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Abstract—This study investigates the application of coherence
and backscattering, derived from time-series Sentinel-1 synthetic
aperture radar imagery of a crop season (18 scenes with a 12-day
revisit cycle), for crop growth monitoring and classification in the
agricultural region of Southwestern Ontario, Canada. To fulfill this
goal, we initially analyze the temporal behavior of backscattering
and coherence for a variety of crops to gain some insights for
classification. Second, diverse combinations involving polarization
channels, feature types, and image quantities for crop classification
are analyzed. The deep analysis of temporal dynamics highlights a
stronger correlation between the time-series curves of backscatter-
ing and crop growth in comparison to coherence. The VH backscat-
tering and the VV coherence demonstrate a higher sensitivity to
the variations in crop growth. The crop mapping results indicate
that backscattering produces significantly higher accuracy of crop
classification than coherence. Furthermore, the incorporation of
coherence features with backscattering can enhance the accuracy,
with VV making more pronounced contributions compared to VH.
Notably, the most effective classification result is achieved through
a scheme that integrates both backscattering coefficients of dual
polarization (VV + VH) and the VV coherence, achieving a better
overall accuracy of 95.33% and a kappa coefficient of 0.93. This
study concludes that the crucial information provided by the tem-
poral variations in backscattering and coherence to improve crop
classification accuracy depends on both the polarization channel
and crop type, with coherence playing a supplementary role. Our
study consolidates the previous work and provides useful insights
into the field of crop classification.
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I. INTRODUCTION

THE quantity and quality of arable land have been in-
creasingly threatened by natural and man-made factors.

A certain correlation exists between the mapping of arable
farmland and crop species [1], [2]. In this regard, the spatial dis-
tribution data of crops becomes crucial for effective agricultural
monitoring and management, enabling the achievement of high
productivity, high yields, and energy conservation in sustainable
agricultural development [3], [4], [5]. Addressing contemporary
challenges, modern agricultural technology facilitates effective
management of agricultural production activities and monitor-
ing of crop cultivation [6], [7], [8].

Remote sensing technology is an important tool to guide
crop growth, optimize planting structure, and guarantee food
security in modern agricultural technology. It can complement
or replace traditional field surveys. With the advantages of high
resolution, low cost, and wide coverage, it has the ability to
obtain crop planting structure, area, and spatial distribution in a
timely and accurate manner [2], [9], [10]. In particular, synthetic
aperture radar (SAR) imagery excels as an active microwave
remote sensing technique, and it has the following advantages
over optical imagery [11]:

1) all-weather, all-day, and all-time data acquisition capabil-
ity, suitable for temporal analysis;

2) strong penetration capabilities through vegetation, soil,
and dry snow with minimal atmospheric interference;

3) multiple polarization channels enhancing sensitivity to
observe earth surface scattering mechanisms;

4) interferometric capabilities enabling temporal informa-
tion extraction from coherence analysis.

In recent years, the utility of SAR in the realm of agri-
culture has been substantiated, encompassing a spectrum of
applications, including crop monitoring [12], [13], [14], crop
classification [15], [16], [17], crop rotation identification [18],
crop change detection [19], and so on. These extensive research
efforts and applications indicate that SAR imagery not only
provides surface information but also rich internal structural
details. Consequently, SAR imagery serves as a high-quality
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source in crop classification studies [15], [20]. At present, there
are two distinct types of information used by SAR images for
crop mapping: polarization features and interferometric features.

On account of polarimetric SAR (PolSAR) having excep-
tional sensitivity to the physical structure and dielectric proper-
ties of targets, the backscattering coefficients, as the fundamental
polarimetric feature, have been widely used in crop-type map-
ping studies [21], [22]. The advancement of radar technology
has led to the refinement of polarimetric channels and revisit cy-
cles, with crop classification research transitioning from single-
polarization and single image [23] to multipolarization and mul-
titemporal [24]. Comparative analysis of single-polarization,
dual-polarization, and quad-polarimetric data in [25] reveals the
superiority of multipolarization in crop classification, while the
differentiation between dual-polarization and full-polarimetric
is minimal when utilizing time-series images spanning the entire
crop growth cycle. However, previous studies have demonstrated
the great advantage of quad-polarimetric in distinguishing crop
types and monitoring crop phenology [26], considering the
difficulty of data acquisition, as well as its high cost, and that the
temporal features can make up for the differences between quad-
and dual-polarization. Therefore, dual-polarization Sentinel-1
data are considered sufficient for accurate crop classification.
By using multitemporal Sentinel-1 dual-pol backscattering for
crop mapping, the majority of crops were successfully identified
with satisfactory results [21], [27], [28].

As known, the coherence of interferometric SAR (InSAR)
quantifies temporal changes in scattering characteristics be-
tween acquisitions, which can unveil the dynamics of scattering
properties for different land-cover types [29]. Thus, coherence
can provide better benefits for land-cover classification efforts
[30]. Since crops undergo notable variations throughout their
different growth phases, including vegetation coverage, crop
height, leaf area, and other parameters, crops exhibit distinct
characteristics compared to the rest of the land-cover types.
Research works by Engdahl and Hyyppa [31] and Blaes and
Defourny [32] pioneered the use of ERS-1/2 interferometric data
for land-cover classification and crop growth monitoring. It is
obvious that coherence provides distinct crop information com-
pared to backscatter coefficients, offering a unique perspective
to enhance crop separability. The study by Ramsey III et al. [33]
presented that SAR coherence provides better discrimination
over backscattering between land-cover types at some specific
periods (e.g., off-season of defoliation, etc.). Similarly, there was
a significant correlation between crop growth cycles and coher-
ence, with a descending trend during the growth period of plants
and high coherence values before planting and close to harvest
time [34]. Recent research works expand coherence application
to various regions and crops. The study in [35] assessed the
suitability of coherence as a crop monitoring tool by means of
multiyear Sentinel-1 coherence time series, taking into account
18 vegetation types. It also reveals that coherence correlates well
with the normalized difference vegetation index derived from
Sentinel-2 images. Hence, the study by Villarroya-Carpio et al.
[36] explored Sentinel-1 coherence as a new radar vegetation
index for crop monitoring and verified the performance within
16 distinct crop species. Among them, the coherence from the

VV channel was proven as the optimal choice for describing
crop evolution due to its higher correlation.

Considering both advantages, combining interferometric co-
herence with backscattering features was naturally concerned
and successfully applied for the moisture estimation of soil and
crop [37], [38] and land-cover classification, such as in wetland
[39] and grassland areas [40], [41]. For crop classification, there
are also some cases in previous studies. In the study of [42],
the added value of coherence was demonstrated in the improved
crop sensitivity at the harvesting stage and in addressing the
challenge of distinguishing crops from herbaceous vegetation.
In [43], the additive contributions of single-pass coherence and
repeat-pass coherence on the backscattering coefficient of the
TanDEM-X data for crop classification were examined. In [44]
and [45], the synergistic use of backscatter and coherence of
the dual-pol Sentinel-1 was used to generate thematic maps
for crop classification, which showed that the incorporation of
coherence contributed to the improvement in the classification
accuracy using backscattering features alone. In addition, the
coherence of co-pol is more sensitive to changes in crop growth
than cross-pol.

In spite of the existence of Sentinel-1 studies based on coher-
ence and backscattering features for crop classification, most of
them employed data with a 6-day revisit cycle [30], [38], [44],
[45], while a few studies used data with a 12-day revisit cycle
[34]. The temporal analysis and crop classification in these stud-
ies were often treated as independent aspects, with limited efforts
to interlink them for comprehensive interpretation. Moreover,
the impact of the image numbers on backscattering utilization
and the phenological period on coherence utilization for crop
classification were poorly documented in previous studies. In ad-
dition, agricultural activities and climate conditions vary across
regions, such as crop rotation and snow cover period. Therefore,
utilizing the backscattering and interferometric coherence for
crop monitoring and classification needs to be further explored
to acquire additional useful insights.

In this context, the motivation of the study is to investigate
the time-series dynamics in SAR backscattering and coherence,
aiming to gain insights into understanding crop mapping while
evaluating the effectiveness enriched by interferometry. The
time-series C-band Sentinel-1 SAR imagery with a revisit cycle
of 12 days, covering the period from April to October 2018 over
the agricultural region of Southwestern Ontario, Canada, was
collected. The major innovations and contributions of this study
are summarized as follows.

1) We provide a comprehensive understanding of the tempo-
ral behaviors of backscattering and coherence, along with
the relationship between each other among three primary
crops under local farming practices.

2) We consolidate the idea that SAR data for crop classi-
fication go beyond backscattering coefficient and can be
complemented by interferometry. We also evaluate clas-
sification performance using various features and explore
a refined crop classification scheme.

3) We analyze the effects of the number of images and the
phenological period on crop classification using backscat-
tering and coherence individually.
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Fig. 1. Geographical location of the study area, RGB image of the Sentinel-2
data acquired on 09/07/2018 (Red: B4, Green: B3, Blue: B2), and ground truth
data.

II. MATERIALS AND METHODS

A. Test Sites

The study area is situated in the farmland area of Komoka
(42°56’55” N, 81°26’10” W), to the west of London, Ontario,
Canada. Fig. 1 illustrates the exact location of the study area
and the RGB image of the Sentinel-2 data acquired on July 9,
2018. Due to its mild climate, adequate water supply, and fertile
soil, the study area ensures a beneficial growing environment for
crops as well as a long growing season, which makes it possible
to carry out crop classification studies with great efficiency.
Within the agricultural region, there exists a mixed woodland
ecological zone, consisting of both farmland and woodland. The
primary crops cultivated in this area include winter wheat, corn,
soybean, and forage crops such as alfalfa, and grass. Further-
more, given their limited sample sizes, both tobacco and squash
were consolidated into other classes. It should be noted that
the study area is covered with snow from November to March
each year. During this period, winter wheat is in a dormant state
(overwintering), ceasing active growth. Nutrients are stored in
the roots during this time, and the sufficient nutrients provided

TABLE I
NUMBER OF POLYGONS AND TOTAL PIXELS IN THE SAMPLE DATASETS

during the spring green-up, which occurs when the snow melts
in April, ensure the yield of winter wheat.

B. Field Survey

As shown in Fig. 1, the 2018 reference dataset was assigned
crop label values after field collection from April to October
by the Geographic Information Technology and Applications
Laboratory at the University of Western Ontario. Furthermore,
the crop planting structure in the study area exhibits negligible
fluctuations during the data collection period, rendering them
inconsequential and permitting the assumption that the assigned
category labels for each land parcel remained valid throughout
the year 2018. Table I presents detailed information about the
reference dataset, including the number of vector polygons,
training pixels, and the testing pixels for each crop type. Each
pixel corresponds to an area of 10 m × 10 m. In addition, the
total area of the study area is about 269.0473 km2. The smallest
field area is 0.021 km2 and the largest field area is 1.0587 km2

in our field surveying.
In the study area, the sowing and harvesting periods of the

predominant crops (corn, soybean, and winter wheat) exhibit an
annual synchrony. Corn and soybean adhere to a synchronized
timetable: sowing commences in May, reaching full maturity
by September, and culminating in a harvest during the month
of October. In contrast, winter wheat follows a distinct planting
schedule, with seeds typically sown in October of the preceding
autumn. The harvest time is typically conducted from the latter
part of July to the early days of August in the subsequent year.
Remarkably, the practice of crop rotation prevails in this region,
resulting in discernible disparities between residues from the
previous year’s harvest and the crops sown in the current year.
These residual materials play a crucial role in soil fertility
and ameliorating water resource conservation. For instance,
it is common to find residues from corn or soybean present
in winter wheat fields prior to land preparation for sowing.
We have provided approximate phenological ranges for three
crops in Table II based on local agricultural practices and the
general pattern of crop growth (similar each year). Fig. 2 roughly
displays the actual phenological stages of soybean, corn, and
winter wheat within the study area.

C. Sentinel-1

The SAR images were acquired from the C-band Sentinel-1
satellite in interferometric wide mode employing TOPSAR tech-
nology. Due to snow cover from November to March and only



6878 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE II
APPROXIMATE DATES OF EACH PHENOLOGICAL STAGE FOR THE THREE CROPS

Fig. 2. Phenological stages of soybean, corn, and winter wheat within the study fields in 2018.

TABLE III
MAIN IMAGING PARAMETERS OF TIME-SERIES SENTINEL-1 IMAGES

images with a revisit time of 12 days available in the study site,
we finally acquired 18 Sentinel-1 single look complex (SLC)
ascending images in dual-polarization channels (VV and VH),
spanning from 4 April to 25 October in 2018, encompassing
the main growing season of crops. Consequently, a total of
17 interferometric image pairs, spaced at a temporal interval
of 12 days, were obtained. The main imaging parameters of
time-series Sentinel-1 images are presented in Table III.

D. Backscattering Intensity and Interferometric Coherence

1) Backscattering: The backscattering coefficient, as a piv-
otal attribute of PolSAR imagery, effectively reflects the intrinsic
characteristics of objects. The backscattering coefficient σ0 is
a measure of the intensity of electromagnetic radiation that is
scattered back toward the radar after interacting with a target.
For the Sentinel-1 dual polarization channel, two backscattering
coefficients can be obtained (e.g., VV and VH in this study),

which elicit distinct responses from terrestrial objects. As the
growth structure of crops varies across different stages, the
temporal series of backscattering intensity values exhibit sea-
sonal trends related to growth cycles. To effectively analyze the
backscattering coefficient and highlight changes in crop scat-
tering characteristics, transforming it logarithmically is usually
performed by

σ0 (dB) = 10× log10 (σ0) (1)

where σ0(dB) is the value of the backscattering coefficient in
decibel.

2) Coherence: Coherence serves as a fundamental attribute
within InSAR images, enabling an evaluation of the dynamics
of scattering properties between two acquisitions over the same
region and the phase quality of interferograms. The coherence
magnitude (ρ) between two SAR images is usually estimated
employing maximum likelihood methodology over a moving
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window, which can be defined as [46], [47]

ρ =

∣∣∣∑N
n=1 S1S2

∗
∣∣∣√(∑N

n=1 S1S1
∗
)

·
(∑N

n=1 S2S2
∗
) (2)

where S1 and S2 denote the master and slave images, respec-
tively, and N is the number of samples of the moving window.
| | signifies the absolute value operator, while ∗ represents the
complex conjugate. The range of ρ spans from 0 to 1. As scatter-
ing properties from the master and slave images are completely
correlated, ρ reaches its maximum value of 1. On the contrary,
when ρ approaches 0, it signifies that the two SAR images are
uncorrelated.

This work focuses on the significance of temporal coherence,
a product of interferometric pairs generated by consecutive im-
ages, as an additional feature in crop classification. With n scenes
of SAR images, it is possible to acquire the coherence of n-1
interferometric pairs. The corresponding time-series coherence
(TC) is defined by means of a row vector as follows:

TC =
[
ρ12 ρ23 . . . ρ(n−1)n

]
. (3)

However, coherence is influenced by a multitude of factors.
For land-cover classification, the emphasis is placed on the
temporal decorrelation, which manifests as the phase disparity
between the two backscattering signals owing to alterations in
the physical properties of the Earth’s surface or the position of
scatterers within the temporal interval linking two observations.
In the case of crops, the degree of coherence tends to decrease
when the crop undergoes variations in its growth cycle between
the acquisition of two SAR images. Conversely, if the covered
elements remain unchanged during the acquisition period, the
degree of coherence is significantly higher.

E. Preprocessing

In this study, all the Sentinel-1 image preprocessing tasks were
expertly performed using the Sentinel Application Platform soft-
ware, developed by the European Space Agency (ESA) [48]. The
processing flow used to obtain the backscattering coefficients
and interferometric coherence is shown in Fig. 3.

The preprocessing of the backscattering coefficient derived
from the 18 scenes of SLC images mainly includes a number
of steps: TOPSAR Split, Orbit correction, Radiometric calibra-
tion, TOPSAR deburst, Multilooking processing with 3-looks in
range dimension and 1-look in azimuth dimension, Geocoding,
Speckle filter (9 × 9 boxcar), and Conversion from linear to dB.
By means of the above preprocessing steps, the σ0(dB) images
for both VV and VH polarizations in the UTM system are ob-
tained, with a resolution of 10 m × 10 m. Notably, due to the flat
terrain and the large field size in our study area, the preprocessing
approach of speckle filtering after terrain correction employed in
this study is acceptable. However, conducting terrain correction
as the final preprocessing step is a general principle, which could
avoid the effects of changes in the statistics of the data wherever
there is no one-to-one correspondence that may arise due to
terrain correction, especially in the presence of slopes.

The interferometric preprocessing steps mainly consist of:
TOPSAR split, Orbit correction, Radiometric calibration, Image
coregistration, Speckle filtering and coherence estimation using
a window of 3 × 10 (azimuth × range), TOPSAR deburst,
Multilooking processing with 3-looks in range dimension and
1-look in azimuth dimension, and Geocoding images to UTM
system with a resolution of 10 m × 10 m.

Following the above steps, the backscattering coefficient and
coherence derived from the preprocessing of multitemporal
Sentinel-1 data were stacked separately using the layer stacking
function. This resulted in composite images comprising all
backscattering for a single polarization (VV or VH), each with
18 layers. Similarly, composite images were generated for all
coherence images for a single polarization, each containing 17
layers.

F. Classification Method and Evaluation

In this study, the random forest (RF) algorithm was employed
for classification tests using the intensity and coherence features
of Sentinel-1 images, both individually and in combination. RF
is an integrated machine learning algorithm [49], frequently used
in remote sensing due to its high accuracy and stability compared
to individual classifiers [50]. RF consists of multiple decision
trees, each independently trained on a randomly selected subset
of the original data. Moreover, these trees autonomously acquire
the capacity to generate predictions and cast votes for their
respective categories. By using the vote results, the category with
the highest number of votes is designated as the classification
result.

In this study, the RF classifier was furnished by the scikit-
learn toolkit in the Python language [51]. Multiple adjustable
parameters exist for the RF classifier, such as the number of
decision trees (n_estimators) to create per class, the minimum
number of samples for the branch node (min_samples_split),
and the minimum sample size of the leaves (min_samples_leaf).
Among them, previous studies have shown that the classification
accuracy using an RF classifier tends to stabilize as more than
50 decision trees are used [16], [52], [53]. In addition, 100
decision trees proved to be sufficient in crop classification in
the same study area as ours, which performed well [15], [16].
The remaining parameters play a relatively minor role in the
context of crop classification. In this study, 100 decision trees
were employed in the RF algorithm for all classification tests,
while the other parameters were kept at default settings in
the scikit-learn software package (min_samples_split = 2,
min_samples_leaf = 1).

Due to the fact that neighboring pixels within the same field
are highly correlated [54], the dataset needs to be partitioned
at the field level rather than the pixel level. The dataset was
divided into five subsets numbered 1–5, and the same number of
pixels in each subset were chosen. After that, two subsets (40%)
of the datasets were used as testing data, and the remaining
three subsets (60%) of the datasets were used as training data.
To minimize classification uncertainty, such combinations were
repeated five times. Fig. 4 shows the five training sets used in our
classification experiments and the corresponding testing sets.
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Fig. 3. General technical flowchart of this study.

The corresponding numbers under the images are the number of
subsets used.

To quantitatively assess the performance of classification,
confusion metrics were employed, including overall accuracy
(OA), kappa coefficient [55], producer’s accuracy (PA), and
user’s accuracy (UA) [56]. Among them, OA is the ratio of the
correctly predicted instances to the total number of instances in
all test sets for a model, and the kappa coefficient is a commonly

used method for assessing interrater reliability. Notably, PA
elucidates the likelihood of correctly classifying the ground truth
data for a crop category, and the UA refers to the probability
of the crop classification results matching the actual type. In
other words, PA corresponds to the omission error, and UA
corresponds to the commission error. In consideration of five
rounds of classification, each involving separate training and
testing sets, we calculated the mean and standard deviation
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Fig. 4. Five training sets used in classification experiments and the corresponding testing sets.

(STD) of each indicator. This calculation was performed to
assess the robustness and reliability of the results.

III. TIME-SERIES DYNAMICS OF FEATURES

As we used backscatter coefficients and coherence as input
features for crop classification, it was essential to examine the
temporal dynamics of two features throughout the growth cycle
of major cash crop types in the 204 fields, comprising 80 soy-
bean, 104 corn, and 20 winter wheat fields. Hence, Fig. 5 reveals
the temporal evolution of the mean backscattering intensity and
coherence values for all fields corresponding to the three types
of crops throughout the entire growth cycle, along with their
STDs. The detailed values obtained from backscattering and

coherence to demonstrate the microwave responses to different
phenological stages of crops are presented as supplementary
data.

A. Backscattering

As illustrated in Fig. 5, the backscattering values obtained
from VV and VH exhibit fluctuant and analogous temporal pat-
terns across the growth cycle of the three crops, which presents
the average values and corresponding errors (error bars) for
all fields of the same crop type. As expected, the magnitudes
from co-pol channel (VV) are always higher than the cross-pol
channel (VH) due to the depolarization effect [44]. In VV
polarization, the intensity values of various crops range from
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Fig. 5. Temporal evolution of the backscattering intensity and the interferometric coherence at VV and VH channels. (a) Soybean. (b) Corn. (c) Wheat.

−14 to −6 dB, while in VH polarization, the intensity values
are relatively smaller, ranging from−21 to−13 dB. Importantly,
there is a greater difference between the maximum and minimum
values for each crop in VH (around 7 dB) compared to VV
(around 5 dB).

Between early April and the beginning of May, three types
of crops display very similar patterns. In April, as a result of
melting snow and the emergence of crop residue, both soil
moisture content and soil roughness increased. However, the
backscattering is sensitive to soil characteristics such as moisture
and roughness, leading to a slight increase in VV and VH
backscatter values. Then, a decline in VV and VH backscatter
values is evident until the beginning of May. This decrease can
be attributed to the attenuation of soil backscatter caused by
the plowing, seeding, and growing vegetation, possibly coupled
with the gradual smoothing of the soil surface [14]. As the season
advances, disparities between summer and winter crops start to
become apparent.

For summer crops (soybean and corn), their growth patterns
are roughly similar, which is consistent with [15]. During May
to early June, the crop transitions from seeding to nurturing
leaves, and the increase in biomass leads to an upward trend in
backscattering values. For soybeans, the VV values exhibited
an increase from −10 to −8 dB, while the VH values rose from
−19 to −15 dB. Similarly, for corn, the VV values showed an
increase from −12 to −8 dB, and VH values increased from
−20 to −17 dB. In mid-June, as the leaves of these crops
began to grow laterally, the influence of the underlying soil

diminished and most of the scattering occurred on the leaf
surfaces. Consequently, the backscattering values experienced
a substantial reduction during this stage. For soybeans, the VV
values decreased from −8 to −12 dB, and VH values dropped
from−15 to−20 dB. For corn, the VV values decreased from−8
to −12 dB, and VH values also decreased from −17 to −19 dB.

Entering the late June phase, soybean plants undergo distinct
stages of stem elongation and blossom development, while corn
concurrently enters the tasseling phase. This period is marked by
a significant augmentation in the biomass of both crops, thereby
culminating in an observable escalation in backscattering values.
Specifically, VV values for soybeans exhibit an incremental
shift from −12 to −7 dB, whereas VH values experience a
corresponding shift from −20 to −14 dB. In parallel, for corn,
VV values demonstrate a transition from −12 to −7 dB, and
VH values elevate from −19 to −14 dB. However, as entering
early July, backscattering values begin to decrease during the
late stage of stem elongation in the crops. At this point, stem
density increases, and the density of leaves and branches reaches
a point where the ground is almost entirely covered by the
crops. This situation leads to multiple scattering of incident
waves within the crop and between the crop canopy and the
soil. The growing number of branches and stems results in an
overall reduction in scattering, while the scattering contribution
of the canopy itself remains relatively stable. Subsequently,
from July to early September, as both soybean and corn attain
their peak heights and biomass levels, the structural attributes
of the crops demonstrate a degree of uniformity and stability.
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In particular, soybean stabilizes after a slight increase, with
VV values fluctuating around −8 dB and VH values around
−15 dB. For corn, both VV and VH values fluctuate around−10
and −16 dB. The summer crops are typically harvested across
late September and October, leading to a dominant scattering
contribution from the ground. VH values decrease due to the
removal of the crop canopy, while VV values increase as the
recovered ground signal arises from the dryness of the vegetation
in the mature period and crop residue generated after harvest.

For winter crops (winter wheat), it exhibits a distinctive plant-
ing pattern. From May to early June, as the temperature begins
to rise, there is a slight increase in backscattering values (VV
values increase from −13 to −12 dB, VH values increase from
−19 to −17 dB). During this period, winter wheat undergoes
a transition from the tillering stage to the heading stage, with
the final leaf attaining full growth, leading to an augmentation
in biomass. By mid-June, the leaf area of winter wheat reaches
its peak, completely concealing the soil, and scattering mainly
emanates from the leaf surfaces. Consequently, there is a rapid
decline in backscattering coefficients during this phase. In late
June, winter wheat progresses into the early milk-ripening stage
with rapid spikelet growth, which leads to an upward trend in
backscattering values. As July arrives, winter wheat reaches
maturity and is harvested, resulting in a decrease (VV values
decreased from −11 to −13 dB and VH values decreased from
−15 to −20 dB). Following this, sections of the wheat fields
are rendered barren by weeds, while other parts are cultivated
with alfalfas. In October, in anticipation of the impending snow
season in November, preparations for a new crop planting cycle
commence. Plowing practices are implemented during this pe-
riod, leading to the removal of weeds and alfalfas. These actions
contribute to the gradual smoothening of the soil surface and a
reduction in its roughness. Consequently, a decrease in backscat-
ter values is observed in October, with VV values dropping from
−9 to −11 dB, and VH values decreasing from −16 to −18 dB.

The dynamic scattering mechanisms inherent in different
growth stages of the three primary agricultural crops give rise
to discernible variations in the backscattering values, forming
the fundamental basis for crop classification utilizing SAR data
[15]. Notably, soybean and corn share similar constituents,
encompassing leaves, stems, and fruits, culminating in anal-
ogous alterations in their backscattering patterns. The distri-
bution of spikes and the structural characteristics of spikes
in winter wheat resulted in some attenuation of backward
scattering.

B. Coherence

Temporal evolutions of coherence are depicted in Fig. 5. Over-
all, the coherence under different polarization channels has a
similar trend, with coherence values exceeding 0.2. The dynam-
ics clearly show that VV polarization exhibits a heightened level
of coherence in comparison to VH polarization, with VV values
spanning from 0.25 to 0.55, while VH values range between
0.25 and 0.35. The popular explanation for this is divided into
two main aspects. First, copolarization intensifies the sensitiv-
ity of vegetation scattering and canopy penetration, resulting

in amplified backscatter and an improved signal-to-noise ratio
(SNR). Second, the influence of cross polarization in the C-band
relies predominantly on the vegetation layer rather than the
ground layer for the echo signals originating from the study
site, rendering VH polarization more vulnerable to temporal
interference [57]. In April, within the study region characterized
by a snow-covered landscape, all crops exhibited elevated levels
of coherence. As crops from different growing seasons gradually
begin to seed and flourish after the ice melts, differences between
summer crops (soybean and corn) and winter crop (winter wheat)
become apparent.

In the context of summer crops such as soybean and corn,
the May period signifies the initial growth stages of planting
these crops as the land gradually becomes covered with new
shoots. The continuous and dynamic changes in the agricultural
fields during our observations resulted in a modest decrease in
coherence. For soybean, the VV values dropped from 0.46 to
0.37, and VH values declined from 0.30 to 0.26. Similarly, for
corn, the VV values decreased from 0.49 to 0.38, and VH values
fell from 0.29 to 0.26. This decrease in coherence continued
until early June, whereas backscattering values increased due to
a higher SNR. However, from late June to July, corresponding
to the soybean stem elongation stage and corn nodulation stage,
both crops exhibited their lowest average coherence levels. This
decrease can be attributed to the ongoing changes in crop growth
dynamics [36]. Until early September, just before the crops were
about to be harvested, the coherence values fluctuated within a
narrow range, with VV and VH values oscillating between 0.2
and 0.3. During September and October, within the harvesting
season, the coherence values experienced a significant increase,
triggered by the harvesting of crops and the subsequent revival
of soil effects. The level of improvement exceeded 0.1, with
corn displaying the highest coherence value (ρVV = 0.56, ρVH

= 0.34), followed by soybean (ρVV = 0.45, ρVH = 0.35).
For winter crop (winter wheat), the period from May to June

is significant. During this time, as the snow and ice completely
melt and winter wheat rapidly grows to the tillering stage, the
vegetation landscape undergoes dynamic changes, resulting in
a significant decrease in coherence values (from 0.37 to 0.27 for
VV and from 0.27 to 0.24 for VH). Late June marks the milk-
ripening stage for winter wheat, during which the average coher-
ence values for all crops reach their lowest points. This decrease
in coherence is a result of the ongoing changes in crop growth,
causing coherence values to fluctuate within a lower range, with
both VV and VH values oscillating between 0.2 and 0.3. In July,
winter wheat reaches maturity and is harvested, showing a slight
increase in coherence. Minor coherence fluctuations occur due to
the farming activities in September and early October. It can be
observed that coherence significantly increases in late October
(from 0.26 to 0.42 in VV and from 0.24 to 0.34 in VH). The
subsequent increase is attributed to the absence of agricultural
activities on the land at this stage in preparation for the winter
season.

Throughout the entire phenological stage, the coherence time
series of various crops under VH polarization exhibit a similarity,
which reduced the separability of the crops. This suggests that
the VH coherence feature is of limited use for crop classification
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TABLE IV
CLASSIFICATION ACCURACY USING BACKSCATTERING BASED ON DIFFERENT POLARIZATIONS

in our region. In contrast, although the VV curves of each
crop display some overlap in the mid-growth stage, there were
differences between crops during the plowing phase (April) and
the peak of the harvest season (October), which is consistent with
[34] and [35]. Therefore, it is crucial to selectively employ these
coherence features to enhance the accuracy of crop classification
as supplemental factors.

It is worth noting that the changes in coherence and backscat-
tering values in the time series are strongly correlated with
each other. The main reason for this phenomenon is that when
vegetation is present, the backscattering signal is strengthened,
indicating a decrease in coherence due to temporal decorrelation.
When there is no vegetation, surface scattering from bare soil
due to surface roughness and moisture results in higher intensity
values but also higher coherence due to temporal stability. Based
on the time series curves of backscattering and coherence, it is
evident that there is a clear correlation between field observa-
tion data and estimated coherence and backscattering values in
determining different phenological stages of selected crop types
in the study area.

IV. RESULTS

For evaluating classification performance with diverse feature
sources, we conducted three categories of classification experi-
ments, including only backscattering, interferometric coherence
alone, and a combination of both. In each category, various
classification schemes have been constructed, depending on the
input features, which vary in polarization and the number of
images. Therefore, in order to ensure the completeness of the
classification in the study site, we considered seven classes of
land covers in the classification process and thematic mapping.
However, due to the small sample numbers of build-up and
others, these two classes were excluded from the analysis of
the results.

A. Classification Using Backscattering

The initial phase of the classification evaluation exclusively
employs backscattering intensity as input parameters for the RF
classifier. A set of classification schemes was designed depend-
ing on backscattering from different polarization channels and
SAR image numbers.

1) Influence of Polarization: To examine the influence of
different polarizations on the accuracy of crop-type classifica-
tion based on the backscattering intensity, three classification
schemes were constructed: VV backscattering intensity, VH
backscattering intensity, and a combination of both polarizations
(VV+VH). To emphasize the quantitative analysis of vegetation
targets, Table IV, obtained from the confusion matrix in Fig. 6,
selectively presents the accuracy for five categories of vegetation
across diverse polarization, where “±” is the STD computed
as the average of the accuracies resulting from five times of
classification experiments depending on different training and
testing set.

It is clear to see that with backscattering intensity from a single
polarization channel, the OA values for classification using only
VV or VH are greater than 90%. Nevertheless, VH provided
refined classification results than VV, achieving an OA value
of 93.48% and a Kappa coefficient of 0.90, with an OA of
1.15% higher than VV. As using backscattering intensity form
both polarization channels (VV + VH), the best classification
performance is achieved, with an OA value of 95.12% and a
Kappa coefficient of 0.93, which further improves 1.64% of
OA than VH. The results highlight the remarkable capability
of Sentinel-1 backscattering to capture the intricate biophysical
features of crops at different growth stages, leading to accu-
rate classification. In addition, incorporating intensities from
both polarization channels as input characteristics can further
improve the precision of classification. The classification maps
corresponding to the different polarization channels exhibiting
the best accuracy among the five predictions are shown in
Fig. 6. From the visualization, it is evident that the clustering
pattern resulting from polarization combinations is superior to
the results obtained from single polarizations, exhibiting fewer
scattered errors and clear field boundaries.

When examining the PA and UA for individual crops, it is evi-
dent that corn and soybean achieved over 95% accuracy in single
polarization. However, winter wheat had limited classification
performance and showed differences between various polariza-
tions. In VV, a PA value of 74.94% and a UA value of 81.67% are
observed, whereas an improved PA value of 89.99% and a UA
value of 88.70% are achieved in VH, marking a notable increase
of 15.05% and 7.03%. This arises from the fact that VV excels in
capturing vertical vegetation structure information, while using
cross polarization (HV and VH) enables the better capture of data
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Fig. 6. Confusion matrix and classification maps with backscattering intensity images and RF algorithm using different polarization. (a) VV. (b) VH. (c) VV+VH.

pertaining to crown volume and plant biomass [58]. During the
growth trajectory of winter wheat, it shows dense aggregation,
rendering SAR imagery predominantly capable of capturing
intricate details pertaining to the canopy. Consequently, VH
unveils heightened sensitivity, thereby rendering it remarkably
effective in the accurate classification of winter wheat crops.
Likewise, it is worth noting that VH consistently yields superior
classification accuracy within forested regions, showcasing an
impeccable PA value of 98.89%.

The benefits of using a combination of VV and VH polar-
izations are apparent in the enhanced classification accuracies
for nearly all crop species. Notably, PA and UA values for
soybean and corn have both increased to exceed 97% and 96%,
respectively. The UA value for winter wheat has risen to 91.61%,
with only 1.31% decrease compared to VH polarization. Among
the three schemes, the forage class, characterized by its perennial
and varied vegetation, exhibits a more intricate structure, result-
ing in lower classification accuracy. Under VV + VH, the UA
value barely exceeds 80%. In contrast, the classification results
for forested regions are highly favorable, with both PA and UA
values exceeding 90%.

2) Influence of Image Number: The number of images used
to create SAR time-series data plays a crucial role in deter-
mining classification accuracy [15], [52]. Hence, we performed
a sequential addition of multitemporal images from April to
October 2018, and subsequently tested the classification per-
formance with various polarization channels. Table V provides
the details and classification accuracies for different combi-
nations of time-series data. The OA values with two scenes
are 43.95% and 45.43% for VV and VH polarizations. As the
number of images increases, more significant improvements in

classification accuracy become evident. Nevertheless, when the
number of scenes exceeds 11, the incremental improvements in
OA gradually diminish.

To facilitate visual comparison between VV and VH, Fig. 7
illustrates the relationship between the number of images and
OA for both polarizations, where the shaded area is STD of the
five classification tests for each group of increasing images as
classification features. Until July 9, the accuracy in VH consis-
tently outperforms those in VV, with a 6% difference in OA.
This observation aligns with the earlier analysis of individual
crop accuracy, where the sensitivity of VV to vertical structure
posed challenges in discriminating winter wheat. It is worth
mentioning that there is an interesting shift that occurs after
adding an image on July 21 (from scenario 9 to scenario 10),
leading to a significant 16% increase in accuracy in VV. This
boost can be primarily attributed to the winter wheat harvest
during this period, which reduces ambiguities between winter
wheat and other classes. As the number of images continues
to increase, the gap in accuracy between VH and VV gradu-
ally diminishes, converging to around 1% by the end. These
results confirm the effectiveness of time series backscattering
coefficients for crop classification [52], with temporal features
outweighing backscattering features for classification accuracy.

B. Classification Using Coherence

Before evaluating the additional benefits of coherence fea-
tures in crop classification, it is essential to first assess the
performance when utilizing coherence features as input param-
eters independently [44]. A variety of classification schemes
were developed based on coherences derived from different
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TABLE V
RELATIONSHIP BETWEEN THE NUMBER OF IMAGES AND THE CLASSIFICATION ACCURACY

Fig. 7. Relationship between number of intensity images and classification accuracy. (a) OA. (b) Kappa.

polarization channels and phenological stages. The coherence
features employed in this study were derived from Sentinel-1
interferometric pairs with 12-day intervals.

1) Influence of Polarization: To assess the impact of different
polarization choices on the precision of crop-type classification
through interferometric coherence, three classification schemes
were created: one based on VV coherence, another on VH
coherence, and a third combining both polarizations (VV+VH)
coherence. The performance of these schemes was assessed
by analyzing confusion matrices (see Fig. 8), and the PA and
UA values for vegetation targets under various polarization
combinations are presented in Table VI.

As anticipated, relying solely on coherence features for over-
all performance proves insufficient reflected in unsatisfactory
OA values across all three schemes. The accuracy is lower than
the previous study in [44], which may be attributed to a longer
temporal baseline (12 days instead of 6 days). Notably, VV
yields more accurate results, with an OA of 69.46% and a Kappa
coefficient of 0.52. Conversely, due to the presence of lower SNR
for VH coherence [47], it produces worse outcomes, exhibiting
a lower OA value of 50.64% and a reduced Kappa coefficient
of 0.18. This indicates the inadequacy of VH coherence for
crop classification in the study area. Furthermore, combining
the features in both polarizations (VV + VH) results in an OA
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Fig. 8. Confusion matrix and classification maps with coherence images and RF algorithm using different polarizations. (a) VV. (b) VH. (c) VV + VH.

TABLE VI
CLASSIFICATION ACCURACY USING COHERENCE BASED ON DIFFERENT POLARIZATIONS

comparable to that of VV coherence, albeit with a marginal
decrease of only 0.12%.

In Fig. 8, thematic maps are presented, showcasing the clas-
sification results across various polarization channels. The clas-
sification maps for all three schemes encountered challenges in
accurately delineating crop fields, with evident scattered errors
in most areas. Particularly, VH demonstrated the least effective
classification performance, displaying distinct granular patterns
that only partially identified major cash crops such as soybean
and corn. Contrastingly, the results from the remaining two
classification approaches (VV and VV + VH) exhibit relative
similarity. Despite not achieving ideal performance, they offer a
more comprehensive extraction of boundaries for certain farm-
lands.

Among the two distinct polarizations individually, soybean
and corn stand out as leaders in classification accuracy, demon-
strating a moderate level of precision where PA values exceed

UA values. Specifically, when examining the coherence from
the VH channel, the PA and UA values for soybean and corn
are approximately 15% lower than those of the VV polarization.
This discrepancy could be attributed to the inherent similarity
within the coherence time-series data related to various crops,
resulting in a scenario where the error of commission surpasses
the error of omission.

For winter wheat, VV polarization showcased elevated ac-
curacy levels, yielding PA and UA values of 41.00% and
66.82%, respectively. In contrast, VH polarization witnessed
a significant decrease in classification accuracy, dropping by
over 40% for both PA and UA values. This indicates that the
coherence is prone to causing omission and commission errors
in the classification of winter wheat. Table VI clearly indicates
that the performance of the remaining land-cover categories
was unsatisfactory. The forage is identified as the crop with
the least effective classification, none polarization succeeded
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Fig. 9. Variation curve of OA using VV coherence time-series for 17 interfer-
ometric pairs individually.

in effectively distinguishing herbaceous plants. This challenge
can be attributed to two factors: the relatively small number
of samples for forage and the intricate complexity of forage
vegetation. Regarding the identification of forested areas, VV
polarization emerged as relatively reliable, boasting a PA value
of 63.70%, whereas the PA value for VH polarization is only
0.00%. The lackluster performance of forests in VH polarization
is partly due to the limited number of samples. In addition, low
coherences in forests, especially in VH polarization, hinder their
ability to provide the necessary distinctiveness for differentiation
from other crops.

2) Influence of Phenology: In both the considerable number
of existing studies and our work, one of the added values
provided by coherence is the increased sensitivity to the early
growth and harvesting stages of the crop [35], [36]. Crop phe-
nology influences temporal coherence, consequently impacting
the classification results using coherence [34]. To assess the
influence of phenology on classification, we obtained the OA of
classification for each interferometric pair in VV. Fig. 9 shows
the relationship between the acquisition dates of image pairs and
OA. It is clear that coherence with higher OA value is distributed
in the early crop growth and harvest periods, which is consistent
with [42]. An interesting point is that interferometric pairs with
high OA values consistently exhibit high coherence values in the
coherence time series curves. Using the mean OA value (37.5%
in our case) as a threshold, 8 of the 17 interferometric pairs were
above the threshold.

To further evaluate the performance by combining fewer
coherences at key phenology, a subset of coherences in VV
was constructed using the eight interferometric pairs as new
input for classification. Table VII demonstrates the accuracy
before and after selection. It is evident that the difference in
accuracy between them is negligible, with a 2.31% decrease in
OA using the subset. This suggests that coherence from a few
interferometric pairs on specific dates can produce comparable
classification results while reducing the cost burden and improv-
ing computational efficiency.

TABLE VII
CLASSIFICATION ACCURACY OF TIME-SERIES SETS BEFORE AND AFTER

SELECTION BASED ON VV COHERENCE

C. Classification Using Backscattering and Coherence

While the classification results based on coherence alone fall
significantly short compared to those obtained using backscat-
tering in prior experiments, it is worthwhile to integrate both
backscattering and coherence features to explore the addi-
tional value coherence may bring to crop classification [42].
Three schemes were implemented, combining features from
both backscattering and coherence, aiming to evaluate the sup-
plementary impact of coherence across different polarization
channels. Table VIII lists the mean values of each accuracy
calculated from the confusion matrix (see Fig. 10) of the five
classification tests, illustrating the classification accuracy met-
rics for vegetation targets in various polarization combinations
(VV, VH, and combinations of both). When compared with
the results presented in Table IV (backscattering only) and
Table VI (coherence only), it becomes evident that integrating
interferometric coherence with SAR backscattering significantly
improves crop classification accuracy. Particularly noteworthy
is the outstanding separability of soybean, corn, and forested re-
gions, achieving classification accuracies surpassing 95% within
these three schemes.

In comparison to the coherence feature set with the same
polarization, all schemes incorporating combined features ex-
hibit significant improvements in classification accuracy [42],
[44]. In contrast to individual backscattering features, VV leads
to the most significant OA improvement at 1.00%, while VH
and VV + VH result in minor OA enhancements of 0.31%
and 0.20%, respectively. Moreover, the inclusion of the VV
coherence resulted in the most substantial increase in both
PA and UA values for each crop. Specifically, the PA value
for winter wheat reflected a remarkable increase of 4.43%
(from 74.94% to 79.37%). Similarly, the PA value for forage
increased from 65.72% to 69.90%, indicating an improvement
of 4.18%. This observation is consistent with the earlier analysis
in Section IV-B, emphasizing the classification benefits of VV
coherence over VH coherence. Finally, the most effective clas-
sification result is obtained with the strategy that integrates both
backscattering and coherence attributes from both polarizations,
achieving an OA of 95.32% and a kappa coefficient of 0.93.
The classification maps for the three schemes are illustrated in
Fig. 10. This scheme accurately delineates the boundaries of
each parcel with minimal errors.
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TABLE VIII
CLASSIFICATION ACCURACY USING BOTH BACKSCATTERING AND COHERENCE FEATURES BASED ON DIFFERENT POLARIZATIONS

Fig. 10. Confusion matrix and classification maps using both backscattering and coherence features. (a) VV. (b) VH. (c) VV + VH.

In addition, the preceding experimental findings, as presented
in Table IV for backscattering exclusively and Table VI for
coherence alone, suggest that the backscattering coefficient of
VV + VH and the coherence of VV yield better classifica-
tion performance within a single source of features, respec-
tively. Consequently, it is worthwhile to assess the classification
scheme by integrating VV coherence with all backscattering
features and to compare it with the scheme utilizing all backscat-
tering and coherence features. As depicted in Table IX, the
overall accuracies of the two classification schemes exhibit re-
markably similar results, with OA values of 95.33% and 95.32%.
Fig. 11 displays the confusion matrix with thematic maps for
the best classification scheme of this study. There is basically no
difference between the thematic maps and confusion matrices of
these two schemes. The slight difference can be mainly attributed
to the RF classifier and remains within a negligible range. The at-
tainment of the desired crop classification outcome is possible by
utilizing VV coherence and two backscattering coefficients with

multitemporal Sentinel-1 dual-polarization data, thereby reduc-
ing feature redundancy and accelerating computation time.

V. DISCUSSION

A. Temporal Dynamics

Aligning with previous studies [14], [15], [21], our study con-
firmed that the temporal dynamics of backscattering coefficients
can reflect changes in crop growth. The dynamic curves of dif-
ferent crops tend to stabilize after a period of fluctuation, before
oscillating again with harvest. The fluctuation is composed of
various factors, such as vegetation density, soil moisture, and
roughness [58], [59]. Due to depolarization effects in VH, a
significant gap was found in backscattering between VV and
VH for all crops. Moreover, VV coherence fluctuates over a
wide range of 0.2–0.5 in our case, while VH ranges from 0.2 to
0.3. It indicates that VH is more sensitive to crop growth than
VV, consistent with the findings in the previous works [34], [37].
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TABLE IX
CLASSIFICATION ACCURACY OF TIME-SERIES SETS BASED ON DIFFERENT COHERENCE ATTRIBUTES AND ALL BACKSCATTERING COEFFICIENTS

Fig. 11. Confusion matrix and classification maps of the combination with backscattering coefficients of VV + VH and the coherence of VV. (a) Confusion
matrix. (b) Thematic map.

The results of these studies also consolidated that coherence
is a useful vegetation index for monitoring crop growth with
VV coherence demonstrating higher sensitivity [35], [36]. The
difference in coherence values between VV and VH was also
observed, mainly due to the phase difference between the two
polarizations [34], [60]. The maximum differences for the three
crops in both polarizations are 0.23, 0.33, and 0.25, respectively,
which are roughly consistent with the results using Sentinel-1
data acquired from track 65 in [34]. The maximum interferomet-
ric coherence value for all crops is around 0.5, mainly in April
and October, similar to studies based on the same revisit cycle
(12 days) [37], [40], [61]. However, Sentinel-1 images with a
6-day revisit cycle exhibit a higher coherence value (about 0.7)
for the same crops [35], [44], [45], which indicates that a short
temporal baseline can maintain high coherence to resist potential
backscattering changes induced by factors such as regional
climate variations, cultivation practices, and crop growth. In our
study, we also found that the dynamic behaviors of coherence
are highly correlated with the variation in backscattering with
the growth of crops. In most cases, significant fluctuations in
backscattering will result in a decrease in coherence, attributed
to the strong temporal decorrelation. However, there are a few
exceptions in our study (e.g., the InSAR pair of May 22 and June
3), which could be attributed to lower SNR decorrelation.

B. Crop Classification

The classification results using only the coherence feature
are worse than using backscattering alone, with an OA of

approximately 70% for the VV polarization, similar to that in
[42] for a time baseline of 12 days. Although the accuracy is
lower than the results obtained with a 6-day temporal baseline
[44], [45], however, coherence with a 12-day revisit cycle still
validates its added value to improve crop classification perfor-
mance using backscattering, especially for VV. The combination
of backscattering with coherence in both polarizations (VV
and VH) significantly improved the accuracy of winter wheat
and forage while slightly enhancing the accuracy of soybean and
corn. In contrast to previous works [30], [43], [44], we found
that the best crop classification scheme in our study combines
the backscattering coefficients of dual polarization (VV + VH)
with the VV coherence feature instead of using all four fea-
tures. Moreover, an interesting point of our work is providing
more detailed insights from the perspective of the number of
images and the phenological period by linking temporal be-
havior and classification. Specifically, we found that the impact
of temporal characteristics on classification accuracy narrows
the gap between the two polarimetric backscattering features,
and the harvest of winter wheat led to a notable enhancement
in crop classification accuracy based on backscattering. Also,
the interferometric pairs during phenological periods with high
coherence values yield high OA. Selecting these pairs can obtain
comparable results to using all pairs.

C. Limitations and Future Work

The study shows that VV coherence plays a complementary
role to the backscattering coefficient, particularly in identifying
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winter wheat crops with spike structures. However, our study
has certain limitations as it only involves three types of crops
and has a dataset with a revisit cycle of 12 days from a single
orbit (Orbit 77). In future work, exploring the additional role
of coherence in crop growth monitoring and mapping can be
extended to more diverse crop types, even incorporating different
radar frequencies (e.g., X, L, and P-band), polarization modes,
and temporal baselines.

The coherence, as a crucial feature in this study, is estimated
using a maximum likelihood estimator. However, it tends to be
biased toward lower coherence values, employing higher values
than the actual coherence [62]. This bias leads to overestima-
tion and subsequent contrast loss. The unbiased coherence is
essential for better reflecting scene changes induced by crop
growth. Some solutions have been proposed to get unbiased
coherence asymptotically [30], [36], [42]. In future research,
we aim to explore more accurate methods for obtaining unbiased
coherence and investigate its contributions to crop classification
and monitoring.

It is certainly true that the current development of classifiers
is very rapid, particularly, the popular deep learning provides an
excellent channel for classification [54]. Deep learning can take
into account both temporal and spatial features. We will consider
deep learning techniques when we need to input a large number
of features when we carry out multiyear, multi-data-source crop
classification studies in the future. In addition, further investiga-
tions could be directed toward dynamic crop change detection
based on both coherence and backscattering. This might include
tasks such as identifying crop rotation, detecting changes in the
same field over time, and similar analyses. These will help to
grasp clearer spatial and temporal changes in crop cropping
structure, which provides a basis for scientific planning and
rational layout to guide agricultural production.

VI. CONCLUSION

In this article, we explored the application of interferometric
coherence and polarimetric backscattering derived from the time
series C-band Sentinel-1 SAR dataset for crop growth monitor-
ing and classification in the agricultural region of Southwestern
Ontario, Canada. As demonstrated in this study, we concentrated
on understanding the temporal dynamics of three primary crops,
providing insights into the behavior influencing the crop classi-
fication results. The main conclusions are drawn as follows.

1) The VH backscattering and the VV coherence show a
higher sensitivity to the variations in crop growth. More-
over, the dynamics of coherence are strongly correlated
with the variation of backscattering with the growth of
crops.

2) The backscattering feature displays better ability in crop
classification compared to coherence features. The inte-
gration of coherence with backscattering resulted in an
improvement in classification accuracy. Among all clas-
sification schemes, the most effective result is achieved
by combining both the backscattering of dual polarization

(VV+VH) and the VV coherence, with an OA of 95.33%
and a kappa coefficient of 0.93.

3) The impact of temporal characteristics on classification
accuracy will reduce the difference between two backscat-
tering features. In addition, the interferometric pairs in
the phenological periods exhibiting high coherence values
produce high OA values. Besides, coherence features from
a few selected interferometric pairs on specific dates can
produce comparable classification results.
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