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ACMFNet: Asymmetric Convolutional Feature
Enhancement and Multiscale Fusion Network

for Change Detection
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Abstract—Existing deep-learning supervised change detection
(CD) networks still have room for improvement, as they do not
fully utilize multiscale features in their feature extraction, result-
ing in insufficient feature representation ability and edge blur-
ring problems of the constructed CD networks. In this article,
we proposed a very high-resolution (VHR) remote sensing image
CD network (ACMFNet) with an asymmetric convolution residual
block (ACRB) and multiscale fusion (MSF) to improve the feature
representation ability of the CD network and alleviate the edge
blurring problem. ACMFNet consists of two main subnetworks:
an ACRB feature extraction encoder and an MSF decoder. The
ACRB is constructed based on asymmetric convolution and focuses
on extraction at the edges of the features and is more robust to
rotations, flip distortions, and uneven aspect ratios of the features.
In the designed MSF decoder, the fusion feature maps of each
level of the decoder are generated by fusing the multiscale encoder
feature maps and feature map of the next lowest level of the decoder.
MSF contributes to the reconstruction of the edge change area
by combining feature information at different scales. It was tested
on three public VHR remote sensing image CD datasets, and the
proposed method demonstrates the best recall and F1-scores, as
well as near optimal precision.

Index Terms—Asymmetric convolution, change detection (CD),
multiscale fully convolutional Siamese network, multiscale fusion
(MSF).

I. INTRODUCTION

CHANGE detection (CD) refers to the process of identi-
fying changes in a scene from a pair of remote sensing

images of the same geographical area acquired at different
times [1]. Recently, the number of satellites launched around the
world has grown exponentially, and remote sensing satellites and
unmanned aerial vehicle platforms can obtain massive numbers
of remote sensing images every day [2]. CD is used to effectively
mine the information of this massive amount of remote sensing
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data and has many applications in natural resource monitoring,
such as natural disaster assessment [3], land use monitoring [4],
urban monitoring [5], and forest monitoring [6]. Multitemporal
very high-resolution (VHR) remote sensing images provide the
possibility of monitoring land cover changes at a fine scale.
However, CD based on VHR remote sensing images is still
challenging for the following reasons: 1) the complexity of
objects in a remote sensing scene; and 2) different imaging con-
ditions, such as sensor characteristics and illumination changes.
Therefore, developing a CD model to detect real changes is of
great importance.

As an effective means of extracting VHR remote sensing
image features, deep-learning methods offer a new avenue for
CD based on VHR remote sensing images. Deep learning can
learn high-level features from various remote sensing images
automatically, unlike traditional methods that rely on artificial
features. Convolutional neural networks (CNNs) [7] can extract
abstract and robust features and are extensively used in the
field of CD. Based on CNNs, supervised deep-learning CD
can be mainly categorized into three types: difference map-
based methods, image patch classification-based methods, and
semantic segmentation-based methods. Difference map-based
methods first perform CNN feature extraction on remote sensing
images from different times to obtain high-level spatial features
and then compute the difference map. Finally, thresholding,
clustering, and other methods are used to segment and ex-
tract the change regions in the difference map. Zhan et al. [8]
extracted high-level spatial features by a deep convolutional
Siamese network. Zhang et al. [9] optimized a deep cascaded
semantic supervision network by using an improved triplet
loss function, which enhanced the intraclass separability and
interclass discrepancy, and obtained a binary change map by
threshold segmentation. However, these methods all need to
use thresholds to segment the difference map into change and
nonchange regions, which require different threshold selection
strategies for different datasets and scenarios. Improper thresh-
old selection often has a great impact on CD results. Image patch
classification-based methods transform the CD problem into a
pixel classification problem, which classifies the center pixel of
the image patch. Daudt et al. [10] proposed two Siamese early
fusion CD network frameworks to predict the center pixel of an
image patch. Rahman et al. [11] constructed a Siamese neural
network, which used a Siamese VGG16 architecture to extract
deep features of image patch pairs. Overall, based on image
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patch CD methods, the similarity of image patches is judged by
the shared Siamese network process, which needs to construct
image patches for each pixel of the image. However, this often
leads to considerable spatial information redundancy.

The most widely used CNN supervised CD network frame-
work is based on semantic segmentation methods, which are
more efficient than image patch classification methods. The idea
is to use CNN to perform pixel-level image segmentation and
distinguish the change regions from the background. Currently,
most CD models based on semantic segmentation methods
have evolved from semantic segmentation encoder—decoder
architectures, such as Unet [12], UNet++ [13], and feature
pyramid networks (FPNs) [14]. CD models based on semantic
segmentation methods can be divided into two types. The first
type of method cascades the bitemporal images and inputs them
into a single-branch encoder–decoder semantic segmentation
architecture for pixel-level segmentation. For example, Peng et
al. [15] proposed an end-to-end CD method based on UNet++,
which cascaded the registered bitemporal images as the input
of the UNet++ network and obtained the final change map by
multiside output fusion. However, based on image cascading
methods, image cascading into the network for training often
results in spatial feature entanglement and mismatch problems.
The other method is to construct a Siamese encoder–decoder CD
architecture. To extract multiscale features and perform effective
feature fusion, Chen et al. [16] fully utilized the spatiotemporal
information in the image, combined UNet with an attention
mechanism, and designed a new Siamese CNN for CD. Zheng
et al. [17], using the FPN architecture, constructed a fully
convolutional multitask difference enhancement Siamese CD
network. Lv et al. [18] proposed that a multiscale information
attentional module was embedded in the backbone of UNet
to achieve a multiscale information fusion task of bitemporal
images. Lv et al. [19] designed a novel neural network with
a spatial–spectral attention mechanism and multiscale dilation
convolution modules. Li et al. [20] proposed an attention-guided
multilayer feature aggregation network. However, the feature
extraction and multiscale utilization of these CD networks still
need to be further optimized. There are many methods used to
enhance feature extraction based on deep learning CD, such as
depth separable convolution [21], pruning [22], and the ghost
module [23]. Inspired by the good contour-keeping advantages
of horizontal and vertical convolution and its strong robustness
to rotated or flipped distorted data [24], this article introduces
asymmetric convolution into CD. Spatial detail information is a
necessary condition for accurately detecting changes, and how
to strengthen the exploration of spatial information is a key issue
[25]. The underlying encoder features contain more detailed
information (i.e., texture and color) and provide a more direct
and instructive representation than the deeper features [26].
The downsampling operation of the CD network will inevitably
result in the loss of spatial details. The use of intermediate
features to build feature context has been shown to aid model rep-
resentation learning [27]. In [28], [29], and [30], the CD network
uses skip connections to mitigate the loss of spatial detail. Zhang
et al. [31] used a dense skip connections mechanism to indirectly
fuse features at different scales. The multiscale fusion method

used in this article fuses different level and scale feature maps.
Compared to other fusion methods, the fusion method in this
article utilizes more shallow features to enhance the detection
of target detail information.

We design a new deep CNN CD model consisting of two parts:
feature extraction and multiscale fusion (MSF). This article
makes the following main contributions.

1) To improve the feature extraction ability of the CD net-
work architecture encoder and obtain multiscale features
with more discriminative change information ability, we
design an asymmetric convolution residual block (ACRB),
which replaces the standard 3 × 3 convolution in the
residual block with asymmetric convolution, to enhance
the feature expression ability of the residual block and
effectively improve the performance of the network model
without increasing inference time and overhead.

2) To reconstruct the edge change area, we construct a mul-
tiscale feature fusion decoder that fuses different scale
feature information.

3) The ACMFNet network model constructed in this article
can be used as a baseline for supervised CD models, and
it is compared with other CD models. It was tested on
three public VHR remote sensing image CD datasets, and
the proposed method demonstrated the best recall and F1-
scores, as well as near-optimal precision.

The rest of this article is organized as follows. Section II
is an introduction to the related work. Section III presents the
proposed network architecture. Section IV presents the setup and
results of all experiments. Section V is the discussion. Finally,
Section VI concludes this article.

II. RELATED WORK

A. Feature Extraction

The SNN [32] refers to a coupled architecture of two neural
networks. The SNN receives two sample data points as input,
generates high-level spatial features through a dual-branch neu-
ral network and calculates their similarity. The shared-weight
dual-branch SNN can highlight similar regions in same-source
bitemporal remote sensing images, so using SNN to extract
multiscale features of bitemporal remote sensing images is a
feasible scheme. Currently, the field of computer vision has
many mature basic network backbones, including ResNet [33],
VGG [34], and ViT transformer [35]. Combining these basic
network backbones with SNNs to construct multiscale feature
extraction modules is a common method of supervised deep-
learning CD. Chen et al. [36] used VGG16 and ResNet50 as
the basic backbone of CD Siamese network feature extraction.
Zhang and Shi [37] used a CNN to learn remote sensing image
domain feature parameters from remote sensing images based
on the VGG16 network backbone. Wang et al. [38] constructed
a shared-weight Siamese conjoined network, whose backbone
used DeepLabV2 to extract multiscale features. Liu et al. [39]
and Chen et al. [40] used the SE-ResNet backbone, extracting
multiscale features of bitemporal images. Chen et al. [41] used a
transformer encoder to model context in a compact token-based
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spatiotemporal domain, effectively simulating context informa-
tion within the spatiotemporal domain. Zhang et al. [42] used the
transformer architecture to construct CD encoding modules. In
addition, Zhang et al. [43] used depthwise separable convolution
to replace the standard 3 × 3 convolution kernel, reducing the
number of parameters of CD model training. By applying ghost
convolution to a multiscale Siamese CNN network architecture,
Lei et al. [44] improved the network performance and further
decreased the number of network parameters. The above meth-
ods have improved model feature extraction to some extent, but
the number of parameters, inference time, and performance still
have room for improvement.

B. Feature Fusion

Different feature layers of the deep-learning CNN architecture
show different characteristics. While shallow features retain
more positional and detailed information, they lack semantic
information. After multiple convolutions downsampling, deep
features have stronger semantic information but lose detailed
perception ability. Effectively fusing deep features and shallow
features is a key factor in improving CD model performance.
Zhou et al. [45] used dense connections to fuse shallow and deep
layers. Bao et al. [46] used the FPN network architecture to fuse
feature information of different network layers and improve CD
efficiency. Zheng et al. [47] used UNet as the basic architecture
of a CD network and designed a cross-layer block to fuse
multiscale features and context information of different levels.
Song et al. [48] proposed a Siamese UNet attention mechanism-
based CD network to solve the problem of edge detail loss
during CD. Fang et al. [49] combined a Siamese network with a
UNet++ network architecture to alleviate the problem of neural
networks losing positional information in deep layers. Although
the above methods improved feature fusion, the feature fusion
method still needs to be optimized. In addition to the above
multiscale fusion methods. Zhou et al. [50] proposed a novel
multiple feature fusion model termed attention multihop graph
and multiscale convolutional fusion network. Guo et al. [51]
proposed a global spatial feature representation model based on
the encoder–decoder structure with channel attention and spatial
attention to learn the global spatial features.

III. METHOD

A. Overview

Currently, many deep-learning CD methods have gradually
solved the problems of traditional methods, but their ability
to deal with complex backgrounds and identify the edges of
change regions still needs to be improved. As a result, this article
proposes a CD network named ACMFNet to distinguish real
change regions from complex backgrounds. Fig. 1 shows the
overall flowchart of the proposed ACMFNet model.

The model mainly consists of two parts: an asymmetric con-
volution residual feature extraction encoder and a multiscale
feature fusion decoder. Let us assume that two VHR remote
sensing images are taken at different times T0 and T1, with C

being the number of channels, and H and W being the length and
width of the images, respectively.

1) First, T0 and T1 are input into the asymmetric convolution
residual feature extraction encoder to obtain the features
of each encoder layer, which can be expressed as {fn

i |
i = 0, 1}, n = 1, 2, 3, 4, 5.

2) Then, by the channel stacking operation of feature maps,
different time features of the same scale are fused, and
the result is expressed as Em, m = 1, 2, 3, 4, 5. To
make full use of different levels of feature information, the
encoding layer features of Em are fused by a multiscale
feature fusion decoder, and its decoding layer features are
expressed as Dp, p = 1, 2, 3, 4.

3) Finally, through a deep supervision hybrid loss function,
network parameters are optimized.

B. Asymmetric Convolution Residual Feature Extraction
Encoder

In CD tasks, the shape, size, and orientation of detection
objects present different changes. Based on CD models based
on CNNs, most of the convolution basic units are 3 × 3 con-
volutions, but 3 × 3 convolutions have difficulty extracting
asymmetric features, such as vertical or horizontal edges and
textures. However, asymmetric convolutions, such as 1 × 3 or
3 × 1 convolutions, can better capture the asymmetric features
in images. Therefore, in this article, we use asymmetric convolu-
tion blocks instead of 3× 3 convolutions in the feature extraction
encoder. The asymmetric convolution block used consists of
three convolutions of sizes 1× 3, 3× 1, and 3× 3, and each con-
volution unit performs convolution, batch normalization (BN),
and rectified linear unit (ReLU) processes. The three convolution
units together act as an asymmetric convolution block to perform
convolution operations on the feature map. Due to the additivity
of two-dimensional convolution, the asymmetric convolution
block is equivalent to adding a 1 × 3 or 3 × 1 convolution based
on a 3 × 3 convolution to enhance the extraction of asymmetric
features, such as vertical or horizontal edges and textures. The
process is shown in Fig. 2.

To enhance the capability of extracting multiscale features,
we design an ACRB based on the asymmetric convolution
block. Compared with ordinary residual convolution blocks,
ACRBs can provide more patterns and directions of feature
learning, which enable the model to learn richer and more
diverse features, thereby improving the performance of CD
models. The ACRB used in this article is shown in Fig. 3.
The model consists of two asymmetric convolution blocks, two
BNs, two activation functions, and a skip connection. First, the
input feature map goes through an asymmetric convolution, and
its asymmetric features are extracted. Then, it goes through
BN, and the ReLU activation function is applied; afterward,
it goes through another layer of asymmetric convolution and
BN to extract deeper features. Finally, the output feature map
of the previous asymmetric convolution is added to the output
feature map of the next asymmetric convolution elementwise,
and the feature map, which goes through the ReLU activa-
tion function, is output. The calculation process of each level
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Fig. 1. Proposed overall network architecture of ACMFNet. Black arrows indicate skip connections. Blue arrows indicate downsampling and green arrows
indicate upsampling. Concatenation means stacking by channel. The coding unit is the encoder unit after cascading. The decoding unit is the decoder unit. Stage
is the asymmetric convolution residual block. MSF is the multiscale feature fusion.

Fig. 2. Asymmetric convolutional block.

of the ACRB in the encoder is expressed by the following
formula:

ConvAC (fn
i ) = R (BN (Conv3×1 (f

n
i )))

+R (BN (Conv1×3 (f
n
i )))

+R (BN (Conv3×3 (f
n
i ))) (1)

Fig. 3. Structure of ACRB.

output = R (ConvAC (fn
i )

+ BN (ConvAC (R (BN (ConvAC (fn
i )))))) (2)

where Conv3×1 is the 3 × 1 convolution kernel, Conv1×3 is the
1 × 3 convolution kernel, Conv3×3 is the 3 × 3 convolution
kernel, and ConvAC is the asymmetric convolution block. BN
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Fig. 4. Multiscale fusion decoder. (a) MSF4. (b) MSF3. (c) MSF2. (d) MSF1.

and R denote BN and ReLU, respectively.fn
i {i = 0, 1}denotes

the input feature of the nth encoding layer, n = 1, 2, 3, 4, 5.

C. Multiscale Feature Fusion Decoder

Combining high-level semantic information with low-level
detailed information, as well as information at different scales,
can effectively reconstruct the edge change area. Therefore,
designing a multiscale feature fusion network is crucial. We
construct a multiscale feature fusion decoder, which aggregates
multiscale encoder feature maps and decoder feature maps at the
next level to obtain aggregated feature maps at each level of the
decoder, thus capturing the detailed and semantic information of
different levels of feature maps of the encoder. The CD network
decoder constructed in this article is shown in Fig. 4.

First, we obtain the fused features E1, E2, E3, E4, and E5 of
each level of the encoder. Then, we input them into the MSF
decoder to obtain the MSF features, MSF1, MSF2, MSF3, and
MSF4. Finally, we convert MSF1, MSF2, MSF3, and MSF4 into
two-channel feature maps by 1 × 1 convolution and upsample
them to the original image size. The output feature maps are D1,
D2, D3, and D4. The following describes how D1, D2, D3, and
D4 are constructed.

MSF4 has features derived from the encoder–decoder feature
fusion operation, which includes encoder features at the same
scale E4, encoder features at smaller scales E1–E3, and decoder
features at the next level E5. Each level of the feature map has
different operations. In the first step, E1–E5 all need to perform
a 3 × 3 convolution operation to convert their channel number
to 64, while E5 also needs to perform bilinear interpolation
upsampling to enlarge its spatial resolution by a factor of 2.
E1–E3 need to perform global pooling downsampling to reduce
their spatial resolution by factors of 8, 4, and 2, respectively.
After these operations, E1–E5 have 64 channels, and their spa-
tial resolutions are consistent. In the next step, we stack the
feature maps of E1–E5 along the channel dimension to form a
320-channel feature map. To decrease the number of channels,
a 3 × 3 convolution is applied, resulting in 64 channels. In the
last step, we convert MSF4 into a two-channel original image
size D4 by 1× 1 convolution and eightfold bilinear interpolation
upsampling operations. Here is the formula used to calculate the

D4 feature map

D4 = UP8(Conv1×1(Conv3×3(P8(E1))

⊕ Conv3×3(P4(E2))

⊕ Conv3×3(P2(E3))⊕ Conv3×3(E4)

⊕ Conv3×3(UP2(E5)))) (3)

where UP8 represents eightfold bilinear interpolation upsam-
pling operations, Conv1×1 is 1 × 1 convolution, Conv3×3 is
3× 3 convolution, P8 represents eightfold global pooling down-
sampling operations, P4 represents quadruple global pooling
downsampling operations, P2 represents double global pooling
downsampling operations, and UP2 represents double bilinear
interpolation upsampling operations.

Similarly, the fusion formula for D3, D2, and D1 is as follows:

D3=UP4(Conv1×1(Conv3×3(P4(E1))⊕(Conv3×3(P2(E2))

⊕Conv3×3(E3)⊕ Conv3×3(UP2(MSF4)))) (4)

D2 = UP2(Conv1×1(Conv3×3(P2(E1))⊕ Conv3×3(E2)

⊕Conv3×3(UP2(MSF3)))) (5)

D1 = Conv1×1 (Conv3×3(E1)⊕ Conv3×3(UP2(MSF2)))
(6)

where UP4 represents quadruple bilinear interpolation upsam-
pling operations.

D. Loss Function

In CD tasks, the change regions are much smaller than the
unchanged regions, which causes a class imbalance problem in
the model training process. Therefore, in this article, we use a
hybrid loss function composed of dice loss [52] and weighted
cross-entropy loss [53] to mitigate the impact of class imbalance.
In the proposed ACMFNet network, the final decoder layer
outputs feature D1–D4. We use a deep supervision [15], [54],
[55] strategy to optimize the loss for each output layer feature.
Each layer has a weight parameter Wi (i = 1, 2, 3, 4). Therefore,
we set Wi to (1, 1, 1, 1). The total loss function is defined as
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follows:

Ltotal =

4∑
i

wil
i
side (7)

where liside (i = 1, 2, 3, 4) denotes the hybrid loss function used
for each output, which is defined as follows:

lwce=
1

H ×W

H×W∑
j=1

weight[c]·
(
log

(
exp(ŷ[j][c])∑1
l=0 exp(ŷ[j][l])

))

(8)

ldice = 1− 2 · Y · softmax(Ŷ )

Y + softmax(Ŷ )
(9)

liside = liwce + lidice (10)

where liwce (i = 1, 2, 3, 4) denotes the weighted cross-entropy
loss. Weight is the weight parameter, c is either 0 or 1, in-
dicating unchanged pixels and changed pixels, respectively,
and Ŷ represents the change map of each layer, denoted by
a set Ŷ = {ŷj , j = 1, 2, . . . , H ×W}. ŷi represents a binary
element of Ŷ . lidice (i= 1, 2, 3, 4) is the dice loss, and Y represents
the ground truth.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Dataset Descriptions

To thoroughly evaluate the performance of the ACMFNet
model, we conducted both quantitative and qualitative assess-
ments on three publicly available datasets: LEVIR–CD [56],
WHU–CD [57], and GZ–CD [58]. The detection of changes
in urban buildings is the main objective of the LEVIR–CD
dataset. It includes 637 pairs of VHR remote sensing images,
each with a spatial resolution of 0.5 m, a spatial size of 1024
× 1024 pixels, and three spatial channels. In addition to the real
change regions, the dataset also includes many pseudochanges
caused by seasonality and illumination. We further cropped the
1024 × 1024-pixel images into 256 × 256-pixel patches and
removed the unchanged image pairs. The resulting sets were
3107 pairs for training, 433 pairs for validation, and 923 pairs for
testing. WHU–CD is an urban disaster building aerial image CD
dataset. The dataset is composed of a pair of VHR remote sensing
images, which have a spatial resolution of 0.075 m and a spatial
size of 32 507 × 15 354 pixels. Similarly, we cut the original
image into 256× 256-pixel patches and removed the unchanged
image pairs. Next, we partitioned the cropped WHU–CD dataset
into a training set with 1403 pairs, a validation set with 173
pairs, and a test set with 173 pairs. GZ–CD is a Guangzhou
suburban building CD dataset. The dataset contains 19 pairs of
VHR images with a spatial resolution of 0.55 m and a channel
number of 3. Their sizes range from 1006 × 1168 pixels to 4936
× 5224 pixels. Likewise, we crop the images into 256 × 256
pixels. After removing the unchanged image pairs, we divide
the dataset into a training set/757 pairs, a validation set/94 pairs,
and a test set/94 pair. The image pairs and labels of the three
datasets are shown in Fig. 5.

Fig. 5. (a) are LEVIR-CD dataset image pairs and labels. (b) are WHU-CD
dataset image pairs and labels. (c) GZ–CD dataset image pairs and labels.

B. Comparative Methods

We evaluated the performance and effectiveness of the pro-
posed ACMFNet model by comparing it with several recent su-
pervised CD models. The comparative models are FC–EF [28],
FC-Siam-conc [28], FC-Siam-diff [28], CDNet [59], SNUNet
[49], DSIFN [54], BIT [41], L-Unet [60], and WNnt [61]. The
following is a brief description of these methods.

1) FC–EF is a fully convolutional CD network based on UNet
feature encoding and decoding. It uses a single-branch
network to cascade images for change region detection.

2) FC-Siam-conc is a CD network framework based on
a Siamese fully convolutional architecture. Its encoder
branches perform feature concatenation at the same scale
and then stack them with the decoder layer at the same
scale through skip connections.

3) FC-Siam-diff is also a Siamese fully convolutional CD
network framework, but its encoder branches calculate
feature difference maps at the same scale and then stack
them with the decoder layer at the same scale through skip
connections.

4) CDNet is a deconvolution network for street scene CD.
5) SNUNet is a Siamese network variant that features dense

connections both within and across the encoder and de-
coder layers.

6) DSIFN uses attention modules and deep supervision
mechanisms to effectively fuse original image features
and image difference features, improving the performance
of CD.
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TABLE I
ACMFNET NETWORK STRUCTURE PARAMETERS

7) BIT represents bitemporal images as a small number of
semantic tokens and uses a transformer encoder to model
context in a compact token-based spatiotemporal domain,
effectively simulating context information within the spa-
tiotemporal domain.

8) L-Unet is a deep multitask learning framework able to
couple semantic segmentation and CD using fully con-
volutional long short-term memory (LSTM) networks.
UNet-like architecture that models the temporal relation-
ship of spatial feature representations using integrated
fully convolutional LSTM blocks on top of every encoding
level.

9) WNnt is a new W-shaped dual-Siamese branch hierarchi-
cal network for HRRS image CD named W-shaped hier-
archical network. WNet first incorporates a Siamese CNN
and a Siamese transformer into a dual-branch encoder to
extract multilevel local fine-grained features and global
long-range contextual dependencies.

C. Experimental Details

The PyTorch framework was used to implement our model,
which was trained on an NVIDIA GeForce RTX 3090 GPU
with a memory of 24 GB. The input images were 256 × 256
pixels with three spatial channels, and the model used a hybrid
loss function comprising dice loss and weighted cross-entropy
loss. We set the learning rate to 10−3 and the batch size to 8
and optimized the parameters using the AdamW. optimizer. The
model was trained for 100 epochs, and the learning rate was
adjusted by a decay factor of 0.5 every 8 iterations. We adopted
precision, recall, and F1-score as the quantitative measures to
evaluate our experiments.

Table I gives the structural parameters and description of
the ACMFNet network. The meanings of the parameters are
as follows: (256, 256, 3) means that the size of the feature map
is 256 × 256 and the number of channels of the feature map
is 3. (ACRB, 3, 32) means that the ACRB transforms a feature
map with input channel number 3 into a feature map with output
channel number 32. (MSF1, 128, 64) indicates that the multilayer
features are aggregated into a 128-channel feature map, and then
the 128-channel feature map is downscaled to a 64-channel map
afterward.

D. Analysis and Discussion of Experimental Results on the
LEVIR–CD Dataset

The quantitative evaluation metrics and visualization results
of the ACMFNet model on the LEVIR-CD dataset are displayed

TABLE II
QUANTITATIVE EXPERIMENTAL RESULTS ON THE LEVIR–CD DATASET

TABLE III
QUANTITATIVE EXPERIMENTAL RESULTS ON THE WHU–CD DATASET

in Table II and Fig. 6. Compared to the other models, the FC–EF,
FC-Siam-conc, and FC-Siam-diff models had poor performance
in the three evaluation metrics. The resulting images also had
many false positives and false negatives, and the object edges
showed irregular shapes. This may be due to the simplicity of
these three models, which could not fully extract features at dif-
ferent scales and distinguish real change regions from complex
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Fig. 6. Visualization results of the LEVIR–CD dataset. (a) Prechange image. (b) Postchange image. (c) Ground truth label. (d) FC–EF result. (e) FC-Siam-conc
result. (f) FC-Siam-diff result. (g) CDNet result. (h) SNUNet result. (i) DSIFN result. (j) BIT result. (k) L-Unet result. (l) WNet result. (m) ACMFNet result.

Fig. 7. Visualization results of the WHU–CD dataset. (a) Prechange image. (b) Postchange image. (c) Ground truth label. (d) FC–EF result. (e) FC-Siam-conc
result. (f) FC-Siam-diff result. (g) CDNet result. (h) SNUNet result. (i) DSIFN result. (j) BIT result. (k) L-Unet result. (l) WNet result. (m) ACMFNet result.

objects. The CDNet model achieved a significant improvement
in precision, with an F1-score of 88.36%. The predicted result
images also had no obvious irregular shapes at the boundaries.
However, as shown by the red boxes in the second row of
CD result images Fig. 6(d)–(g), all four CD models mentioned
above failed to effectively extract small objects at the image
boundaries. This is because these models cannot effectively fuse
features at different scales, leading to the loss of small objects. As
shown by the third row of pre and postchange images in Fig. 6(a)
and (b), there was a changed building that had a different spectral
feature from other buildings. The red boxes in the third row of
CD result images in Fig. 6(d)–(h) show that in Table II, the
first five models could not fully identify the changes in objects
with different spectral differences. The DSIFN and BIT models
were able to effectively identify changes in objects with different
spectral differences. The DSIFN model used attention modules
and deep supervision mechanisms to effectively fuse original
image features and image difference features, while the BIT
model used the transformer to effectively simulate contextual
information within the spatiotemporal domain. Although the
DSIFN model achieved the best precision of 94.56%, its recall
was low. As shown by the first row of Fig. 6(i), there were
many false negatives in the DSIFN model result image. From
Table II, it can also be seen that the F1-score of the ACMCNet
model is 0.92% and 0.22% higher than L-Unet and WNet,
respectively. As shown in Table II, the proposed ACMFNet
model achieved a suboptimal precision of 90.71% and optimal

recall and F1-scores of 90.92% and 90.82%, respectively. As
shown in Fig. 6(k), the proposed model detected most change
regions, such as some small buildings and object edge areas.
This is because the ACMFNet model used asymmetric convo-
lution to extract vertical or horizontal edges and textures and
other asymmetric features, enhancing the ability to extract edge
features of the network. It also fully fuses features at different
scales, thus effectively detecting subtle changes. Moreover, it
utilized shallow features to alleviate edge blurring problems.

E. Analysis and Discussion of Experimental Results on the
WHU–CD Dataset

Fig. 7 and Table III show the visualization results and quantita-
tive evaluation metrics of the ACMFNet model on the WHU–CD
dataset. The FC–EF, FC-Siam-conc, FC-Siam-diff, and CDNet
models achieved F1-scores of 82.88%, 83.97%, 82.31%, and
85.47%, respectively. As shown in Fig. 7(d)–(g), these four mod-
els had many false positives and false negatives in their change
result images. The object edges also showed irregular shapes.
This may be due to the simplicity of these four models, which
could not fully extract features at different scales and distin-
guish real change regions from complex objects. The SNUNet,
DSIFN, and BIT models achieved significant improvements in
the F1-score compared to the first four models in Table III. Their
F1-scores were 90.36%, 88.27%, and 88.19%, respectively. As
shown in Fig. 7(h)–(j), these three models also detected the most
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Fig. 8. Visualization results of the GZ–CD dataset. (a) Prechange image. (b) Postchange image. (c) Ground truth label. (d) FC–EF result. (e) FC-Siam-conc
result. (f) FC-Siam-diff result. (g) CDNet result. (h) SNUNet result. (i) DSIFN result. (j) BIT result. (k) L-Unet result. (l) WNet result. (m) ACMFNet result.

TABLE IV
QUANTITATIVE EXPERIMENTAL RESULTS ON THE GZ–CD DATASET

change regions, but the resulting images also showed some blur-
ring and incompleteness at the boundaries. The SNUNet model
achieved suboptimal precision, but as shown by the red border in
the first row of Fig. 7(h), it also failed to fully detect the change
region at the corner of the boundary. The DSIFN model achieved
the best precision, but its recall was low. As shown in the first row
of Fig. 7(i), there was a large range of missing boundaries in the
DSIFN model result image. The BIT model detected the change
region at the corner of the boundary, and the boundary was also
more complete, but its precision was low, at 85.39%. As shown
in the first row of Fig. 7(j), there were some false positives in
the BIT model result image. On the F1-score metric, ACMCNet
has 11.1% and 0.28% higher accuracy than L-Unet and WNet
models. Table III shows that the proposed ACMFNet model
achieved an optimal recall and F1-score of 91.21% and 91.37%,
respectively, and a suboptimal precision of 91.53%. As shown in
Fig. 7(k), the proposed model detected the most change regions.
Compared to other model result images, the object boundary
was more regular and complete. This proves that asymmetric
convolution feature extraction and multiscale feature fusion can
help effectively process object boundary information.

TABLE V
ABLATION EXPERIMENTS ON THE LEVIR–CD DATASET YIELDED

QUANTITATIVE EXPERIMENTAL RESULTS

F. Analysis and Discussion of Experimental Results on the
GZ–CD Dataset

The quantitative and qualitative results of the proposed model
on the GZ–CD dataset are shown in Table IV and Fig. 8. The ex-
perimental results of precision, recall, and F1-score are 85.23%,
86.90%, and 86.06%, respectively. Compared with other experi-
mental models, the proposed method achieves the best accuracy
in recall and F1-score, with accuracies of 86.90% and 86.06%,
respectively. As seen from Table IV, FC–EF, FC-Siam-diff,
FC-Siam-conc, and CDnet have F1 scores of 78.01%, 78.91%,
78.33%, and 76.60%, respectively. The F1 scores of SNUnet,
DSIFN, and BIT are 80.83%, 82.61%, and 82.78%, respectively.
The F1-scores of L-Unet and WNet are 76.37% and 84.91%. Its
visualization is shown in Fig. 8. The model proposed in this
article can basically detect most of the change regions, and it
has fewer false detection regions than other models, and its edge
regions are also well reconstructed.

H. Ablation Experiment

To evaluate the effectiveness of the ACRB module and the
MSF proposed in this article, we performed ablation experi-
ments on the LEVIR–CD dataset. We used precision, recall, and
F1-score as quantitative metrics to evaluate the CD model after
adding each module. The number of parameters (MB) of the
model after applying each module was also computed. We used
Siam_unet as the experimental baseline (base). The experimen-
tal results of adding each module are shown in Table V. The
visualization results are shown in Fig. 9.
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Fig. 9. Visualization results of ablation experiments. (a) shows the prechange image. (b) shows the postchange image. (c) shows the ground truth. (d) shows the
base result. (e) shows the base + MSF result. (f) shows the base + ACRB + MSF result.

As presented in Table V, the base model obtained a precision
of 86.52%, a recall of 87.03%, and an F1-score of 86.78%.
The F1-score of the network increased by 1.52% after adding
the MSF compared to the base model. After adding the ACRB
module, the network improved its F1-score by 4.04% compared
to the base model. This proves the effectiveness of the added
MSF and ACRB modules. As shown in Fig. 9, the CD result
image (d) of the base model had many false positives, and
the object boundaries were also irregular. After adding the
MSF, the false positive regions were greatly reduced. After

further adding the ACRB module, the object boundaries were
clearly more complete and more regular than those of the base
model.

Table VI shows the results of the added MSF ablation ex-
periments. Among them, MSF4, MSF3, MSF2, and MSF1 are
fused as shown in Fig. 4(a)–(d). Base model whose fusion is
UNet skip connection, while MSF4, MSF3, MSF2, and MSF1

are fused feature maps with different scales of multiple layers of
the encoder. The experimental results show that the performance
of the model can be effectively enhanced by using multilayer
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TABLE VI
RESULTS OF THE MSF ABLATION EXPERIMENT

TABLE VII
QUANTITATIVE EXPERIMENTAL RESULTS OF BOUNDARY IOU ON THE

LEVIR–CD DATASET

fusion. After using MSF feature fusion, the accuracy of its ex-
perimental results achieved an accuracy improvement of 1.52%
on the F1-score score.

V. DISCUSSION

A. Asymmetric Convolutional Residual Block

In this article, an ACRB is constructed based on AC convolu-
tion, the feature extraction is focused on the edge of the object,
and it is more robust to the object with rotation, flip distortion,
and uneven aspect ratio. The effect of edge extraction in this ar-
ticle is the result of asymmetric convolution residuals and MSF.
MSF makes use of shallow detailed information, which helps
to reconstruct the edge details. After using MSF, asymmetric
convolutional residuals are used to further enhance the extraction
of edge features and enhance the performance of the network.
We will use quantitative and qualitative experimental methods
to measure the extraction effect of the model on the edge of
ground objects. Among them, we introduce the evaluation index
of the boundary IoU [62] to measure the quality of the partition
boundary. The quantitative evaluation is shown in Table VII. At
the same time, to visualize the effect of edge detection more
intuitively, we display the visual results on small-scale, large-
scale, and dense objects. The visualization results are shown in
Fig. 9. The calculation formula of the boundary IoU is shown as
follows:

BoundaryIou =
|(Gd ∩G) ∩ (Pd ∩ P )|
|(Gd ∩G) ∩ (Pd ∩ P )| (11)

where boundary regions Gd and Pd are the sets of all pixels
within d pixel distances from the ground truth and prediction
contours, respectively. The new measure evaluates only mask
pixels that are within pixel distance d from the contours. A sim-
pler version with IoU calculated directly for boundary regions
Gd and Pd loses information about sharp contour corners that
are smoothed by considering all pixels within distance d from
the contours. This experiment d is set to 7.

Mean boundary IoU is the value of the average boundary IoU
for all buildings in the test dataset. The small boundary IoU
indicates the value of the boundary IoU of a small building.
The large boundary IoU indicates the value of the boundary IoU
of a large building. Dense boundary IoU indicates the value
of the boundary IoU of a dense building. Except for mean
boundary IoU is calculated for the average of all buildings in
the test dataset. The small boundary IoU, large boundary IoU,
and dense boundary IoU selected some buildings for calculation.
Table VII shows that after using MSF, compared to base, its
mean boundary IoU, small boundary IoU, large boundary IoU,
and dense boundary IoU achieve 4.22%, 19.83%, 10.37%, and
1.99% accuracy improvement, respectively. This further shows
that the edge area is reconstructed to a certain extent after using
multiple scales. After continuing to use the ACRB, compared
with the base, its mean boundary IoU, small boundary IoU,
large boundary IoU, and dense boundary IoU achieve 10.61%,
35.17%, 22.23%, and 3.94% accuracy improvement, respec-
tively. This illustrates that the use of ACRBs can enhance the
extraction of edge features and thus reconstruct the edge regions
to some extent. For small buildings, our model has the best effect
on handling boundaries, while for dense buildings, our model
has a poor effect on handling edges. From Fig. 9, we can see
that object boundaries are improved to some extent after using
MSF and ACRB.

B. MSF

The fusion strategy used in this article is a multilevel fea-
ture fusion strategy, which aims to utilize different levels of
underlying features to improve the performance of CD. First,
the image is fed into the feature extraction network to get the
feature mappings (E1, E2, E3, E4, E5) at different levels. Then,
the feature maps (D1, D2, D3, D4) are obtained by multilevel
feature fusion strategy, and the core idea of the strategy is to
fuse the different dimensional channel feature maps to select
the important feature information. It effectively improves the
fusion of semantic features and early features, which makes the
detailed information of the shallow convolutional layer fully
enhanced. Compared with the skip connection of the UNet
network model, the multiscale feature fusion decoder used in
this article combines the feature maps of different scales of the
encoder to utilize the feature information of different scales. Its
MSF fusion mode is shown in Fig. 4. In this article, ablation
experiments are also performed to demonstrate the effect of our
proposed multiscale feature fusion decoder. In Table V, after
using MSF, its model improves the F1-score evaluation index
by 1.52%.

C. Contrasting With Other Models

The comparative experimental models used in this article
are FC–EF, FC-Siam-diff, FC-Siam-conc, CDNet, L-UNet,
SNUNet, DSIFN, BIT, and WNet. Analyzing the model ar-
chitectures, FC–EF, FC-Siam-diff, FC-Siam-conc, and CDNet
use a simple convolutional architecture. L-UNet builds on the
UNet architecture and uses fully convolutional LSTM blocks to
construct the temporal relevance of spatial features. SNUNet
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uses a combination of the Siamese network and UNet++.
DSIFN adopts a deep supervision strategy and uses channel
attention and spatial attention mechanisms to focus on change
regions. BIT and WNet use the transformer approach. BIT
adopts a combination of CNN and transformer to model the
spatiotemporal features in the deep layer and obtain global
features. WNet incorporates a Siamese CNN and a Siamese
transformer into a dual-branch encoder to extract multilevel
local fine-grained features and global long-range contextual
dependencies. ACMCNet design an ACRB, which replaces the
standard 3×3 convolution in the residual block with asymmetric
convolution, to enhance the feature expression ability of the
residual block and effectively improve the performance of the
network model without increasing inference time and overhead.
The MSF method was also adopted to utilize the encoder mul-
tilayer different scale feature information for the reconstruction
of the detail information of the change region. Although the
ACMCNet model proposed in this article is more effective and
can alleviate the edge problem to some extent. However, there
are still some problems, compared with FC–EF, FC-Siam-diff,
FC-Siam-conc, and CDNet network model, ACMCNet network
parameter number is larger, and the running time is longer.
And compared to the BIT and WNet models constructed by the
transformer method, the feature extraction encoder constructed
by ACMCNet is unable to adequately global feature information
for long-range spatiotemporal modeling.

VI. CONCLUSION

This article proposes a CD network that uses asymmetric
convolution feature enhancement and MSF. Extensive compar-
ative and ablation experiments demonstrate the effectiveness of
the proposed CD model, and it is also proven that asymmetric
convolution feature extraction and multiscale feature fusion can
effectively handle object boundary information. In the compar-
ative experiments on the LEVIR–CD, WHU–CD, and GZ–CD
datasets, the proposed model achieved optimal recall and F1-
score accuracy and suboptimal precision accuracy compared to
other advanced CD models. In the ablation experiments, adding
the MSF and ACRB modules improved the accuracy of the
CD model by 4.04% compared to the base model, verifying
he effectiveness of the two modules. However, our method still
leaves some areas for improvement. For example, the utility of
our method in real-world scenarios needs to be improved, and
its inference time needs to be shortened. In the future, we will
reduce the number of parameters in the model. To further reduce
the number of data labels used by the model and improve the
applicability of the model, we will build a self-supervised CD
model based on the ACMFNet model to achieve the transition
from supervised to self-supervised learning.
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