference between
the two feature maps.

To train the proposed SSLN, the binary cross-entropy loss
function is selected, which is defined by

L = − 1

N

N∑

i=1

[
yi · log (pi)+ (

1− yi
) · log (1− pi

)]
(6)

where N is the number of scene pairs, yi is the label of scene
pair Xi, and pi is the output of SSLN after sigmoid function,
which is also the learned similarity between the two temporal
scenes in Xi.

D. SLCD Using the Learned Scene Similarity

Once SSLN is trained, the learned scene similarity is exploited
for land use SLCD. Phase 2 in Fig. 3 depicts the process of the
similarity-based SLCD. During the process, one can observe that
the key step is to find the similarity threshold T . To this end, we
propose a threshold search approach, as shown in Algorithm 1.
It is worth noting that the optimal similarity threshold T is deter-
mined on the validation set to ensure the transferability of SSLN.
In addition, considering the fact that Kappa coefficient can better
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Fig. 3. Flowchart of the proposed SLCD approach based on similarity learning.

Algorithm 1: Similarity Threshold Search Approach.

Input: Land use scene pair Xi and corresponding label Y i

in validation set; The trained SSLN gw,b(x)
Output: The optimal similarity threshold T

1: For threshold t = 0 to 1, step size = 0.0001
2: Calculate the similarity value of each scene pair in

validation set with si = gw,b (X
i)

3: Take t as the current threshold, if t >si, then the
bi-temporal scenes in pair Xi are considered to have
changed, otherwise, no change is considered

4: Calculate the overall accuracy (OA) and Kappa
coefficient based on the results in step 3 and Y i

5: The best threshold T is determined as t when t
achieves the best OA and Kappa

6: End

adapt to the imbalance in the number of scene categories, T is
determined with Kappa coefficient when the best values of OA
and Kappa conflict with each other.

TABLE V
NUMBER OF THE CHANGED AND UNCHANGED SAMPLES OF THE LUSCD

DATASET

IV. EXPERIMENTAL RESULTS

A. Dataset

We select MtS-WH [18] and LUSCD to evaluate our proposed
approach. MtS-WH is a publicly available dataset consisting of
1050 scene pairs and eight categories: parking lot, WB, sparse
house, dense house, residential area, BL, farmland, and indus-
trial area. For our LUSCD dataset, the number of changed and
unchanged samples of each subset (i.e., training set, validation
set, testing set) is presented in Table V.
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B. Experimental Settings

The batch size is set as 8 and the learning rate is set as 2e-4
in our experiments. The number of training epochs is 1050. In
addition, the parameters used in comparison methods are con-
sistent with the original literatures. Considering the differences
in the color and brightness between the two temporal scenes,
data augmentation is used during training, including horizontal
and vertical flipping, to avoid overfitting and improve SLCD
performance.

To evaluate the performance of our proposed SLCD approach,
the unchanged scene pairs and the changed scene pairs are re-
garded as positive class and negative class, respectively, to obtain
the binary confusion matrix. Based on the confusion matrix, sev-
eral commonly used metrics, including overall accuracy (OA),
Kappa coefficient, Precision, Recall (also known as sensitivity),
F1-score (F1), and true negative rate (TNR) (also known as
specificity), are calculated to evaluate the performance. These
six metrics can be calculated as follows:

OA =
TP + TN

TP + FN + FP + TN
(7)

Kappa =
OA− PRE

1− PRE
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 =
2× Precision×Recall

Precision+Recall
(11)

TNR =
TN

FP + TN
(12)

PRE =
(TP + FN) (TP + FP )

(TP + TN + FP + FN)2

+
(TN + FP ) (TN + FN)

(TP + TN + FP + FN)2
(13)

where TP, FP, TN, and FN refer to true positives, false positives,
true negatives, and false negatives, respectively. PRE represents
the sum of the “truth and the product of predicted values” for
all categories, divided by the “square of the total number of
samples.” Moreover, the numbers of parameters (Params) and
floating point operations (FLOPs) are also selected to evaluate
computational complexity.

Our proposed approach (SSLN) is compared with three
types of methods including CBM, deep learning based ap-
proach CorrFusion [29], and OSBM, respectively. For CBM,
the nine pretrained CNNs, including AlexNet [37], VGG19 [38],
GoogLeNet [39], ResNet101 [34], DenseNet [40], EfficientNet
[41], SENet [42], SwinT [43], ViT [44], are trained using the
land use scenes in two datasets (bitemporal scenes are combined
to constitute the classification dataset), which are then used for
extracting CNN features. It is noted that the features are extracted
from the first fully connected layer with respect to AlexNet and
VGG19, and the last pooling layer with respect to GoogLeNet
and ResNet101, which are then used to train SVM classifier.

Fig. 4. Accuracy-threshold curve on MtS-WH dataset.

Fig. 5. Accuracy-threshold curve on LUSCD dataset.

For the rest CNNs, the built-in softmax classifier is used for
classification. Regarding OSBM, the scene similarity is achieved
by calculating the Euclidian distance between the CNN features
of bitemporal scenes.

C. Results and Discussion

According to Algorithm 1, we first draw the accuracy-
threshold curves of the two datasets (i.e., MtS-WH and LUSCD),
as shown in Figs. 4 and 5, to achieve the optimal similar-
ity threshold of our approach. It is observed that the optimal
thresholds T for MtS-WH and LUSCD are 0.0304 and 0.3297,
respectively.

1) Results on MtS-WH Dataset: Table VI shows the com-
parison performance on MtS-WH dataset. As can be observed,
our proposed method achieved the best performance in terms
of OA, Kappa, Precision, and F1 values. Specifically, the OA,
Kappa, Precision, and F1 values are 0.9760, 0.9746, 0.9844,
and 0.9844, respectively. It is also obvious that our method
and OSBM outperform CBM and CorrFusion in terms of most
metrics. This is because change detection performance depends
heavily on the classification results. In addition, our approach
achieves slightly better performance than OSBM, indicating that
the similarity learning process has a positive influence on scene
similarity. In terms of Params and FLOPs, our method has higher
Params value due to the introduction of more fully connected
layers in feature fusion, but has lower FLOPs value than most
methods.
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TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT APPROACHES ON MTS-WH DATASET

Fig. 6. AUC values on three testing sets. (a) MtS-WH dataset. (b) Test A of LUSCD dataset. (c) Test B of LUSCD dataset.

To further evaluate our proposed approach, the area under
curve (AUC) [45] and receiver operating characteristic (ROC)
curve are selected for performance evaluation on MtS-WH
dataset, as shown in Figs. 6(a) and 7(a), respectively. It can
be observed that our method achieves the best AUC value of
0.9891 compared with CBM, Corrfusion, and OSBM. With
respect to ROC, the curve of our approach is located on upper left
corner, indicating its better performance than other comparison
methods.

2) Results on LUSCD Dataset: Table VII shows the com-
parison performance on LUSCD dataset. As can be observed,
our proposed similarity learning approach achieves the best
performance on LUSCD dataset in terms of OA, Kappa, Recall,
and F1. Specifically, OA, Kappa, Recall, and F1 values on Test A
are 0.8919, 0.8894, 0.9708, and 0.9359, and are 0.8964, 0.8938,
0.9699, and 0.9383 on Test B, respectively. In addition, as the
results presented on MtS-WH dataset, our proposed approach
and OSBM also outperform CBM and CorrFusion for most of the



LIU et al.: SIMILARITY LEARNING FOR LAND USE SCENE-LEVEL CHANGE DETECTION 6509

Fig. 7. ROC curves on three testing sets. (a) MtS-WH dataset. (b) Test A of LUSCD dataset. (c) Test B of LUSCD dataset.

TABLE VII
PERFORMANCE COMPARISON OF DIFFERENT APPROACHES ON LUSCD DATASET

metrics on LUSCD dataset. The interesting phenomenon is that
both CBM and CorrFusion outperform similarity-based methods
(i.e., OSBM and our approach) with respect to the precision
and TNR metrics. A possible explanation is that the number of
positive scene pairs in both Test A and Test B is much larger
than that of the negative scene pairs, thus the change detection
results tend to incline toward positive class. Meanwhile, our
proposed approach has improved the performance of OSBM
by a significant margin, indicating that similarity learning is
able to measure scene similarity more accurately. Regarding
Params and FLOPs, though our approach has higher Params

and FLOPs values than some of the other comparison methods,
it is acceptable considering its improvement of performance.

To further evaluate the performance of our approach on
LUSCD, we also draw the AUC histograms and ROC curves
on Test A and Test B, as shown in Figs. 6(b) and (c) and 7(b)
and (c). The AUC values of our proposed method on Test A and
B are 0.9107 and 0.8996, respectively. In addition, as shown in
Fig. 7(b) and (c), compared with other comparison methods, the
proposed method has more obvious curves on upper left corner
on Tests A and B, confirming its validity. For ROC curves,
our proposed method is closer to the upper left corner than
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TABLE VIII
CHANGE DETECTION EXAMPLES OF LUSCD DATASET

TABLE IX
ABLATION EXPERIMENTS ON MTS-WH DATASET

the other three methods when FPR is around 0.2, indicating
its better change detection performance. Table VIII presents
some change detection examples achieved by CBM, OSBM,
and our approach. It can be observed that our similarity learning
approach performs the best.

According to the above results, we can conclude that our
approach has the following advantages.

1) The similarity is accurately described by fusing local
features and global feature difference via MSLFF and
GFD modules.

2) The similarity threshold is used to directly determine
whether one scene pair has changed or not based on
scene similarity, thereby avoiding the dependence on the
classification results.
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TABLE X
ABLATION EXPERIMENTS ON LUSCD DATASET

TABLE XI
EXAMPLES OF THE ABLATION EXPERIMENT ON THE PROPOSED METHOD

3) Taking objects at different scales into account will con-
tribute to extract powerful features and further learn scene
similarity more accurately.

D. Ablation Analysis

To analyze the effectiveness of two modules in SSLN, we
conduct ablation experiments on both the MSLFF and GFD
modules on MtS-WH and LUSCD datasets. In the following
experiments, “Base” represents the basic model without MSLFF
module and GFD module. “Base + MSLFF” represents the

“Base” with MSLFF module, and “Base + GFD” represents
“Base” with GFD module.

As can be seen from Tables IX and X, the introduction of both
MSLFF and GFD module can significantly improve the perfor-
mance (i.e., our approach) on both datasets. More specifically,
compared with “Base” model, the OA, Kappa, Precision, F1,
and TNR values of our approach have been improved by 8.55%,
10.94%, 15.49%, 8.14%, 16.44% on MtS-WH dataset, whereas
the OA, Kappa, Precision, F1, and TNR values of our approach
have been improved by 7.50%, 7.30%, 8.47%, 3.76%, 49.73%
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on Test A, and 7.97%, 7.75%, 8.68%, 3.45%, 48.92% on Test
B of LUSCD dataset, respectively. The interesting phenomenon
is that “Base + MSLFF” and “Base + GFD” achieve compa-
rable performance to “Base” on both datasets, indicating that
a single module contributes little to the improvement of model
performance. Notably, the great improvement of SSLN not only
further validates the effectiveness of MSLFF module and GFD
module, but also proves the gain effect of their combination.

In addition, the Params and FLOPs values are also provided
in Tables IX and X to analyze the computational complexity of
different modules. As we can see, the Params of the MSLFF
and GFD modules are 1.15M and 0.09M, respectively, indicat-
ing that the performance can be effectively improved without
introducing a large number of parameters.

Table XI presents some change detection examples of the
ablation experiments on the two testing sets of LUSCD dataset.
With both MSLFF and GFD modules, SSLN can largely enhance
the accuracy of change detection results.

V. CONCLUSION

In this article, we proposed SSLN for land use SLCD by
combining the multiscale local features and GFD, which can
overcome the limitations of the existing classification-based
SLCD approaches, and improve their performance by a re-
markable margin. SSLN takes the bitemporal scene images as
input and outputs the learned similarity between scene pairs.
The change detection results are achieved by comparing scene
similarity and the optimal similarity threshold determined by
our threshold search algorithm. Furthermore, we also collect a
new benchmark dataset termed LUSCD for performance eval-
uation, which largely complements the existing SLCD datasets
in terms of image resolution, the number of images and cat-
egories. The experimental results on LUSCD and one publicly
available dataset demonstrated that our similarity learning-based
approach is a simple yet effective method for SLCD, providing
RSCD literature a promising perspective for developing intelli-
gent SLCD methods. Our future work will focus on exploring
scene-level semantic change detection to achieve the change
types of land use scenes.
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