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Abstract—In recent years, deep learning has emerged as the
dominant approach for hyperspectral image (HSI) classification.
However, deep neural networks require large annotated datasets
to generalize well. This limits the applicability of deep learning
for real-world HSI classification problems, as manual labeling of
thousands of pixels per scene is costly and time consuming. In
this article, we tackle the problem of few-shot HSI classification
by leveraging state-of-the-art self-supervised contrastive learning
with an improved view-generation approach. Traditionally, con-
trastive learning algorithms heavily rely on hand-crafted data
augmentations tailored for natural imagery to generate positive
pairs. However, these augmentations are not directly applica-
ble to HSIs, limiting the potential of self-supervised learning in
the hyperspectral domain. To overcome this limitation, we intro-
duce two positive pair-mining strategies for contrastive learning on
HSIs. The proposed strategies mitigate the need for high-quality
data augmentations, providing an effective solution for few-shot
HSI classification. Through extensive experiments, we show that
the proposed approach improves accuracy and label efficiency
on four popular HSI classification benchmarks. Furthermore, we
conduct a thorough analysis of the impact of data augmentation
in contrastive learning, highlighting the advantage of our positive
pair-mining approach.

Index Terms—Contrastive learning, hyperspectral image (HSI)
classification, positive pair mining, self-supervised learning.

I. INTRODUCTION

HYPERSPECTRAL imagery is a very important and pow-
erful technology in remote sensing. Hyperspectral images
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(HSI) contain hundreds of narrow bands covering a wide range
of the electromagnetic spectrum, from visible to near infrared,
thereby capturing very rich information about the physical
characteristics of objects in a scene. This unique property of
hyperspectral data, coupled with an increasing availability of
cost-effective sensors, and an improving spatial and spectral
resolution, has enabled many applications in agriculture, en-
vironmental monitoring, and biomedical imaging, to name a
few. This rapid advancement in measurement instruments has
significantly increased the amounts of data available, subse-
quently calling for the development of HSI analysis algorithms,
especially for HSI classification.

The problem of HSI classification consists in assigning a
semantic label to every pixel in an HSI. It is an important and
challenging problem that has received considerable attention
from the remote sensing community in the last decades. Progress
in this field has been closely intertwined with advancements
in machine learning. In early works, traditional HSI classifica-
tion methods followed on a two-stages procedure. First, they
employed a hand-crafted feature extraction and/or dimension-
ality reduction algorithm such as local binary patterns [1], his-
togram of oriented gradients [2], principal component analysis
(PCA) [3], or independent component analysis [4]. Then, a tradi-
tional classification algorithm such as support vector machines
(SVMs) [5], multinomial logistic regression [6], or random
forests [7] was learned on the manually generated features.
Nowadays, with the rise of deep learning, neural networks have
emerged as the dominant approach. Their capability to learn
latent representations from raw data in an end-to-end manner
eliminates the need for extensive feature engineering.

Deep learning has enabled tremendous progress in HSI anal-
ysis in the last few years, especially for HSI classification [8].
For example, Hu et al. [9] used a 1-D convolutional neu-
ral network for spectral feature extraction. Zhong et al. [10]
proposed a spectral–spatial residual network (SSRN) leverag-
ing 3-D convolutions for enhanced feature extraction. Hamida
et al. [11] introduced a 3-D architecture for HSI classification.
Mou et al. [12] designed a recurrent neural network for HSI
classification considering the spectrum as a sequence. Hong
et al. [13] proposed a novel spectral–spatial transformer back-
bone by grouping adjacent spectral bands and generating to-
kens in the spectral dimension. Hong et al. [14] adapted graph
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convolutional networks (GCNs) for HSI classification and pro-
posed miniGCN, an enhanced GCN model that supports mini-
batch training, enabling training on larger images. However,
despite these efforts, training deep neural networks following the
supervised learning paradigm requires large and well-annotated
datasets to generalize and avoid overfitting. Unfortunately, accu-
rately labeling thousands of pixels in an HSI is time consuming,
and requires expert knowledge. This limitation severely impedes
the applicability of deep learning on real-world hyperspectral
datasets. Therefore, label-efficient learning is a critical research
direction that requires further investigation to enable the use of
deep learning in HSI analysis.

Significant efforts have been devoted to develop label efficient
learning methodologies, such as semisupervised learning [15],
meta-learning [16], weakly supervised learning [17], and
unsupervised/self-supervised learning [18]. These paradigms
have been exploited in remote sensing as well to reduce the
need for manual annotation. In particular, several HSI classifi-
cation works have shown promising results with sparse training
sets [19]. Yet, the problem of HSI classification with limited
labels remains open. Semi-supervised learning approaches make
use of unlabeled samples in conjunction with annotated pixels,
often relying on consistency losses or pseudolabeling tech-
niques [20]. On the other hand, few-shot meta-learning methods
pretrain classification models on large labeled datasets in a
way that enables the model to quickly adapt to new previously
unseen classes [21]. Earlier works in unsupervised learning rely
on classical representation learning algorithms such as autoen-
coders [22] to mitigate overfitting.

Of particular interest to us, self-supervised learning algo-
rithms have led to significant breakthroughs in computer vi-
sion in the last few years [23]. These methods aim at learning
versatile representations from unlabeled data [24] and leverage
the resulting pretrained models for various downstream tasks.
It has been shown that such pretraining strategies can even
outperform supervised pretraining on several problems [25].
One specific family of methods that has driven progress in this
field is contrastive learning.1 Contrastive methods train a model
to produce similar representations for two randomly augmented
versions of the same image. Enforcing such invariance results
in semantically rich representations provided that the augmen-
tations are well-chosen.

In this article, we leverage recent advancements in self-
supervised contrastive learning to enable accurate HSI classi-
fication with limited labels. Specifically, we pretrain a convolu-
tional residual backbone using a state-of-the-art self-supervised
learning algorithm, namely Barlow-Twins (BT) [26], on unla-
beled pixels in a HSI. The resulting pretrained model can be
efficiently adapted following a lightweight classification pro-
tocol with limited labels. In addition, we propose to leverage
interdependencies between pixels in the scene to design pos-
itive pair-mining strategies, providing high-quality views for
contrastive learning algorithms. Our experiments demonstrate

1In this work, we denote by contrastive learning all methods using a joint-
embedding/siamese architecture, including algorithms that do not explicitly use
negative pairs.

that incorporating diverse samples as positive pairs enriches
the supervision signal and enhances robustness to data aug-
mentation. Finally, we conduct extensive ablation studies to
analyze the impact of view generation, including the choice of
data augmentation, on the performance of contrastive learning
for HSI classification. Our approach is compatible with any
contrastive learning method and can be applied to both spectral
and spatial–spectral classifiers. The results demonstrate that the
proposed pipeline is superior to plain supervised learning, few-
shot learning algorithms and classical contrastive pretraining.
Our contributions can be summarized as follows.

1) We propose a self-supervised learning approach for HSI
classification with limited labels by leveraging state-of-
the-art contrastive learning algorithms.

2) We propose two positive pair-mining strategies for con-
trastive learning to exploit the interdependencies between
different pixels/patches in a scene and reduce the depen-
dence on high-quality data augmentations in the hyper-
spectral domain.

3) We evaluate the proposed approach on four popular HSI
classification datasets and analyze the impact of the view
generation strategy, pair mining, and data augmentation,
on the quality of the representations learnt.

The rest of this article is organized as follows. In Sec-
tion II, we discuss the background and related work from
the HSI classification and self-supervised learning literature.
In Section III, we present the proposed methodology. In Sec-
tion IV, we describe our experimental setting and results.
Finally, Section V concludes this article.

II. RELATED WORK

A. HSI Classification With Limited Labels

Label efficient HSI classification has been a very active
research topic in the past few years [19]. Numerous studies
have employed various learning paradigms and tailored network
architectures toward a common objective: producing accurate
classification maps with a handful of labels. One line of work
has exploited few-shot learning algorithms, e.g., Tang et al. [27]
use prototypical networks [28] to train a model on a combination
of labeled source HSI classification datasets, enabling its use on
target datasets with novel classes in a few-shot setting. Similarly,
Gao et al. [29] adapt relation networks [30] and use a learnable
distance metric to compare the patches in an HSI. An important
drawback of these methods is that they require a large amount
of annotated pretraining data and special care when the source
and target sensors do not match.

Another successful line of work leverages semi-supervised
learning to make use of unlabeled pixels in an HSI and in-
crease label efficiency. For example, Wu et al. [20] employed
pseudolabels generated by a Dirichlet process mixture model to
train a deep recurrent network for HSI classification with few
labels. Wu et al. [31] proposed a semi-supervised approach that
combines self-training with a spatial constraint to improve the
consistency of pseudolabels.

More recently, researchers have investigated self-supervised
learning methodologies for HSI classification. Yang et al. [32]
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designed a pretext task in which the model is pretrained to
predict the scale and flipping labels for a patch. Liu et al. [33]
adapted the idea of contrastive multiview coding [34] to HSIs
by dividing the spectral channels into two different subsets to
create distinct views. Zhao et al. [35] used a contrastive learning
method, namely SimCLR [36], to perform HSI classification
with a limited number of samples per class.

B. Contrastive Learning

Contrastive learning is a family of self-supervised learning
algorithms that train a model to be invariant to input transforma-
tions. Specifically, the model learns to produce similar represen-
tations for two randomly augmented versions of the same image.
The underlying assumption is that augmentations preserve the
semantics and only alter the style of the image. However, without
a constraint on the diversity of the representations, this objective
can result in a trivial solution, known as collapse, where all inputs
yield a constant representation. To address this issue, various
types of methods have been proposed in the literature.

1) Contrastive methods with negative samples such as Sim-
CLR [36] and MoCo [37] explicitly encourage the rep-
resentations of different images within the same batch to
diverge.

2) Distillation-based methods such as SimSiam [38] or
BYOL [39] follow a student–teacher model and introduce
asymmetry in the architecture (e.g., stop-gradient and
predictor subnetwork).

3) Clustering-based methods such as SwAV [25] introduce
equipartition constraints in the embedding space.

4) Regularization-based methods, e.g., Barlow-Twins
(BT) [26], explicitly avoid collapse using a regularization
term in the loss function that enforces feature
decorrelation.

Contrastive learning has gained popularity in HSI analy-
sis. Hou et al. [40] used SimCLR to pretrain and finetune
a convolutional neural network on a hyperspectral scene. Hu
et al. [41] leveraged the BYOL algorithm with a transformer
architecture combined with hand-crafted augmentations for HSI
classification. Huang et al. [42] proposed a multiscale contrastive
learning approach with a 3-D Swin transformer backbone. Zhu
et al. [43] proposed a multiscale approach based on SimCLR
with a novel light-weight backbone for HSI classification. Li
et al. [44] leveraged BYOL with an occlusion augmentation to
learn robust representations. Xue et al. [45] exploit contrastive
learning with a variable number of views in a multitask set-
ting for multimodal few-shot land cover classification. Guan
et al. [46] use contrastive learning for HSI classification with
two distinct encoder branches: a spatial encoder that takes as
input a masked patch, and a spectral encoder that takes as input
a partially masked pixel.

C. Positive and Negative Pair Mining in Contrastive Learning

Early works in supervised and unsupervised contrastive learn-
ing [47], [48] generally relied on a small number of negative
samples per anchor (one or two). Consequently, the quality of the
learned representations heavily depended on the selection strat-
egy of the negative samples. Easy negatives were uninformative,

while hard samples were challenging to learn. Nowadays, most
self-supervised contrastive learning methods use a very large
number of negatives (typically all samples within the batch),
without any explicit mining strategy. Further analyses have
shown that in a large batch, only few negative samples were con-
tributing to the loss during pretraining [49], [50]. Based on that,
careful negative pair selection and generation strategies have
been proposed for contrastive methods. Nevertheless, negative
pair mining is not widely used in modern contrastive learning
methods. Positive pair mining has attracted less attention in the
unsupervised setting given the difficulty of accurately selecting
true positives without labels. Nevertheless, some efforts have
been made in that direction. Jean et al. [51] proposed to exploit
spatial information to select positive and negative samples with
a triplet loss on NAIP and Landsat imagery. The intuition is
that nearby patches share common semantics, whereas distant
patches should have dissimilar representations. Kang et al. [52]
incorporated a similar idea in MoCo to generate more infor-
mative positive pairs. SeCo [53] and SSL4EO-S12 [54] used
temporal positives, i.e., images of the same location from dif-
ferent seasons captured by the Copernicus Sentinel-2 mission.
Dwibedi et al. [55] proposed to select positive pairs using KNN
retrieval in the embedding space of the model during pretraining.
Wang et al. [56] adopted a similar approach in a multimodal
hyperspectral—LiDAR setting.

The effectiveness of contrastive learning relies heavily on the
quality of augmentations used for view generation. While these
augmentations have been fine tuned for natural imagery, their
direct application to hyperspectral imaging poses challenges due
to the significant domain shift. The unique spectral character-
istics of hyperspectral data call for specialized view generation
approaches.

III. METHODOLOGY

In this section, we introduce the different components of
the proposed method, namely the pretraining algorithm, the
classification protocol, and the view generation procedure.

A. Overview

Let X ∈ R
N×M×C be an HSI. We denote by x ∈ R

p×p×d a
hypercube of size p× p sampled from the scene. Our approach
follows a two-stage process involving pretraining and classifica-
tion. Initially, we employ a self-supervised contrastive learning
algorithm to pretrain an encoder f on all pixels in the scene,
including unlabeled ones. Then, we utilize the encoder f to train
a classification model g using a limited set of labeled pixels.
During classification, we predict the label of the central pixel
in the patch x. This approach effectively mitigates overfitting
while leveraging the knowledge gained from the vast number of
unlabeled pixels. The overall method is depicted in Fig. 1.

B. Pretraining Algorithm

During the pretraining stage, we treat all pixels in the scene
as unlabeled samples and train a convolutional encoder f using
a state-of-the-art self-supervised learning algorithm, namely
BT [26]. Similar to other contrastive methods, the pretraining
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Fig. 1. Overview of the proposed self-supervised learning approach for HSI classification.

objective aims at learning similar embeddings for distorted
versions of the same input. In addition, BT prevents collapse by
minimizing the redundancy between the features in the embed-
ding space. Specifically, from an inputx, two viewsxA = TA(x)
and xB = TB(x) are stochastically generated using two sets
of augmentations TA and TB . In this work, we also leverage
the global context in the scene to generate positive pairs using
different patches x1 and x2 (see Section III-C). For the sake of
simplicity, we denote the two views by xA and xB here. The
views are fed into the shared encoder f to obtain their repre-
sentations hA = f(xA) and hB = f(xB). Subsequently, an ad-
ditional multilayer perceptron (MLP) head is applied to further
project the representations into the embedding space, resulting
in the embedding vectors zA = MLP(hA) and zB = MLP(hB).
Since xA and xB form a positive pair, their embeddings should
be similar. Furthermore, following the redundancy minimization
principle, the dimensions of zA and zB should be decorrelated.
LetZA andZB be the embedding matrices for a batch of positive
pairs. To quantify the degree of correlation, we compute the
cross-correlation matrix C along the batch, defined as

Cij =
∑

b z
A
b,iz

B
b,j√∑

b

(
zAb,i

)2
√∑

b

(
zBb,j

)2
. (1)

The objective is to make C close to identity. This is achieved
by optimizing the following loss function:

L =
∑
i

(1− Cii)2

︸ ︷︷ ︸
invariance to augmentation

+ λ
∑
i

∑
j �=i

C2
ij

︸ ︷︷ ︸
redundancy reduction

(2)

Algorithm 1: Pseudo-Code for BT with Positive Pair
Mining.

Initialize Backbone f , Projection Head MLP
Define a selection strategy for positive pair mining (e.g.,
neighboring patches and superpixels-based)

Define augmentations TA and TB

for each batch do
for i = 1, . . . , N do

Sample a patch xi from the HSI
Sample a positive pair (xi, x

′
i) based on the selection

strategy
Data augmentations: xA

i = TA(xi), x
B
i = TB(x

′
i)

Compute representations: hA
i = f(xA

i ), h
B
i = f(xB

i )
Compute projected embeddings:
zAi = MLP(hA

i ), z
B
i = MLP(hB

i )
end for
Compute cross-correlation matrix C across the batch
Compute the Loss
L =

∑
i(1− Cii)

2 + λ
∑

i

∑
j �=i C

2
ij

Take a gradient step to minimize L
end for

where λ ∈ R
+ is a tradeoff parameter. A pseudocode summa-

rizing the pretraining stage is provided in Algorithm 1.

C. Classification Stage

The pretraining step yields an encoder f that learns infor-
mative representations for the pixels in the scene. Note that the
MLP projector is no longer used after pretraining. In the second
step, our goal is to leverage this pretrained model to construct a
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classifier g using a limited number of labeled samples. For this
purpose, we explore several approaches.

1) Linear classification: This approach involves constructing
a linear classifier l on top of the representations produced
by the frozen encoder f . The resulting classifier is de-
noted by g = l ◦ f . Due to its simplicity, computational
efficiency, and effectiveness, we conduct most of our
experiments with the linear classification protocol.

2) Support vector machines (SVM): This approach is similar
to the linear protocol, but instead of appending a linear
layer to the frozen backbone, we train an SVM classi-
fier [5].

3) Multilayer perceptron (MLP): In this protocol, we in-
troduce additional capacity in the classification stage
by appending an MLP network to the frozen backbone.
This allows the model to learn more complex decision
boundaries when the representations from the pretraining
stage are not linearly separable.

4) Finetuning: The finetuning protocol utilizes the encoder’s
weights as an initialization to train the classifier g = l ◦ f .
All the parameters of f are trainable. Therefore, special
care must be taken to avoid overfitting or deviating too far
from the initial pretrained model. To mitigate these risks,
we first train the linear layer l following the linear protocol
before fine tuning the backbone. This helps prevent large
gradients that may result from the random initialization
of l.

The choice of the classification protocol heavily depends on
the amount of labels available in the downstream classification
phase. Given our focus on a low-shot setting in this work, we
prioritize lightweight classifiers to mitigate overfitting.

D. View Generation

One of the most critical components in contrastive learning
is data augmentation. Prior research has shown that many state-
of-the-art self-supervised learning algorithms perform similarly
when evaluated in a fair setting with the same hyperparameters,
such as momentum encoder, projector size, and optimizer [57].
However, the choice of augmentations used to generate the
positive pairs can dramatically impact the quality of the rep-
resentations, as demonstrated in [36]. Two essential classes of
augmentations in contrastive learning are random cropping and
color distortions (such as color jittering). Removing either of
these two augmentations can severely hurt downstream perfor-
mance. In the context of HSI classification, random cropping is
limited due to the small spatial context in the patches (or worst
case no spatial context with a purely spectral classifier). More-
over, performing color jittering with more than three channels
is challenging. Furthermore, spectral information holds greater
importance in HSIs compared to natural imagery. This triggers
the need for an adapted view generation procedure in HSIs.
Therefore, we put our focus on two key aspects: the selection
strategy for positive pairs and the choice of data augmentation.

1) Pair-Mining Strategy: Traditionally, contrastive learning
methods generate positive pairs by stochastically augmenting
the same input x twice. However, since the patches come from

a single scene, the samples are not independent from each
other. Therefore, we can exploit the relationship between pixels
to select positive pairs from the image. This data-driven aug-
mentation strategy reduces the dependence on carefully tuned
transforms. In this work, we consider the following two simple
yet effective pair-mining strategies.

1) Neighboring patches: By incorporating spatial locality,
we can sample spatially neighboring patches in the scene,
thus leveraging the spatial regularity prior for pretraining.
Specifically, instead of augmenting the same patch x, we
use x and another nearby patch x′ as a positive pair. If
the neighborhood is small (e.g., by imposing that x and
x′ overlap), we can assume that they should have similar
representations.

2) Superpixel guided: Spatial locality allows to enrich the
supervision signal. However, a data-agnostic selection-
strategy-based solely on spatial proximity fails to con-
sider larger neighborhoods without introducing many false
positives, thereby harming the pretrained model. A sim-
ple workaround is to take into account the similarities
between the pixels in a scene and cluster them in an
accurate manner. One can achieve this with little to no
computational overhead by simply segmenting the image
into coarse superpixels before pretraining using classi-
cal, proven algorithms such as Felzenszwalb’s efficient
graph-based segmentation algorithm [58] or the simple
linear iterative clustering [59] algorithm. Assuming that
pixels lying within the same superpixels are similar, one
can generate positive pairs by randomly selecting x and
x′ from the same superpixel.

2) Data Augmentation: In this work, we consider several
common augmentations for contrastive learning. These can
be grouped into two classes: spatial and spectral transform.
A brief description of each augmentation is provided as
follows.

1) Spatial transforms: This type of augmentations require a
sufficiently large spatial context. They preserve spectral
information, but they are not applicable to purely spectral
classifiers. We experiment with the transformations listed
as follows.
a) Random flipping: Perform horizontal or vertical flip-

ping with probability p = 0.5.
b) Random rotation: Rotate the patch by 90°, 180°,

or 270°.
c) Random resized crop: Select a small crop from the

patch and resize it. We use the standard transform
implemented in PyTorch.

2) Spectral Transforms: Spectral transforms can be used on
individual pixels, but may distort the semantics if they are
too extreme. In the following, we list the augmentations
we experimented within this work.
a) Scalar multiplication: Multiply all the bands of a patch

by a scalar value α drawn from a uniform distribution
in a range [αmin , αmax ].

b) Gaussian noise: Add a Gaussian Noise centered around
0 with standard deviation σ, independently sampled for
every channel in the patch.
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Fig. 2. Architecture of the Mini-Resnet used in this work. It consists of multiple (Conv + Batch Norm + ReLU) blocks with residual connection. Batch Norm
and ReLu activation are not displayed for simplicity.

TABLE I
NUMBER OF LABELED PIXELS PER CLASS IN THE PAVIAU DATASET

c) Random band mask: Set to 0 a randomly selected num-
ber n ∈ [nmin , nmax ] of bands. All spatial locations of
the patch are masked in the selected bands.

d) Random pixel mask: Set to 0 a randomly selected
number n ∈ [nmin , nmax ] of pixels in the patch. All
bands are masked for the selected pixels.

e) Random band swap: Permute the values of randomly
chosen number n ∈ [nmin , nmax ] pairs of adjacent
bands.

f) Random offset: Add a randomly drawn offset value b ∈
[bmin , bmax ] to all bands in the patch.

IV. EXPERIMENTS

A. Experimental Setting

In this section, we describe our evaluation setting, including
the datasets we use, the methods we evaluate, and the imple-
mentation details.

1) HSI Datasets: We evaluate our proposed approach on
four widely used HSI classification datasets, namely Pavia
University (PaviaU), Salinas, Wuhan HanChuan Hyperspectral
Image (WHU-Hi-HanChuan), and the Houston University 2013
dataset. The individual characteristics of each dataset are de-
scribed as follows.

1) Pavia University (PaviaU): The PaviaU dataset was ac-
quired by the ROSIS-03 sensor over an urban area in Pavia,
northern Italy. The size of the scene is 610 × 340 pixels
with a spatial resolution of 1.3 m. We utilize 103 out of
the original 115 spectral bands, ranging from 0.43 to 0.86

Fig. 3. PaviaU dataset. (a) RGB. (b) Ground truth.

μm, after excluding noisy bands. The dataset contains nine
classes, with a total of 42 776 labeled pixels in the ground
truth. Details about the class distribution are provided
in Table I. The RGB visualization of the scene and its
corresponding ground truth mask are depicted in Fig. 3.

2) Salinas: The Salinas dataset was collected using the
AVIRIS sensor, covering the Salinas Valley in California.
It comprises a scene of 512× 217 pixels with a spatial res-
olution of 3.7 m. The dataset initially includes 224 spectral
bands ranging from 0.4 to 2.5μm. The 20 water absorption
bands were removed, leaving a total of 204 bands. The
ground truth consists of 16 crop type categories, with a
total of 54 129 labeled pixels. The distribution of samples
for each class can be found in Table II. RGB visualization
of the image along with the ground truth are provided in
Fig. 4.

3) Wuhan HanChuan Hyperspectral Image (WHU-Hi-
HanChuan): The WHU-Hi-HanChuan dataset covers a
farming area in Hanchuan, Hubei, China. The image was
collected via the Headwall Nano-Hyperspectral imaging
sensor mounted on an UAV platform. The scene size is
1217 × 303 pixels, with a spatial resolution of 0.109 m.
It comprises 274 spectral bands ranging from 0.4 to 1.0
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TABLE II
NUMBER OF LABELED PIXELS PER CLASS IN THE SALINAS DATASET

Fig. 4. Salinas dataset. (a) RGB. (b) Ground truth.

μm. The ground truth consists of 253 580 labeled pixels
from 16 different crop type categories. The detailed class
distribution is provided in Table III. The RGB image and
corresponding ground truth are visualized in Fig. 5.

4) Houston University 2013: The Houston dataset was ac-
quired by the ITRES-CASI-1500 sensor over the Univer-
sity of Houston campus and its neighboring urban area.
The dataset comprises a scene of 349 × 1905 pixels with
a spatial resolution of 2.5 m. It includes 144 spectral bands,
covering a wavelength range from 0.38 to 1.05 μm. The
ground truth contains 15 classes of urban land-cover, with
a total of 15 104 labeled pixels. The class distribution
and sample images are detailed in Table IV and Fig. 6,
respectively.

2) Methods: In order to show the effectiveness of pretraining
and the importance of a good pair-mining strategy, we compare
the proposed approach to the following baselines.

TABLE III
NUMBER OF LABELED PIXELS PER CLASS IN THE WHU-HI-HANCHUAN

DATASET

Fig. 5. WHU-Hi-HanChuan dataset. (a) RGB. (b) Ground truth.

1) Support vector machine (SVM): A common pixel-level
baseline that uses as input the spectral signature of a pixel
and trains an SVM) classifier [60].

2) Extended morphological profile-support vector machine
(EMP-SVM): EMP-SVM [61] is a popular traditional
feature extraction baseline. The method reduces the di-
mensionality of the image by performing PCA as a pre-
processing step. Then, morphological filters are applied to
the image to extract attribute profiles, which are used as
input features to train an SVM classifier.
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Fig. 6. Houston dataset. (a) RGB. (b) Ground truth.

TABLE IV
NUMBER OF LABELED PIXELS PER CLASS IN THE HOUSTON DATASET

3) Mini-ResNet: A supervised baseline, i.e., training from
scratch using only the labeled samples with the network
architecture displayed in Fig. 2.

4) Spectral–spatial residual network (SSRN): A supervised
baseline employing spectral and spatial residual blocks for
enhanced feature extraction [10].

5) DCFSL: A few-shot learning approach [62] inspired from
Relation Networks [30] in which the model is trained on a
source scene using abundant labels and on a target scene
with few annotations. To mitigate the distribution shift
between source and target data, a domain adaptation loss
is used.

6) FSCF-SSL: A state-of-the-art few-shot learning method
combining meta-learning and self-supervised learning.
FSCF [63] first pretrains a model following an episodic
paradigm on natural images (miniImageNet), and then
adapts to the target hyperspectral dataset with few samples
per class. For our experiments, we follow the same setting
as the original article.

7) Barlow-Twins (BT): Pretraining with the BT algorithm
followed by linear classifier training, without utilizing
pair selection (i.e., augmenting the same patch twice).
This baseline aligns with previous works employing self-
supervised learning for HSI classification [41].

8) Barlow-Twins Neighbors (BT-Neighbors): Pretraining
with the BT algorithm and linear classifier training, utiliz-
ing neighboring patches in the image as positive pairs.

9) Barlow-Twins Superpixels (BT-Superpixels): Pretraining
with the BT algorithm and linear classifier training, using
positive pairs randomly sampled from the same superpix-
els generated in a first-stage segmentation step.

3) Network Architecture: Our primary focus is on the train-
ing strategy rather than the network architecture. Therefore, we
employ a deep 2-D convolutional network with two residual
blocks as our backbone. The network structure is depicted in
Fig. 2. This architecture offers a good balance between simplic-
ity, computational efficiency, and accuracy.

4) Hyperparameters: During pretraining, the projection
head is a two-layers MLP with a hidden dimension of size 2048.
We set the tradeoff parameter of BT to λ = 0.05. Pretraining
is run for 100 epochs in all experiments. We utilize the LARS
optimizer [64] with the same learning rate for all datasets, which
we divide by 10 after 60 and 80 epochs. We use a batch size
of 256. Our spatial neighbors pair selection strategy samples
positive pairs from 9 × 9 neighborhoods centered around the
pixel of interest. For the superpixel-based selection method,
we use Felzenszwalb’s efficient graph-based segmentation al-
gorithm [58]. For classification, we adopt the linear classifica-
tion protocol unless stated otherwise. A cross-entropy loss is
optimized using SGD with momentum for 100 epochs. The
learning rate in the classification phase is fixed per dataset.
Unless explicitly stated, the patch size in all experiments is set
to 9× 9.

5) Data Augmentation: Unless explicitly stated, we use
Gaussian noise, random flipping (horizontal and vertical) and
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TABLE V
CLASS-WISE ACCURACY, OA, AA, AND KAPPA COEFFICIENT OF DIFFERENT METHODS ON THE PAVIAU DATASET USING FIVE LABELED PIXELS PER CLASS

TABLE VI
CLASS-WISE ACCURACY, OA, AA, AND KAPPA COEFFICIENT OF DIFFERENT METHODS ON THE SALINAS DATASET USING FIVE LABELED PIXELS PER CLASS

random band drop as our data augmentations to generate positive
pairs. The rest of the transforms are explored in Section IV-B5.
In addition, we apply random resized crop to the vanilla BT
baseline (without pair mining) since it is critical to learn good
representations. However, random resized crop is not necessary
when a pair selection strategy is used.

6) Training Maps: We consider a few-shot setting where a
limited number of labeled pixels per-classK is available. Unless
stated otherwise, we use K = 5 randomly selected pixels from
the ground truth of each dataset.

7) Evaluation Metrics: We report the classification results
using classical metrics, including overall accuracy (OA), average
accuracy (AA), and the Kappa coefficient (κ). All experiments,
including both the pretraining and classification stages, are re-
peated ten times with fixed training splits. We report the average
value and standard deviation of each metric in the experiments.

8) Hardware: We run our experiments on servers equipped
with 4 × NVIDIA A100 Tensor Core GPU and a AMD EPYC
7402 CPU.

B. Experimental Results

In this section, we present and analyze our results on the
selected datasets. Tables V–VII show the class-wise accuracies,

OAs, AAs, and Kappa coefficient on PaviaU, Salinas, and the
WHU-Hi-HanChuan dataset. In addition, we perform several ab-
lations to evaluate the most critical components in the proposed
approach.

1) Results on PaviaU: On the PaviaU dataset, the SVM
baseline performs worst due to its inability to leverage spatial
information. In addition, the supervised baselines (Mini-ResNet
and SSRN) also yield poor results, which is explained by the
small size of the training set. Indeed, training a neural network
from scratch with a limited number of labeled samples (K = 5
per class) leads to severe overfitting and performs worse than
classical baselines such as EMP-SVM. However, we observe
that pretraining significantly outperforms supervised learning
in all settings, demonstrating the model’s ability to leverage
unlabeled pixels in the scene. Furthermore, Table V confirms
that a good pair-mining strategy enriches the supervision sig-
nal during pretraining and improves the overall performance.
Using neighboring patches (BT-Neighbors) as positive pairs
outperforms pretraining without pair selection (BT). Moreover,
employing superpixels for pair selection (BT-Superpix) achieves
the best performance with an OA of 92.16% in our experiments,
outperforming few-shot learning algorithms such as DCFSL and
FSCF-SSL by a significant margin. The improvements are also
consistent in the class-wise metrics, where significant boosts of
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TABLE VII
CLASS-WISE ACCURACY, OA, AA, AND KAPPA COEFFICIENT OF DIFFERENT METHODS ON THE WHU-HI-HANCHUAN DATASET USING FIVE LABELED PIXELS PER

CLASS

Fig. 7. Classification maps obtained on the PaviaU dataset with five labeled pixels per class. (a) Ground truth map. (b) SVM (OA 51.12%). (c) EMP-SVM (OA
62.84%). (d) Mini-ResNet (OA 58.02%). (e) SSRN (OA 58.81%). (f) DCFSL (OA 71.21%). (g) FSCF-SSL (OA 86.37%). (h) BT (OA 75.89%). (i) BT-Neighbors
(OA 84.22%). (j) BT-Superpix (OA 92.10%).

accuracy are obtained on the Meadows (2), Gravel (3), and Bare
Soil (6) classes. Qualitative results, shown in Fig. 7, exhibit sim-
ilar trends, with BT-Superpix providing smoother classification
maps and reduced confusion between classes.

To gain insight into the learned embedding space after pre-
training, we project the representations of labeled patches in
the dataset using t-SNE [65]. The resulting visualizations for a
randomly initialized encoder, BT, and BT-Superpix are shown
in Fig. 11. Despite being learned in an unsupervised fashion, the
t-SNE plots indicate that samples belonging to the same classes
are well clustered together after pretraining. This clustering
effect becomes more pronounced with the introduction of a
pair-mining strategy, particularly with BT-Superpix.

2) Results on Salinas: On the Salinas dataset, EMP-SVM
is a competitive baseline, achieving 86.19% OA on average
and outperforming both the supervised baselines (Mini-ResNet
and SSRN) and pretraining without pair mining (BT). This
demonstrates the effectiveness of traditional feature extractions
techniques when labels are scarce. However, introducing pair
selection mechanisms leads to significant improvements in ac-
curacy. Indeed, BT-Neighbors, albeit its simplicity, increases
the OA by more than 3% compared to BT. This highlights the
importance of having good views for pretraining with contrastive
learning. Most notably, the superpixel-guided sampling strategy
provides a large gain in performance, reaching 96.42% of ac-
curacy on average and significantly improving the results for
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Fig. 8. Classification maps obtained on the Salinas dataset with five labeled pixels per class. (a) Ground-truth map. (b) SVM (OA 74.46%). (c) EMP-SVM (OA
86.19%). (d) Mini-ResNet (OA 83.05%). (e) SSRN (OA 83.15%). (f) DCFSL (OA 89.57%). (g) FSCF-SSL (OA 91.28%). (h) BT (OA 84.28%). (i) BT-Neighbors
(OA 88.33%). (j) BT-Superpix (OA 96.45%).

Fig. 9. Classification maps obtained on the WHU-Hi-HanChuan dataset with five labeled pixels per class. (a) Ground-truth map. (b) SVM (OA 45.25%).
(c) EMP-SVM (OA 60.25%). (d) Mini-ResNet (OA 66.98%). (e) SSRN (OA 68.52%). (f) DCFSL (OA 70.21%). (g) FSCF-SSL (OA 79.00%). (h) BT (OA
77.66%). (i) BT-Neighbors (OA 79.55%). (j) BT-Superpix (OA 83.87%).

some classes such as Grapes untrained (8) and Vinyard vertical
trellis (16). BT-Superpix also outperforms the few-shot learning
algorithms (DCFSL and FSCF-SSL) despite their use of external
data and annotations for pretraining. The resulting classification
maps are depicted in Fig. 8. Inline with the quantitative results,
BT-Superpix provides the closest classification maps to the
ground truth.

Fig. 12 shows t-SNE plots of the embedding space learned
after pretraining with and without pair selection, compared to a
randomly initialized network. The plots reveal that an effective
pair-mining strategy aids in clustering the classes, enabling easy
separation using a lightweight classification protocol, such as a
simple linear classifier.

3) Results on WHU-Hi-HanChuan: On the WHU-Hi-
HanChuan dataset, the trends we observe align with the two
previous datasets. The SVM baseline yields the lowest accu-
racy as it disregards spatial information. EMP-SVM performs
significantly better thanks to its feature extraction step, but is
outperformed by plain supervised learning (Mini-ResNet and
SSRN) in the limited label regime. FSCF-SSL achieves com-
petitive results thanks to its combination of meta-learning and
self-supervised learning. Compared to supervised learning,
vanilla BT helps mitigating overfitting and considerably im-
proves the results compared to training from scratch. When
pair-selection techniques are introduced, an increase of 4% in

OA is observed with the neighbor-sampling strategy, and a gain
of over 8% is achieved when selecting positive pairs using su-
perpixels. This confirms the importance of pair selection during
pretraining. Fig. 9 displays the classification maps obtained
using the considered approaches. We can visually observe that
BT-Superpix yields the highest quality maps.

Fig. 13 visualizes the representations learned from pretraining
after a t-SNE projection. Similar to the previous datasets, the
benefit of pretraining and positive pair mining in clustering the
classes and reducing confusion is visually apparent.

4) Results on Houston 2013: On the Houston dataset, deep-
learning-based supervised baselines (Mini-ResNet and SSRN)
outperform classical algorithms by significant margins despite
the limited amount of labels available. This demonstrates the
effectiveness of end-to-end representation learning for classifi-
cation tasks. However, pretraining using BT with and without
positive pair mining outperforms the supervised baselines. Most
notably, BT-Neighbors and BT-Superpix outperform the few-
shot learning algorithms (DCFSL and FSCF-SSL) by approxi-
mately 12% and 4%, respectively, in OA. It is also interesting to
observe that while positive pair mining helps, BT-Superpix and
BT-Neighbors yield similar performance. This can be explained
by the structure of the Houston scene, which has smaller and
more scattered annotations, making superpixel segmentation
less helpful than for the other datasets.
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Fig. 10. Classification maps obtained on the Houston 2013 dataset with five labeled pixels per class. (a) Ground truth map. (b) SVM (OA 42.07%).
(c) EMP-SVM (OA 48.77%). (d) Mini-ResNet (OA 66.48%). (e) SSRN (OA 65.47%). (f) DCFSL (OA 63.03%). (g) FSCF-SSL (OA 72.70%). (h) BT (OA
71.18%). (i) BT-Neighbors (OA 76.64%). (j) BT-Superpix (OA 77.29%).

Fig. 11. t-SNE visualizations of the representations learned during pretraining on the PaviaU dataset. (a) Random Encoder (b) BT (c) BT-Superpix.

Fig. 12. t-SNE visualizations of the representations learned during pretraining on the Salinas dataset. (a) Random Encoder (b) BT (c) BT-Superpix.
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Fig. 13. t-SNE visualizations of the representations learned during pretraining on the WHU-Hi-HanChuan dataset. (a) Random Encoder. (b) BT. (c) BT-Superpix.

Fig. 14. Impact of data augmentation on BT evaluated on PaviaU with five
labels per class for training.

5) Analysis of Data Augmentation: We analyze the impact
of data augmentation on the OA of BT on the PaviaU dataset
without pair sampling. Given the prohibitively large number of
combinations of transforms, we consider up to two augmenta-
tions at a time to reduce the computational cost. We run the
pretraining and classification phase for every pair of augmen-
tations listed in Section III-C. The transforms are applied in
both branches symmetrically with a fixed order and probability
p = 0.75. Results are presented as a symmetric matrix in Fig. 14.

First, we observe a dramatic drop in performance when ran-
dom resized crop is not used. This result is consistent with
existing literature on computer vision [36], where the occlusion
effect resulting from partial crops is essential in contrastive
learning. Interestingly, the pixel removal transform also makes
the pretraining task challenging enough so that the network
learns meaningful representations. This finding aligns with the
recent literature in masked image modeling [66], although con-
volutional neural networks are not well-suited for this type of
masking [67].

We further observe that augmentations such as random
flipping, Gaussian noise, translation, and random band drop-
ping work well in conjunction with random cropping. The

Fig. 15. Impact of removing data augmentation on different pair selection
strategies evaluated on PaviaU.

high variance of the results illustrates the importance of
carefully selecting the augmentations in contrastive learning.
This is a challenging problem in HSI classification given the
following.

1) The spatial context in patches is very limited compared
to the common setting in computer vision. In the most
extreme case, random cropping is not possible with purely
spectral classifiers.

2) Color distortions, which are crucial in preventing the
network from relying on low-level color statistics to solve
the pretraining task [36], are not easily applicable to HSIs
as the relevant information lies in the spectrum of each
pixel.

A data-driven approach, such as positive pair selection, of-
fers a way to overcome these limitations. It provides a means
to generate pairs that circumvent the challenges imposed by
limited spatial context and the inability to heavily distort color
information.

To evaluate the robustness of the proposed pair sampling
strategies to the choice of data augmentations, we measure
the OA on PaviaU when training BT, BT-Neighbors, and BT-
Superpix without any augmentations. The results are presented
in Fig. 15. Without pair sampling, data augmentation is compul-
sory, otherwise the network cannot learn meaningful represen-
tations. However, with a proper pair selection, good represen-
tations can still be learned even without data augmentation. As
expected, the supervision signal obtained by sampling patches
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TABLE VIII
CLASS-WISE ACCURACY, OA, AA, AND KAPPA COEFFICIENT OF DIFFERENT METHODS ON THE HOUSTON 2013 DATASET USING FIVE LABELED PIXELS PER CLASS

TABLE IX
IMPACT OF THE CHOICE OF THE PRETRAINING ALGORITHM ON THE OA OF THE

PROPOSED PIPELINE FOR DIFFERENT PAIR SELECTION STRATEGIES

from the same superpixel is richer than that of spatial neighbors,
explaining why BT-Superpix outperforms BT-Neighbors both
with and without data augmentation. Therefore, using different
samples as positives with a good selection heuristic enhances
robustness to data augmentation and improves overall perfor-
mance.

6) Impact of the SSL Algorithm: The proposed view genera-
tion mechanism can seamlessly be integrated in any contrastive
learning algorithm. To demonstrate this, we substitute BT with
two well-known self-supervised learning algorithms, namely
MoCo [37] and SwAV [25]. Results are presentedanchor in
Table IX. Overall, BT performs best among the three algorithms.
Furthermore, incorporating pair selection consistently improves
performance, with superpixel-guided sampling yielding the best
results.

7) Effect of the Patch Size: The patch size is critical hyper-
parameter in spatial-spectral classifiers. It is well established in
the HSI classification literature that the spatial-spectral classifier
generally outperform purely spectral classifiers. Moreover, in-
creasing the spatial context can enhance the overall performance,
despite an oversmoothing effect. With contrastive learning, the
patch size is even more crucial because the most important
augmentation, i.e., random resized crop, relies on a large spatial
context.

We investigate the impact of the patch size for the supervised
and self-supervised methods. Specifically, we conduct experi-
ments using patch sizes of 5, 7, 9, 11, and 13 on PaviaU. The
results are depicted in Fig. 16. Consistent with the literature,
we observe that the supervised baseline (Mini-ResNet) benefits
from a larger patch size, yet the OA remains limited due to
the scarcity of labeled examples. When pretraining without pair

Fig. 16. Impact of the patch size on the OA of different methods on PaviaU.

sampling, we observe a substantial drop in accuracy (up to
15%) for small patch sizes. This can be partially attributed to
the importance of a large spatial context during pretraining for
random cropping. Moreover, the OA does not improve for values
higher than 9, likely due to patches becoming less homogeneous
as the spatial context becomes excessively large.

Introducing a pair selection strategy during the pretraining
stage significantly enhances robustness to the patch size. In the
case of BT-Neighbors and BT-Superpix, smaller spatial contexts
also yield favorable results, indicating that a reduced patch size
can still be competitive when pair selection is integrated into
pretraining.

8) Impact of K: We focus on a few-shot setting where we
have a limited number of samples per class, specificallyK = 5 in
our experiments. In this section, we investigate the impact of K
on the performance of supervised and self-supervised learning
methods. Specifically, we conduct experiments on PaviaU for
values of K ranging between 5 and 10. The results are presented
in Fig. 17.

As expected, the performance generally improves as we in-
crease the number of labeled pixels per class. However, the
accuracy curves are not strictly increasing. This behavior can
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Fig. 17. Impact of K, the number of labeled pixels per class, on the OA of
different methods on PaviaU.

Fig. 18. Impact of the minimum size of the superpixels on the OA of BT-
Superpix on PaviaU.

be attributed to the random selection of pixels in the training
map, which introduces high variance in the composition of the
training set. Consequently, the accuracy may fluctuate due to the
specific set of pixels selected for training at each value of K.

9) Influence of the Superpixels: The effectiveness of the
proposed superpixel-based pair-mining strategy depends on the
quality of the superpixels generated by the algorithm. In this
section, we analyze the impact of the minimum size of the
superpixels, one of the most critical hyperparameters of the
segmentation algorithm, on the OA of our method. The results
are presented in Fig. 18.

There is a clear tradeoff between the accuracy and the variabil-
ity of the positive pair selection process. When the minimal size
of the superpixels is low, the resulting superpixels are smaller
on average. This ensures that the positive pairs are similar and
semantically coherent. However, this also reduces the variability
of the training signal, thereby harming the model. This can be
observed for smaller values of min size in the graph, typically
below 100. In the most extreme case, where every superpixel
collapses to a single pixel in the image, the method reverts back
to the vanilla contrastive learning.

TABLE X
IMPACT OF THE CLASSIFICATION PROTOCOL ON THE OA OF THE PROPOSED

APPROACH FOR DIFFERENT PAIR SELECTION STRATEGIES

TABLE XI
COMPUTATIONAL COST OF PRETRAINING AND CLASSIFICATION ON THE PAVIAU

DATASET FOR 100 EPOCHS

Conversely, when the superpixels are too large, the proportion
of “false positives”2 increases, thereby harming the network’s
performance. In the most extreme scenario, when there is only
one superpixel in the entire image, the selection strategy amounts
to a random sampling of positive pairs in the scene, yielding very
poor representations.

To obtain the best results, it is necessary to find a suitable
tradeoff between the size and the homogeneity of the superpix-
els. This ensures a balance between semantic coherence of the
positive pairs and the variability of the training signal.

10) Influence of the Classification Protocol: After a back-
bone is pretrained in a self-supervised fashion, there are several
ways to derive a classifier for the downstream task. In our
experiments, we trained a simple linear classifier on top of the
frozen backbone. In this section, we provide a justification for
this design choice.

Table X presents the results obtained using four different
classification protocols, including the following.

1) Linear classification with frozen backbone.
2) Training an SVM classifier with a frozen backbone.
3) Training an MLP on top of the frozen backbone.
4) Finetuning all the parameters after initializing with the

pretrained model.
We observe that linear classification, despite its simplicity,

consistently performed well across all pair selection strate-
gies. The SVM and MLP classifiers only marginally improve
performance. Interestingly, finetuning the backbone generally
degrades performance, likely due to the small size of the training
set, which makes the model prone to overfitting.

11) Computational Complexity: In this section, we delve
into the computational complexity of our proposed method. We
analyze the complexity in terms of the run time for pretraining
and classification. We train for 100 epochs in both stages using
the hardware described in Section IV-A8 with one GPU. The
results for PaviaU are summarized in Table XI.

The pretraining phase is the most computationally intensive,
as it processes all pixels in the HSI. The addition of positive

2We refer to false positives cases where two patches from different classes
are drawn as a positive pair.
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pair-mining strategies does not significantly increase the com-
putational cost compared to standard contrastive learning. In
contrast, the classification phase is computationally efficient,
training only a single network layer on a small subset of pixels
(five per class). To reduce computational costs during pretrain-
ing, one can subsample the image using a grid with a stride larger
than one, thus processing fewer pixels.

V. CONCLUSION

In this article, we addressed the problem of few-shot HSI
classification by leveraging self-supervised contrastive learning
methods. We presented a two-stage pipeline that consists of
the pretraining of a deep convolutional encoder using con-
trastive learning followed by a lightweight classification model.
Our approach introduces two positive pair-mining strategies,
based on spatial neighbors and superpixels, in order to generate
high-quality views during pretraining. Through extensive ex-
periments on four popular HSI classification datasets, we have
demonstrated the effectiveness of our approach in improving
accuracy and label efficiency. The proposed method outperforms
plain supervised learning that requires larger annotated datasets
and conventional contrastive learning. This highlights the po-
tential of self-supervised learning for addressing label scarcity
in few-shot HSI classification scenarios.

Furthermore, our analysis highlights the importance of data
augmentation in contrastive learning and the advantages of
positive pair mining. We have shown that carefully select-
ing positive pairs enhances the robustness and performance
of the model, while reducing the need for extensive data
augmentations.

In future work, we plan to investigate more advanced
view generation methods, including learnable pair-mining ap-
proaches, physics-informed data augmentations, and mixing
models such as ALMM [68], which would allow to better capture
the inherent spectral variability and noise in HSI. Finally, we
believe that generalizability of self-supervised pretraining to
multisensor and cross-scene settings is an important avenue of
research, which deserves further investigation.
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