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Abstract—Object detection in unmanned aerial vehicle (UAV)
images is an important and challenging task for many applications,
which often needs highly efficient detection algorithms to meet the
accuracy and real-time requirements of the applications. In this
article, we investigate efficient mechanisms for detecting dense and
small objects in UAV images. Specifically, 1) kernel K-means is used
to obtain optimal anchors for dense and small object detection; 2)
a spatial information enhancement module is proposed to improve
the detection accuracy of dense objects by extracting object spatial
location information; 3) a Coord_C3 module is proposed to improve
the receptive field of the network and to reduce the number of
network parameters; and 4) a small detection head is added in
the Head of the network and skip connections are employed in the
Neck of the network to improve the detection accuracy of small
objects. Experimental results on the VisDrone-2019, LEVIR-ship,
and Stanford Drone datasets show that our method not only has
higher detection accuracy but also runs faster compared to state-
of-the-art detection methods.

Index Terms—Deep learning, kernel K-means, object detection,
spatial information, unmanned aerial vehicle (UAVs).

1. INTRODUCTION

ITH the development of the unmanned aerial vehicle

(UAV) technology, object detection in UAV images
has a wide range of applications, including urban environment
monitoring [1], land utilization planning [2], forest fire mon-
itoring [3], traffic management [4], and military [5]. Images
captured under a UAV’s field of view are more complex than im-
ages of natural scenes. Specifically, 1) UAV images are variable
and complex, and object distribution may be dense or sparse.
Existing object methods often demonstrate low robustness in
this context and 2) as the UAVs are usually far from the ground,
the objects in the captured images may be small, which makes it
hard to extract the real contours of the objects with the existing
object detection methods. Thus, detecting these dense and small
objects in UAV images is an important and challenging task.
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Many methods have been proposed for detecting small objects
in UAV images [6], [7], [8], [9], [10], [11], [12], [13], [14]. The
authors in [8] enhanced the accuracy of small object detection
through alignment fusion of shallow spatial features and deep
semantic features, employing candidate region feature align-
ment. Liu et al. [11] improved the detection accuracy of small
object in UAV images by connecting two ResNet units of equal
width and height based on YOLOv3. Two data enhancement
strategies and distance metrics are proposed in [12] for im-
proving detection accuracy of small objects. Zhang et al. [13]
proposed a spatial logical aggregation network (SLA-NET) with
morphological transformations, which enables the extraction of
fine-grained features of small objects through multiple plug-
and-play dynamic fusion modules. The authors in [14] proposed
a multibranch parallel feature pyramid network (MPFPN) and
focuses attention on object information, which improves the
detection accuracy of small objects. However, the computational
cost of these methods is generally large and can hardly meet the
real-time requirements of many UAV applications. In addition,
the detection accuracy of these methods may be decreased when
the objects are densely distributed.

Some methods have been proposed for detecting dense objects
in UAV images. Xu et al. [ 15] proposed an advanced foreground-
enhanced attention Swin transformer (FEA-Swin) framework
that integrates contextual information into the original backbone
of the Swin transformer. To avoid losing the information of small
objects, an improved weighted bidirectional feature pyramid
network (BiFPN) is proposed. To balance the detection accuracy
and efficiency, an efficient bidirectional feature pyramid network
neck is introduced. A novel semantic embedding density adap-
tive network (SDANet) was proposed in [16], which designs a
new density matching algorithm to obtain each object by parti-
tioning the clustering proposal and performing hierarchical and
recursive matching of the corresponding centers. Ye et al. [17]
proposed a backbone network utilizing involution and self-
attention, capable of extracting effective features from complex
objects. Furthermore, they introduced a multiscale feature fusion
module to address the issue of large number of small objects
in UAV images through multiscale object detection and feature
fusion. However, due to the large number of parameters involved,
these methods are difficult to meet the real-time requirements of
many UAV applications.

In addition, many methods have been proposed for real-time
object detection in UAV images [18], [19], [20], [21], [22].
Zhang et al. [18] achieved real-time object detection
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FPS and AP comparison of object detection methods on the VisDrone-

implementation for UAVs by introducing channel-level sparsity
in the convolutional layer. This was accomplished through the
application of L1 regularization to the channel scaling factor and
the removal of less informative feature channels using clipping
techniques. The authors in [21] achieved real-time object de-
tection by replacing standard convolution with depth-separable
convolution based on YOLOV3. A convolutional multihead self-
attention (CMHSA) based on efficient convolutional transformer
block (ECTB) was proposed in [22] for achieving real-time
object detection. CMHSA employs a convolutional projection
instead of a positional-linear projection, which reduces compu-
tational cost. These methods help to reduce the computational
cost for object detection in UAV images, they often results in
low detection accuracy, particularly for dense and small objects.

To address these problems, we investigate efficient mecha-
nisms (DS-YOLOVS5s) for detecting dense and small objects in
UAV images with high accuracy and low computational cost.
Fig. 1 summarizes the performance of our method as compared
with the state-of-the-art methods.

The major contributions of our work are as follows.

1) A kernel K-means is used to obtain optimal anchors for

dense and small object detection.

2) A spatial information enhancement (SIE) module is pro-
posed to improve of detection accuracy of dense objects
by extracting object spatial location information.

3) A Coord_C3 module is proposed to improve the receptive
field of the network and to reduce the number of network
parameters.

4) A small detection head is added in the Head of the net-
work and skip connections are employed in the Neck of
the network to improve the detection accuracy of small
objects.

The rest of this article is organized as follows: Section II
describes the related work. Section III provides a detailed de-
scription of the proposed method for dense and small object
detection. The experimental results are presented and analyzed
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in Section I'V. Further analysis is discussed in Section V. Finally,
Section VI conclueds this article.

II. RELATED WORK

As our method is based on YOLOVS5s, in this section, we will
first introduce the principles of YOLOVSs, then describe some
related work in feature extraction for object detection in UAV
images.

A. YOLOvS5s

YOLOVS [23] is the fifth generation of You Only Look
Once (YOLO) [24], a state-of-the-art object detection net-
work. YOLOVS includes YOLOVS5s, YOLOv5m, YOLOVSI, and
YOLOV5x, which are classified mainly according to their size
and computational complexity. Compared to other networks,
YOLOVS5s has the advantages of fewer parameters and faster
detection speed. The structure of YOLOVSs includes the Input,
Backbone, Neck, and Head, as shown in Fig. 2.

Input: During the initial stage of processing images, the input
image is adjusted to conform to the size of the model’s input
through normalization and adaptive scaling. The Mosaic data
augmentation [25] and adaptive anchor [26] methods are used
to improve the inference speed of the network, and enhance the
robustness of the network.

Backbone: The Backbone of YOLOVSs is the improved CSP-
Darknet53 network [27], which combines of CBS, C3, and
SPPF [28] modules for refined feature information extraction.
CSPDarknet53 effectively enhances the learning capability of
convolutional neural networks (CNNs) while simultaneously
reducing computational cost.

Neck: It serves the purpose of connecting the Backbone
network with the prediction head network, facilitating the ac-
quisition and transmission of feature information. It consists
of two networks. The feature pyramid network (FPN) [29] has
an up—down structure that upsamples and fuses the underlying
feature information to obtain the predicted feature map, while the
path aggregation network (PANet) [30] uses a down—up structure
to fuse the FPN feature map to complement the FPN structure .

Head: The YOLOVSs contains three object detection heads
which correspond to three different sizes of feature maps. Each
grid on the feature map is predefined with three anchors of
different aspect ratios, which is used to store anchor-based po-
sition and classification information in the feature map channel
dimension for object prediction and regression. The prediction
frame is calibrated by CIoU loss [31], and the optimal prediction
frame is obtained by nonmaximum suppression (NMS) [32].

In this study, YOLOVSs will serve as the basis as well as
the benchmark. We made various enhancement to YOLOVS5s to
address the accuracy and real-time requirements for detecting
dense and small objects in UAV images.

B. Feature Extraction for Object Detection

Traditional convolutional networks use an up—down substruc-
ture, where the expressiveness of the object’s shallow features
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Fig. 2. Structure of YOLOVS5s network.

decreases as the convolutional layers become deeper. As the se-
mantic information of smaller objects often appears in shallower
feature mappings, deeper convolutional layers may result in the
loss or complete disappearance of object feature information.
Therefore, common methods for solving this problem include
feature fusion, receptive field enhancement, and anchor match-
ing.

Feature fusion is widely used in object detection. Jin et al. [33]
combined the semantic information of feature context at differ-
ent scales with an expansive convolution method. Han et al. [34]
used deconvolution to enhance the feature representation of ship
objects. Wang et al. [35] designed SSS-YOLO to fuse feature
and semantic information by a path-enhanced fusion network.
A two-way convolution network (TWCNet) is proposed in [36]
to process both shallow and deep feature information. The
authors in [37] proposed a graph feature-enhanced selective
assignment network (GSANet) that uses graph convolutional
networks to obtain topological information between ground
objects to enhance representational features. For receptive field
enhancement, Zhao et al. [38] grew candidate regions from
multiple receptive fields and combined the contextual informa-
tion of the candidate frames to improve the detection accuracy
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of the object. Dai et al. [39] fused down—up and up—down
feature maps to enhance the receptive fields of small object
features. To expand the receptive field of the convolution kernel,
Wang et al. [40] introduced large kernel convolution by replacing
the small convolution kernel with two parallel rectangular convo-
lution kernels. Expanding the receptive field while maintaining
the ability to capture local detailed features improves the object
detection accuracy. As to anchor matching, Fuet al. [41] adopted
an anchor-free strategy to detect small ships in SAR images.
Xu et al. [42] used an improved K-means++ algorithm to op-
timize the anchors and to alleviate the difficulty in optimizing
multiscale features of ships. Liang et al. [43] proposed a concise
analytical geometry algorithm to calculate ship orientation and
gradually refine the keypoints to establish an accurate orientated
bounding box.

III. DS-YOLOV5s

Due to the fact that UAVs fly at high altitudes, this results in a
high proportion of small objects in the image, which are densely
distributed. In addition, it is often difficult to balance between
the high computational demand and the limited arithmetic power
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Fig. 3. Structure of DS-YOLOVS5s network.

of low-power chips of UAVs. To address these problems, we
propose a method for detecting dense and small objects in UAV
images based on YOLOVS5s. First, the anchor of the dataset is
optimized by kernel K-means clustering algorithm. Then, we
introduce an SIE module in the Backbone and Neck of the net-
work, which enhances the location information of dense objects
in the network by extracting spatial feature information. At the
Backbone and Neck network, based on CoordConv [44], the
Coord_C3 module is proposed to replace the C3 of YOLOVSs,
which can improve the receptive field of the network and reduce
the number of parameters of the network. In addition, at the
Head of the network, a detection head for a small object is added
to improve the detection accuracy of small objects. Finally, skip
connections are introduced to fuse the shallow and deep features,
which can improve the feature sensing ability of the network and
further improve detection accuracy of dense and small objects.
The DS-YOLOVS5s network structure is shown in Fig. 3.

A. Anchor Optimization

YOLOVSs defines three initial anchors, and optimizes the
anchor using the K-means clustering algorithm [45]. However,
K-means requires manual initialization of the clustering center,
which results in low clustering accuracy. Existing algorithms
use K-means++ [46] to avoid manual initialization of the cluster
centers, but result in higher computational complexity.

Dhillon et al. [47] proposed kernel K-means based on K-
means. Unlike traditional K-means, kernel K-means uses ker-
nel functions to map data into high-dimensional space before
clustering. This algorithm can effectively process a nonlinear
distribution datasets and improve clustering accuracy.

Ensuring reasonable anchor is a crucial requirement for
improving detection accuracy of objects. The UAV object
detection dataset usually contains multiple categories of ob-
jects, each of which has a different size and with a nonlinear
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Fig. 4.

Comparison of clustering results. (a) K-means (Rand Index=0.6004). (b) K-means++ (Rand Index=0.6504). (c) kernel K-means (Rand Index=0.7174).
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distribution. To obtain optimal anchors, this study introduces
kernel K-means clustering at the input of the DS-YOLOVS5s
network to automatically find the reasonable anchor for object
detection. Fig. 4 illustrates an example where the clustering
center is set to 5 and the number of iteration is set to 10. Conduct
experiments on simulated data, with the Rand index serving as
the evaluation metric. The clustering process using K-means,
K-means++, and kernel K-means took 0.18, 0.21, and 0.12 s,
respectively. Notably, kernel K-means achieved the highest Rand
index, indicating superior performance in terms of speed and
accuracy. Consequently, this study utilizes kernel K-means for
anchor frame optimization. To the best of our knowledge, this is
the first application of kernel K-means in anchor optimization.

B. SIE Module

An SIE module is proposed to extract spatial location features
in UAV images, weighting different channel features and spatial
locations, and enhance the network’s perception and positioning
ability of object categories and location distributions. The SIE
module structure is shown in Fig. 5. The location information
of the feature maps is extracted through CoordConv [44], and
the feature expression capability of the network is enhanced
through the CoordCBS module. To enhance computational ef-
ficiency and improve feature representation, the feature maps

is compressed using 1 X 1 convolution (Conv) in the channel
dimension. This process effectively removes redundant chan-
nel features and reduces the number of parameters. Subse-
quently, the feature maps are concatenated in both height and
width directions employing maximum pooling and global av-
erage pooling. The SIE module is expressed as the following
equation:

SIE = CBS(I5) (1)
Is = ca(Is, I4,1) 2)
Iy = ce(I2) (3)
I3 = cc(AP(c(1h))) )]
Iy = ca(MPs g13(c(I1)), e(I1), AP(c(I1))) (5)
I, = CBS(cc(1)) (6)

where ¢, cc, ca, AP, MP, and 7 denote Conv, CoordConv, Concat,
AvgPool, MaxPool, and Input, respectively.

C. Coord_C3 Module

To improve receptive field and reduce the number of param-
eters of the network, we proposed the Coord_C3 module with
spatial information based on CoordConv, as shown in Fig. 6.
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The Coord_C3 module includes the CoordCBS and Bottle-
Neck modules. Through the multiscale exchange of shallow
high-resolution and deep high-level semantic features, enhanced
features containing dense small-object details and spatial infor-
mation can be obtained. BottleNeck consists of two CoordCBS
modules. It obtains spatial location information of the object
while reducing the feature dimension and the number of layers
in the feature map, thus reducing the computational complexity.
The CoordCBS module consists of a CoordConv module, batch
normalization (BatchNorm2d), and SiLU activation function,
which can enhance the feature expression ability of CNNs while
obtaining feature spatial information. The Coord_C3 expression
is as follows:

Coord_C3 = CB(C¢(BN(CB(7),CB(i)))) @)
BN = CB(CB(i)) (8)
CB = SiLU(BN2(CoordConv(7))) ©)

where CB, BN, C¢, BN2, and i represent CoordCBS, Bottle-
Neck, Concat, BatchNorm2d, and Input, respectively.

D. Loss Function

EfficiCLoss is a loss function utilized in object detection,
which combines the advantages of class balanced importance
sampling (CBIS) loss and focal loss [48]. Its purpose is to
improve the detection accuracy of small objects and expedite
the convergence of the network. Compared to DIoU [31] and
SIoU [49], EfficiCLoss exhibits significant effectiveness in en-
hancing the accuracy of model detection for small objects, and
accelerating training. Consequently, we employ EfficiCLoss as
the loss function of our network. The equations of EfficiCLoss
are as follows:

Lefici = o - Lepis + (1 - 04) * Liocal (10)
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TABLE I
EXPERIMENTAL CONFIGURATION

Platform Name
The Operating system Windows 11
CPU 15-10400F
GPU Nvidia RTX 1660S
Python 3.7
PyTorch 0.12.0
S Software Pycharm 2022

Lepis = o+ Lo + (1 - Oz) * Local (11)

Liocat = — o1 — py)"log(pt) + a(p)"log(1 —py)  (12)
where Legfc; 1s the EfficiCLoss loss, Lcp;s 1s the CBIS loss, Lgocal
is the focal loss, «v is a balance coefficient, L. is CE loss, p; is
the predicted probability, and n is a balance factor. In this article,
« and n are 0.6 and 0.5, respectively.

IV. EXPERIMENTS AND ANALYSIS

To evaluate the performance of the proposed method, this
study uses the VisDrone-2019 [50], LEVIR-ship [51], and Stan-
ford Drone [52] datasets and compares the proposed method
with existing object detection methods. All experiments are
conducted with the same hardware and software environment,
whose configurations are shown in Table I. Our network is
implemented using PyTorch on a Windows 11 operating sys-
tem, with an Nvidia GeForce RTX 1660S GPU and CUDA
11.3. The stochastic gradient descent [53] is employed as the
optimizer, with an input image size of 512x512 pixels. The
network is trained for 300 epochs, including 50 epochs of freeze
training, with a batch size of 8. Subsequently, unfreeze training
is conducted with a batch size of 4. To enhance the training
process, a Mosaic [25] data augmentation strategy is employed.
The initial learning rate is set to 0.01, with a minimum learning
rate of 0.0001, which is adaptively adjusted based on the dataset
characteristics. The momentum parameter and weight decay are
set to 0.937 and 0.0005, respectively. During the testing stage,
a postprocessing step utilizing NMS is applied.

A. Datasets

1) VisDrone-2019: The VisDrone2019 dataset was compiled
by the AISKYEYE team at the Lab of Machine Learning and
Data Mining, Tianjin University, China. This benchmark dataset
comprises 288 video clips, with 261908 frames and 10209
static images. These recordings were captured using various
drone-mounted cameras, offering a comprehensive representa-
tion of different aspects, including location (spanning 14 differ-
ent cities across China, separated by thousands of kilometers),
environment (urban and rural settings), objects (pedestrians,
vehicles, bicycles, etc.), and scene density (ranging from sparse
to crowded scenes). It is important to note that the dataset was
collected using diverse drone platforms, with varying models,
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Fig. 8. Distribution of objects in LEVIR-ship dataset. (a) Images of LEVIR-
ship dataset. (b) Distribution of object sizes in the dataset.

across different scenarios, and under various weather and light-
ing conditions. Manual annotation was carried out on these
frames, resulting in over 2.6 million bounding boxes encom-
passing objects of interest, such as pedestrians, cars, bicycles,
and tricycles. The distribution of features within the dataset is
shown in Fig. 7. We employed this dataset to evaluate a method’s
capability in detecting dense objects.

2) Levir-Ship: The LEVIR-ship dataset comprises images
captured by multispectral cameras on the Gaofen-1 and Gaofen-
6 satellites. These images have a spatial resolution of 16 m and
utilize only the R, G, and B bands. A total of 85 scenes were
collected, with pixel resolutions ranging from 10 000 x 10 000 to
50 000x20 000. The original images were cropped to generate
1973 positive samples and 1923 negative samples, all of size
512x512 pixels. Detecting ships within this dataset poses chal-
lenges due to their relatively small size compared to the vast
background. LEVIR-ship is a widely used dataset for object
detection in remote sensing images, and its data distribution
closely resembles that of UAV images. The distribution of fea-
tures within the dataset is shown in Fig. 8. We utilized this dataset
to evaluate a method’s capability in detecting small objects.

3) Stanford Drone: The Stanford Drone dataset is an outdoor
UAV dataset collected by the Computational Vision and Geom-
etry Lab in the Department of Computer Science at Stanford
University containing images and videos of various types of
targets (not only pedestrians but also bicycles, skateboards, cars,
buses, and golf carts). The dataset collects trajectory interaction
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Fig. 9.

Images of the Stanford Drone.

information of 20 k objects in eight different scenes using UAVs
inan overhead view during crowded time periods on campus, and
each object track is labeled with a unique ID suitable for object
trajectory prediction and multiobject tracking. The number of
videos in each scene and the percentage of each agent in each
scene are shown in Fig. 9. We utilized this dataset to evaluate a
method’s capability in detecting dense and small objects.

B. State-of-the-Art Methods

We chose 14 object detect methods, e.g., Faster
RCNN [54], Mask RCNN [55], Cascade RCNN [56],
CornerNet [57], CenterNet [58], SSD [59], YOLOv2 [60],
YOLOV3[61], YOLOvV4 [62], YOLOVSs [23], EfficientDet [63],
SGMFNet [64], YOLOv7-sea [65], and RTD-Net [22],
respectively, to validate the performance of the proposed
method in object detect tasks in UAV images.

C. Evaluation Metrics

As primary accuracy evaluation metrics, standard average
precision (AP), mean average precision (mAP), precision (P),
and recall (R) are widely used in object detection for both natural
and remote sensing images. To assess a model’s efficiency, we
measure frames per second (FPS), parameters (Params), and
floating-point operations (FLOPs).

In the context of a model or classifier, the metric P represents
the ability to accurately predict positive samples, with a higher
value indicating superior performance. On the other hand, R
represents the proportion of predicted positive samples relative
to the total number of samples, and its performance aligns with
that of P. It is worth noting that P and R have a mutual influence
on each other. Generally, when P is high, R tends to be low,
and vice versa. The metrics P, and R are computed using the
following equations:

TP
P =
TP+FP
TP
" TP+EN

13)

(14)



6608

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE II
ABLATION EXPERIMENTS ON VISDRONE-2019 (%)

YOLOvVSs [23]  SIE  Coord_C3  EfficiCLOSS P R mAP@0.5 mAP@0.5:0.95
v 71.2 63 75.8 27.5
v v 719 645 76.1 29.3
v v 72.1 649 76.4 29.5
v v 71.6  65.1 76.3 30.3
v v v 72.8 66.2 71.5 32.4
v v v v 745 669 78.4 33.7
Black bold numbers refer to top performance.
where TP denotes correctly recognized objects in the image, FP 0144 —=— Box_loss—e— Class_loss—— Object loss
signifies incorrectly recognized objects, and FN indicates ob-
jects that were correctly recognized but assigned to an incorrect 0.12
category. -
AP refers to the area under the P-R curve, while the mAP 0.10
represents the average value of AP for each category. Specif- 20.08
ically, mAP@0.5 denotes the average value of AP when the - ——
intersection over union (IoU) threshold is set to 0.5. On the 0.06
other hand, mAP@0.5:0.95 indicates the average mAP across 0.04
different IoU thresholds (0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85,
0.9, 0.95). The metrics AP and mAP are computed using the 0.02

following equations:

N
AP = )" P(K)AR(K) (15)
k=1
1 N
mAP = = ; P(K)AR(K) (16)
AR(K) = R(K) — R(K — 1) (17)

where C' denotes the number of object categories, K represents
the current ToU threshold, and P(K') and R(K') denote precision
and recall of the current IoU threshold, respectively.

FLOPs serve as a metric for quantifying the computational
complexity of a model and are frequently employed as an
indirect indicator of the speed of a neural network model. On the
other hand, Params represents the number of model parameters.
In addition, FPS provides a measure of the efficiency of a model.

D. Dense Object Detection

1) Ablation Studies: To assess the effectiveness of the DS-
YOLOVS5s in enhancing dense object detection performance in
UAV images, a series of ablation experiments are conducted
on the VisDrone-2019 dataset and the results are shown in
Table II. The findings reveal that the introduction of SIE on top of
YOLOVS5s resulted in a 0.3% increase in mAP@0.5 and a 0.8%
increase in mAP@0.5:0.95, effectively improving both feature
extraction capability and detection accuracy. In addition, the
incorporation of Coord_C3 based on YOLOVS5s yielded notable
improvements across mAP@0.5 and mAP@0.5:0.95. Specifi-
cally, there was a 2% increase in mAP@0.5:0.95, significantly
enhancing the accuracy of dense object detection. Similarly, the
inclusion of EfficiCLoss in YOLOVSs led to enhancements in

0 50 100 150 200 250 300

epoch

Fig. 10. Training loss on VisDrone-2019 dataset.

mAP@0.5 and mAP@0.5:0.95, indicating improved detection
accuracy. DS-YOLOVSs signifies the adoption of a comprehen-
sive approach that incorporates all three proposed improvement
methods. The results unequivocally demonstrate the superior
detection accuracy of the proposed method for dense objects in
UAV images.

2) Comparison With State-of-the-Art Methods: The training
process was conducted for a total of 300 epochs, and the cor-
responding loss curve is illustrated in Fig. 10. In this figure,
Box_loss represents the discrepancy between the predicted and
actual bounding boxes. Class_loss indicates the classification
loss, which determines the model’s ability to accurately rec-
ognize objects in the image and assign them to the correct
categories. Object_loss represents the confidence loss, which
supervises the presence of objects within the grid and calcu-
lates the network’s confidence level. As shown in Fig. 10, it
can be observed that after 300 epochs, the loss values of the
DS-YOLOvS5s network ceased to decrease, indicating that the
network had converged and stabilized.

DS-YOLOv5s was compared with other object detection
methods on the VidDrone-2019 dataset. As shown in Table III,
on mAP@(.5, DS-YOLOVS improves upon Faster RCNN by
36.3%, Mask RCNN by 16.8%, Cascade RCNN by 4.1%, Cor-
nerNet by 22.5%, CenterNet by 1.75%, SSD by 30.4%, YOLOv2
by 28%, YOLOV3 by 4%, YOLOV4 by 5.7%, YOLOVSs by
3.1%, EfficientDet by 2.6%, SGMFNet by 2.8%, YOLOv7-sea
by 2%, and RTD-Net by 3.5%. On Params, YOLOVS5s has the
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TABLE III
COMPARISON RESULTS OF DIFFERENT METHODS ON VISDRONE-2019
Method AP(%) mAP@0.5 (%) Params (M) FLOPs (G)
Faster RCNN [54] 70.8(0.08) 423 41.16 299.2
Mask RCNN [55] 75.4(0.03) 62.1 60.7 310.57
Cascade RCNN [56] 79.1(0.09) 74.8 68.95 320.07
CornerNet [57] 69.4(0.11) 56.4 200.96 1104.06
CenterNet [58] 76.8(0.02) 77.2 70.75 137.21
SSD [59] 73.5(0.04) 48.5 24.39 175.2
YOLOV2 [60] 75.4(0.11) 50.9 48.7 19.8
YOLOV3 [61] 68.6(0.06) 74.9 8.5 21.1
YOLOvV4 [62] 69.8(0.07) 73.2 9.42 20.4
YOLOVS5s [23] 71.2(0.13) 75.8 6.7 15.8
EfficientDet [63] 74.8(0.10) 76.3 52 1.9
SGMFNet [64] 73.9(0.11) 76.1 62.3 305.8
YOLOv7-sea [65] 74.2(0.08) 76.9 55.7 283.2
RTD-Net [22] 73.6(0.05) 75.4 23.8 165.7
DS-YOLOVSs 82.3(0.01) 78.9 6.8 16.3
Black bold numbers refer to top performance.
() represents standard deviation.
TABLE IV

DS-YOLOvSs
RTD-Net

I FLOPs (G)
YOLOVI-sa B [ params (M)
[ I mAP@0.5(%)
EfficientDet =]
YOLOVSs =
YOLOV4 £
YOLOV3 £
YOLOV2 £
SSD
CenterNet
CornerNet ==
Cascade RCNN —r
Mask RCNN
Faster RCNN
T T T T T T 1
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Fig. 11.  Qualitative results on VisDrone-2019 dataset.

smallest number of parameters and our method is second only
to YOLOVS5s. On standard deviation, DS-YOLOvVS5s has the
smallest standard deviation value of AP, which demonstrates
the stability of the method. Due to the limitations of UAVs
hardware, small platforms are more sensitive to the number
of parameters and model volume. DS-YOLOVS5s effectively
reduces the number of parameters and volume of the network
by using the idea of CoordConv and replacing the traditional
convolution module of YOLOvSs with the CoordConv module.
It can be seen from Table III and Fig. 11 that DS-YOLOVS5s
greatly reduces the hardware requirements of the network struc-
ture while guaranteeing accuracy, which is conducive to its use
in small devices, such as UAVs.

As shown in Table IV, compared to YOLOvSs, mAP@0.5
of DS-YOLOVS5s increases by 4.6%, 6.6%, 5.4%, 5.1%, 5.6%,
3.5%, 5.8%, 4%, 4.5%, and 5.4%, respectively, for the pedes-
trian, people, bicycle, car, van, truck, tricycle, awning-tricycle,

COMPARISON OF OBJECT DETECTION PERFORMANCE OF VARIOUS CATEGORIES
ON VISDRONE-2019(MAP@0.5(%))

Category YOLOvVSs [23]  DS-YOLOvVSs  Variation
pedestrian 50.8 55.4 +4.6
people 447 51.3 +6.6
bicycle 354 40.8 +5.4
car 69.8 74.9 +5.1
van 442 49.8 +5.6
truck 429 46.4 +3.5
tricycle 229 28.7 +5.8

awning-tricycle 23.9 27.9 +4

bus 48.9 534 +4.5
motor 40.5 459 +5.4

The symbol “+” denotes the improvements of DS-YOLOVSs over
YOLOVSs.

bus, and motor categories. The experimental results show that
DS-YOLOVS5s can significantly improve the detection accuracy
of the network for dense objects.

In addition, to further demonstrate the effectiveness of the
proposed method, we conducted a comparative test with state-
of-the-art methods on Stanford Drone dataset. As shown in
Table V, on AP, DS-YOLOVS improves upon Faster RCNN
by 11.9%, Mask RCNN by 7.3%, Cascade RCNN by 3.6%,
CornerNet by 13%, CenterNet by 5.9%, SSD by 9.3%, YOLOv2
by 6.5%, YOLOv3 by 14.1%, YOLOV4 by 12.4%, YOLOV5s by
11.4%, EfficientDet by 7.9%, SGMFNet by 8.6%, YOLOv7-sea
by 8.1%, and RTD-Net by 9%. It can be seen from Table V
and Fig. 12 that DS-YOLOVS5s greatly reduces the hardware
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TABLE V
COMPARISON RESULTS OF DIFFERENT METHODS ON STANFORD DRONE
Method AP(%) mAP@0.5 (%)
Faster RCNN [54] 71.3(0.08) 429
Mask RCNN [55] 75.9(0.03) 62.8
Cascade RCNN [56] 79.6(0.11) 75.3
CornerNet [57] 70.2(0.13) 56.2
CenterNet [58] 77.3(0.04) 77.5
SSD [59] 73.9(0.04) 49.1
YOLOV2 [60] 76.7(0.10) 50.6
YOLOV3 [61] 69.1(0.05) 72.3
YOLOv4 [62] 70.8(0.04) 75.6
YOLOVS5s [23] 71.8(0.10) 77.1
EfficientDet [63] 75.3(0.09) 76.8
SGMFNet [64] 74.6(0.11) 77.3
YOLOv7-sea [65] 75.1(0.07) 75.8
RTD-Net [22] 74.2(0.05) 74.9
DS-YOLOVS5s 83.2(0.02) 80.1
Black bold numbers refer to top performance.
(-) represents standard deviation.
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Fig. 12.  Qualitative results on Stanford Drone dataset for dense objects.

requirements of the network structure while guaranteeing accu-
racy, which is conducive to the its use in small devices, such as
UAVs.

3) Analysis of Visualization Results: To more intuitively
demonstrate the dense object detection capability of DS-
YOLOVS5s in UAV images, we selected some experimental re-
sults, as shown in Fig. 13, which demonstrate that the proposed
method can accurately determine the position of an object in
dense objects. This is a challenging scenario, as the algorithm
can easily misidentify these as a single object, or miss some
of them. DS-YOLOV5s can effectively detect each object and
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Fig. 13. Detection results of dense objects on VisDrone-2019.
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Fig. 14.  P-R curve of YOLOVSs and DS-YOLOVSs on LEVIR-ship.

accurately recognize its location and category, showing strong
robustness and accuracy.

E. Small Object Detection

1) Ablation Studies: Ablation experiments were conducted
on the LEVIR-ship dataset to validate the performance of
the proposed improvement measures for small object detec-
tion. As shown in Table VI, compared to the YOLOvSs, DS-
YOLOVS5s exhibits improvements of 1.8% in mAP@0.5 and 9%
in mAP@0.5:0.95. These findings validate the effectiveness of
the proposed module.

2) Comparison With State-of-the-Art Methods: Following
300 epochs of training, a test was conducted using sample data
from the test dataset. The area under the P-R curve serves as a
measure of average accuracy, with a larger area indicating higher
accuracy. As shown in Fig. 14, the P-R curve of DS-YOLOVS5s
exhibits a larger area compared to that of YOLOVSs, indicating
superior performance.

Experimental comparisons were conducted between DS-
YOLOVS5s and other object detection methods using the LEVIR-
ship and Stanford Drone datasets. As shown in Table VII
and Fig. 15, DS-YOLOVSs has the highest mAP@0.5 and
mAP@0.5:0.95, which indicates the superior performance of
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TABLE VI
ABLATION EXPERIMENTS ON LEVIR-SHIP
YOLOVSs [23] SIE Coord_C3 EfficiCLoss mAP@0.5(%) mAP@0.5:0.95(%)
v 73.6 59.1
v v 73.8 61.2
v v 74.3 62.3
v v 74.9 63.4
v v v 75.1 64.9
v v 4 v 75.4 68.1
Black bold numbers refer to top performance.
TABLE VII 160 =
COMPARISON OF ACCURACY OF DIFFERENT METHODS ON LEVIR-SHIP | E mAP@0.5:0.95(%) \:I mAP@0.5(%)
140 — /==
Methods mAP@0.5(%) mAP@0.5:0.95(%) | I
Faster RCNN [54] 443 39.7 120 -
Mask RCNN [55] 52.9 48.6 1 -
Cascade RCNN [56] 61.5 53.5 100 [] —
CornetNet [57] 50.8 52.8 80 41 -
CenterNet [58] 68.4 63.9 || mEnEnEEEEEE
SSD [59] 50.2 30.3 60 |
YOLOV2 [60] 53.8 394 || B | =[]
YOLOV3 [61] 75.1 63.5 40
YOLOV4 [62] 73.2 64.1 20 4
YOLOVSs [23] 73.6 64.5 ]
EfficientDet [63] 73.9 66.7 (e o D N L W U S L S
SGMFNet [64] 74.1 67.2 % % % % %’ 2 E § % g é; z E %’ g
YOLOV7-sea [65] 74.4 679 E %‘; f:j § E ° 22 § é é & g §
RTD-Net [22] 73.8 66.5 g 3 g i3 S %
DS-YOLOVSs 75.4 68.1 “
Black bold numbers refer to top performance. Fig. 15.  Comparison of mAP@0.5 and mAP@0.5:0.95 on LEVIR-ship.

the method. In terms of mAP@0.5, DS-YOLOVS5 outperforms
Faster RCNN by 31.1%, Mask RCNN by 22.5%, Cascade
RCNN by 13.9%, CornerNet by 24.6%, CenterNet by 7%, SSD
by 25.2%, YOLOV2 by 21.6%, YOLOv3 by 0.3%, YOLOv4 by
2.2%,YOLOV5s by 1.8%, and EfficientDet by 1.5%. In addition,
for mAP@0.5:0.95, DS-YOLOVS5 surpasses Faster RCNN by
28.4%, Mask RCNN by 19.5%, Cascade RCNN by 14.6%, Cor-
nerNet by 15.3%, CenterNet by 4.2%, SSD by 37.8%, YOLOv2
by 28.7%, YOLOvV3 by 4.6%, YOLOv4 by 4%, YOLOVS5s by
3.6%, and EfficientDet by 1.4%. These findings highlight the
efficiency and effectiveness of our proposed method.

As shown in the Table VIII and Fig. 16, the accuracy on
Stanford Drone is higher than on the LEVIR-ship dataset com-
pared to Table VIL In terms of mAP@0.5:0.95, DS-YOLOvV5
outperforms Faster RCNN by 35.1%, Mask RCNN by 26.2%,
Cascade RCNN by 19.7%, CornerNet by 26.6%, CenterNet
by 9.6%, SSD by 16.8%, YOLOV2 by 24.1%, YOLOV3 by
2.5%, YOLOvV4 by 5.3%, YOLOVS5s by 4.8%, EfficientDet by
3%, SGMFNet by 1.5%, YOLOv7-sea by 0.8%, and RTD-Net
by 3.3%. At the same time, YOLOv7-sea has the second best

result. Experimental results on LEVIR-ship and Stanford Drone
datasets demonstrate the superiority as well as accuracy of
DS-YOLOvS5s for small object detection.

3) Analysis of Visualization Results: To assess the general-
ization capability of DS-YOLOVS5s in detecting small objects,
we conducted comparative experiments using the LEVIR-ship
dataset. As shown in Fig. 17, DS-YOLOVS5s is able to accurate
detection the smallest objects almost without missed or false
detection.

F. Computational Complexity

Table IX presents the FPS achieved by each object detection
method on the VisDrone-2019, LEVIR-ship, and Stanford Drone
datasets using the same experimental platform. The results reveal
that Faster-RCNN exhibits the lowest FPS due to its two-stage
network architecture. This approach involves extracting the
object region first, followed by CNN classification and iden-
tification, which yields higher detection accuracy but can hardly
meet the real-time requirement. On the other hand, YOLOvVS5s
achieves the highest FPS but with lower accuracy. In terms of
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TABLE VIII
COMPARISON OF ACCURACY OF DIFFERENT METHODS ON STANFORD DRONE
FOR SMALL OBJECTS

Methods mAP@0.5(%) mAP@0.5:0.95(%)
Faster RCNN [54] 45.7 41.8
Mask RCNN [55] 53.6 50.7
Cascade RCNN [56] 62.1 57.2
CornetNet [57] 51.9 50.3
CenterNet [58] 68.7 67.3
SSD [59] 50.8 50.1
YOLOV2 [60] 54.3 52.8
YOLOV3 [61] 75.6 74.4
YOLOvV4 [62] 73.8 71.6
YOLOVSs [23] 74.2 72.1
EfficientDet [63] 75.1 73.9
SGMFNet [64] 76.2 75.4
YOLOv7-sea [65] 76.8 76.1
RTD-Net [22] 75.7 73.6
DS-YOLOvS5s 78.4 76.9
Black bold numbers refer to top performance.
DS-YOLOVSs | |
RTD-Net | J
YOLOV7-sea l |
SGMFNet [ |
EfficientDet [ |
YOLOVSs [ |
YOLOv4 [ |
YOLOV3 | |
YOLOV2 [ |
SSD [ ]
CenterNet [ |
CornerNet [ ]
Cascade RCNN [ |
Mask RCNN [ | [ ImAP@0.5:0.95(%)
Faster RCNN [ | [ ImAP@0.5(%)

0 20 40 60 80 100 120 140 160

Fig. 16. Comparison of mAP@0.5 and mAP@0.5:0.95 on Stanford Drone for
small objects.

FPS, DS-YOLOVS5s outperforms YOLOv3 and YOLOV4 on the
VisDrone-2019, LEVIR-ship and Stanford Drone datasets, with
FPS values of 50.2, 51.5, and 52.7, respectively. The results
demonstrate that DS-YOLOVS5s has higher detection accuracy
and faster detection speed, which shows that DS-YOLOV5s is a
promising object detection method for dense and small objects
in UAV applications.

V. DISCUSSION

With the popularity and development of UAV technology,
UAVs are widely used in military and civilian applications.
However, due to the high flight altitude and large field of view
of UAVs, the images captured from the UAV contain both dense
and small objects, which reduces the accuracy of object detection
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Fig. 17. Detection results of small objects on LEVIR-ship (red rectangular
boxes indicate detection of small objects).

TABLE IX
COMPARISON OF FPS ON VISDRONE-2019, LEVIR-SHIP AND STANFORD
DRONE DATASET
Methods Voot LEVIRship  Spatord

Faster RCNN [54] 4.9 5.5 6.2
Mask RCNN [55] 5.8 6.1 7.9
Cascade RCNN [56] 10.9 11.5 11.7
CornetNet [57] 13.1 14.7 153
CenterNet [58] 13.5 13.8 16.1
SSD [59] 16.7 17.2 17.8
YOLOV2 [60] 47.9 48.4 50.1
YOLOV3 [61] 59.1 59.7 60.6
YOLOv4 [62] 55.3 56.4 58.2
YOLOVS5s [23] 60.2 63.7 65.4
EfficientDet [63] 34.8 35.1 35.7
SGMFNet [64] 48.3 49.1 49.8
YOLOv7-sea [65] 46.2 479 48.3
RTD-Net [22] 22.4 23.8 239
DS-YOLOv5s 50.2 51.5 52.7

Black bold numbers refer to top performance.

by UAVs. Therefore, it is crucial to develop a method that can
simultaneously detect dense and small objects in UAV images.

Existing UAV object detection methods are mainly object-
specific and have low accuracy for detecting dense and small
objects inimages. In addition, existing methods suffer from large
number of parameters and low computational efficiency, which
make them difficult to be deployed on UAV computing platforms
and to perform real-time object detection. Our proposed method
is able to achieve real-time object detection while guaranteeing
high-accuracy detection of dense and small objects. First, a ker-
nel K-mean clustering algorithm is used to optimize the anchors
of the dataset. Then, SIE module is introduced in the backbone
and neck of the network to enhance the location information
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of dense objects in the network by extracting spatial feature
information. In the backbone network, based on CoordConv,
the Coord_C3 module is proposed to replace the C3 module
of YOLOvSs, which improves the acceptance domain of the
network and reduces the number of parameters of the network.
In addition, in the head of the network, a detection head for
small objects is added to improve the detection accuracy of small
objects. Finally, the introduction of jump connection fusion of
shallow and deep features improves the feature sensing ability
of the network, which further improves the detection accuracy
of dense small objects.

It should be noted that, the proposed model is still large to be
deployed on UAVs and the detection performance also needs to
improve considering the complexity in real applications. More
specifically:

1) proposing a UAV image object detection method under
hazy weather to improve robustness in complex environ-
ments;

2) proposing a dynamic object detection method for UAV
images to achieve real-time object tracking;

3) improving the computational resources of UAV computing
platforms.

VI. CONCLUSION

This article focuses on improving the detection accuracy of
dense and small objects in UAV images by incorporating feature
fusion and spatial information. To this end, we have proposed
DS-YOLOVvSs. First, we introduce the kernel K-means algo-
rithm at the Input of the network, enabling rapid determination
of the optimal anchor size. To effectively extract spatial infor-
mation from the feature map, an SIE module is proposed. Fur-
thermore, Coord_C3 module is introduced to extend the range of
feature awareness and to reduce the model size. In addition, skip
connections are employed to fuse shallow strong semantic infor-
mation with deep weak semantic information, thereby enhancing
the network’s receptive field. Finally, we incorporate a small
object detection head into the network architecture to improve
the detection of small objects. Experimental results demonstrate
that DS-YOLOVS5s surpasses existing state-of-the-art methods in
terms of both detection accuracy and FPS.

As future work, we plan to evaluate our method with more
challenging datasets and design a lightweight network to reduce
the size of the network.
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