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Abstract—Sea surface height anomaly (SSHA) plays a pivotal
role in ocean dynamics and climate systems. This article develops a
graph-based memory recall recurrent neural network (GMR-Net)
to achieve accurate and reliable mid-term spatiotemporal predic-
tion of the SSHA field. The proposed method designs a newly
developed long-term memory recall cell as the building block of the
network, which utilizes the proposed memory store recall (MSR)
module to learn and capture the mid- and long-term temporal
dependencies of the SSHA field. The MSR module can efficiently
recall memories stored in the memory bank across multiple times-
tamps through the proposed graph representation mechanism even
after long periods of disturbance. The mid-term SSHA forecasting
is performed with a 30-day ahead, and our proposed GMR-Net
model achieves high prediction accuracy in different geographical
regions: the Tropical Western Pacific and the South China Sea,
yielding an RMSE of 0.026 and 0.035 m, respectively. Compared
with advanced prediction models, our proposed GMR-Net model
exhibits high reliability and superior performance in mid-term
SSHA forecasting. Moreover, marine phenomena, such as Rossby
waves, which can cause dramatic changes in sea-surface height, are
successfully observed from our forecast data, further verifying the
effectiveness of our prediction method.

Index Terms—Sea-surface height anomaly (SSHA), deep
learning (DL), spatiotemporal prediction, Rossby waves.

I. INTRODUCTION

S EA-SURFACE height anomaly (SSHA) is a critical param-
eter for emergency response to marine disasters [1], [2],

[3]. It is defined as the disparity between the satellite-observed
sea-surface height (SSH) and the mean SSH. The variations
in mean sea level driven by intraseasonal to interannual cli-
mate processes significantly impact the occurrence of extreme
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sea-level events, such as the El Niño/Southern Oscillation, the
Southern Annular Mode, the Indian Ocean Dipole, and the
Madden–Julian Oscillation [4], [5]. Therefore, mid- and long-
term SSHA forecasting can provide more valuable information
for understanding extreme weather or climate, facilitating the
effective implementation of management policies and strategies
to mitigate the risks of life and infrastructure damage. The
development of ocean observation technology, especially remote
sensing technology, provides high-precision satellite altimetry
data to study SSHA [6]. Many methods have been proposed for
SSHA forecasting using satellite altimetry data, which can be
categorized into two main types based on the adopted model: 1)
physics-based numerical models and 2) data-driven models.

Traditionally, physics-based numerical models utilize a series
of complex physics equations to estimate sea-level changes.
Chen et al. [7] employed a continental hydrological model to
forecast annual and semiannual fluctuations in global mean
sea-level data obtained from the TOPEX/Poseidon altimeter.
Gregory and Lowe [8] undertook a comparison of future re-
gional and global sea-level changes predicted by two different
versions (HadCM2 and HadCM3) of the Hadley Centre cou-
pled atmosphere–ocean general circulation model. Miles et al.
[9] proposed a dynamical coupled ocean–atmosphere model
that exhibited the capacity to forecast global seasonal sea-level
anomalies seven months in advance. However, despite the preva-
lence of numerical forecasting as the primary method for SSHA
forecasting, it is subject to certain limitations, such as high
computational requirements and sensitivity to initial conditions.

The data-driven models can develop a forecasting model in
the statistical sense without taking into account the physical
principles of the predicted object when the amount of sample
data is sufficiently large. Niedzielski et al. [10] employed a
polynomial-harmonic model based on the least-squares (LS)
method for mid- and long-term forecasting of global mean
SSHA. Ezer et al. [11] devised a novel approach based on
empirical mode decomposition (EMD) to extract long-term
trends of sea-level variations from oscillatory patterns along the
mid-Atlantic coast of the United States. Fu et al. [12] designed
a hybrid model that integrates empirical model decomposition,
singular spectrum analysis, and LS to forecast long-term sea-
surface anomalies in the South China Sea (SCS). Imani et al.
[13] combined empirical orthogonal function and support vector
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regression to forecast long-term sea-level anomalies derived
from satellite altimetry in the tropical Pacific Ocean. Cui et al.
[14] presented a new composite analysis-based random forest
(RF) approach for high-precision mid-term prediction of the
daily area-averaged SSHA in the SCS and the Western North
Pacific subtropical region. Although data-driven models have the
potential to forecast future SSHA based on historical statistical
data, the nonlinearity and stochastic nature of SSHA data and
the inherent uncertainties of the ocean make it challenging to
use mathematical or statistical models for SSHA spatiotemporal
prediction.

Deep learning (DL) is a data-driven method with a strong non-
linear expressive ability and DL-based models [15], [16] have
achieved advanced performance in the field of ocean prediction.
DL has also been widely employed for forecasting complex
SSHA data. Braakmann-Folgmann et al. [17] combined recur-
rent neural network (RNN) with convolutional neural network
(CNN) to analyze the evolution of SSH in both temporal and
spatial dimensions and predict SSHA. Sun et al. [18] utilized
long short-term memory (LSTM) models and the seasonal au-
toregressive integrated moving average to enhance the prediction
performance of SSHA in the China Sea. Liu et al. [19] designed
an attention-based LSTM network [20] that achieved highly
reliable SSH forecasting. Song et al. [21] demonstrated that
merged-LSTM could predict SSHA values for the next five
days with acceptable accuracy. Zhou et al. [22] proposed a
multilayer fusion RNN (MLFrnn) that combined global and
local spatiotemporal features of SSHA to predict SSHA regions.

The DL-based studies mentioned above underscore the po-
tential of DL techniques in marine environment prediction.
However, longer-term spatiotemporal forecasting of the SSHA
field is a less commonly studied area due to the relatively low
prediction accuracy that often accompanies it. Meanwhile, the
complexity inherent in SSHA data presents a significant chal-
lenge for achieving accurate longer-term forecasting. Therefore,
it is imperative to identify a precise and reliable DL approach to
facilitate longer-term spatiotemporal SSHA forecasting.

The longer-term spatiotemporal forecasting of SSHA necessi-
tates capturing the mid- and long-term temporal dependencies of
the SSHA field. The abovementioned DL methods have chiefly
relied on nearby phenomena in time and the ongoing short-term
motion to establish frame relationships. Consequently, these
methods have struggled to achieve mid-term SSHA forecasting
due to the lack of mid- and long-term motion information.

In order to solve this problem, this article proposes a mid-
term SSHA forecasting method with a long-term memory re-
call (LMR) cell, which can effectively capture the mid- and
long-term temporal dependencies of the SSHA field by recalling
memories stored in the memory bank through a proposed graph
representation mechanism.

Furthermore, the satellite data-driven DL models [23] have
been proven to be effective in revealing complex ocean phe-
nomena. Since temporal and spatial changes in sea level are the
result of large-scale changes in ocean circulation, average ocean
density, and ocean barometric changes [24], SSHA can be used
to reveal various critical large-scale oceanic phenomena, such as
Rossby waves. Rossby waves, the large-scale fluctuation in the

ocean interior caused by the rotation and shape of the Earth [25],
[26], are characterized as passing through many ocean basins
from east to west at a speed of a few centimeters per second
[27], [28]. Rossby waves regulate tropical cyclone activity over
tropical oceans and play a crucial role in the timely adjustment of
ocean circulation to large-scale atmospheric changes [29], [30].
The accurate mid-term SSHA forecasting can provide valuable
data support for the observations of Rossby waves in advance.
This article has also conducted corresponding research on this.

To summarize, this study proposes a graph-based memory re-
call recurrent neural network (GMR-Net) to effectively capture
the mid- and long-term temporal dependencies of the SSHA
field, improving the mid-term prediction performance. More-
over, Rossby waves, which cause dramatic changes in SSH,
are successfully observed from our forecast data. The main
contributions of this article are as follows.

1) A novel LMR cell is designed to learn mid- and long-term
temporal dependencies of the SSHA field through the
proposed memory store recall (MSR) module. The MSR
module can store SSHA high-dimensional features of pre-
vious timestamps and utilize the proposed graph represen-
tation mechanism to recall stored features across multiple
timestamps, effectively mining the mid- and long-term
memory context features of SSHA and improving the
mid-term SSHA forecasting performance.

2) A novel GMR-Net model is proposed to achieve end-
to-end mid-term spatiotemporal forecasting of the SSHA
field. Previous studies on mid- and long-term SSHA fore-
casting have only focused on predicting the SSHA values
for a single site or the area-averaged SSHA values for an
entire region. Our proposed GMR-Net model can simulta-
neously capture the spatial variation and temporal dynam-
ics of the mid-term SSHA field, enabling the prediction
of the SSHA map. Furthermore, we have proposed a Fast
Track mechanism to alleviate the problem of cross-layer
motion information attenuation in the recurrent predictor,
resulting in more accurate mid-term spatiotemporal SSHA
prediction.

3) This article is the first to observe Rossby waves in advance
from the SSHA data predicted by a DL model. This finding
further illustrates the validity of our proposed prediction
method. Meanwhile, this study also provides a new per-
spective and approach for the study of Rossby waves.

The rest of this article is organized as follows. Section II intro-
duces the preliminary related to our work. Section III elaborates
on the specifics of our proposed model, including the network
architecture, LMR cell, and MSR module. Section IV describes
the study area and dataset, model setting, implementation de-
tails, analysis of the experimental results, and a case study on
Rossby wave observations. Finally, Section V concludes this
article.

II. PRELIMINARY

A. Graph Structure

Graph is a data structure in non-Euclidean space, composed
of nodes and edges. Let G(V,E) represent a graph, where V
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Fig. 1. Four-layer ConvLSTM network. C represents the standard temporal
memory state, which is passed in the horizontal direction. H stands for hidden
state, which is passed in both horizontal and vertical directions.

denotes the node set of the graph with vi ∈ V , and E indicates
the edge set with < vi, vj >∈ E. Graph is a common data
structure for elucidating a connection between disparate entities,
whereby nodes denote individual entities, and edges represent
the relationship between any two entities. Edges can be directed
or undirected, and may possess weights or labels. The graph
structure can be represented by an adjacency matrix A. For a
weighted graph, Aij can represent the weight of the edge from
vi tovj . If it is an unweighted graph,Aij can be set to 1 to indicate
the existence of edges, and set to 0 to indicate the absence of
edges.

By learning and analyzing the graph structure, the deep
structural information of the data can be effectively explored
to comprehend the interaction patterns among nodes [31], [32].
The graph structure employs edges to represent the relationships
between nodes, thereby facilitating the capture of the intricate
interactions and influences among nodes. For mid-term SSHA
forecasting, by representing the information at different times-
tamps with nodes, a graph-based approach can better capture
mid- and long-term temporal dependencies of the SSHA field.

B. ConvLSTM Network

In order to achieve precise mid-term SSHA forecasting, it is
crucial to capture both spatial features and temporal dynamics in
the model, which has been a challenge for previous LSTM-based
methods. To address this limitation, Wang et al. [33] proposed
ConvLSTM based on LSTM, which is designed to simulta-
neously capture the spatiotemporal information hidden in the
sequence to realize the prediction of natural phenomena.

As shown in Fig. 1, a four-layer spatiotemporal prediction
network is obtained by stacking ConvLSTM cells, which are
characterized by the incorporation of convolution operations
to capture spatial features and LSTM structure to process
temporal dependencies. Compared with LSTM, ConvLSTM
provides greater capability to model short-term spatiotemporal
information by utilizing convolution operators. ConvLSTM can
naturally deal with the spatiotemporal relationship in sequence
data, avoiding the defects of separate processing of spatial and
temporal information in traditional CNN and LSTM models.

However, ConvLSTM cannot capture mid- and long-term
temporal dependencies of the SSHA field since the older stan-
dard temporal memory states C will be discarded immediately
when the standard temporal memory states are refreshed. More-
over, features obtained by high-layer cells will lose feature infor-
mation extracted by low-layer cells in the ConvLSTM network
with stacked multilayer cells, which makes ConvLSTM unable
to capture the complete spatial motion information of SSHA
and result in ambiguous predictions. Our model improves on
ConvLSTM to address the above issues.

III. METHODOLOGY

As previously mentioned, the problems with ConvLSTM
are its inability to capture mid- and long-term temporal de-
pendencies and the ambiguity of its predictions. Our proposed
GMR-Net model is designed to address these problems and ap-
plied specifically to mid-term SSHA forecasting. The LMR cell
captures the mid- and long-term temporal dependencies of the
SSHA field through our proposed MSR module and extracts the
spatiotemporal features of complex SSHA sequences using 3D
convolution. In addition, the Fast Track mechanism is proposed
in the network to provide another fast path for the motion context
information and effectively avoid the motion vanishing. The
network architecture, LMR cell, and MSR module are explained
in detail as follows.

A. Network Architecture

Fig. 2 shows the architecture of our proposed GMR-Net
model, which comprises three subnetworks: 1) encoder, 2) re-
current predictor, and 3) decoder. The encoder and decoder are
composed of several layers of 3-D convolution. The recurrent
predictor consists of the proposed LMR cell and Fast Track
mechanism. To improve the model’s expressivity, we stacked
four-layer LMR cells to construct a recurrent predictor subnet-
work. Meanwhile, the Fast Track mechanism is connected with
four-layer LMR cells, which transfers and fuses the hidden states
generated by the four-layer LMR cells.

Let Xt ∈ RH×W×C denotes the SSHA field at time step t,
whereH,W, and C indicate height, weight, and channels of the
input frame, respectively. In order to capture the mid- and long-
term temporal dependencies, we enlarge the temporal receptive
field of the model at each time step. Specifically, at each time step
in our GMR-Net model, n consecutive input frames Xt−n+1:t

are first encoded by an encoder to obtain high-dimension feature
maps in Rn×H×W×C tensors, wheren indicates temporal length.
Then, the obtained convolutional features are incorporated into
the recurrent predictor to generate recurrent features. Finally,
the recurrent features are decoded using a 3-D convolutional
decoder to obtain the predicted map of the future frame X̃t+1.
The predicted frame X̃t+1 can be represented as follows:

X̃t+1 = Dec[P (Enc (Xt−n+1:t)] (1)

where Enc(·) denotes the encoder which is utilized to extract
deep features from the input,P (·)denotes the proposed recurrent
predictor, and Dec(·) denotes the decoder which is utilized to
map the predicted features to the frames.
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Fig. 2. Proposed GMR-Net model for mid-term SSHA forecasting. At each time step in the model, the SSHA maps of n consecutive moments are first input into
the encoder to obtain high-dimension features. The obtained convolutional features pass through the recurrent structure of the four-layer LMR cells and then pass
through the decoder to obtain the SSHA forecasting of the next moment. Meanwhile, the Fast Track mechanism is connected with four-layer LMR cells, which
provide another fast path for the motion context information. The orange arrows indicate the direction of information flow for the hidden state H and standard
temporal memory state C. The purple arrows denote the direction of information flow for the spatiotemporal memory state M. The red arrows represent the transfer
of information flow between the Fast Track mechanism and LMR cells.

To alleviate the challenge of cross-layer motion information
attenuation, we proposed the Fast Track mechanism in the
network (see Fig. 2), which provides a rapid alternative pathway
for the motion context information. To further improve the
information flow between layers, we proposed a transfer pattern,
that is, transferring the information of any layer to all subsequent
layers. For each layer, fast track concatenates the hidden states
of the previous layers and passes them to the current layer as
input. Specifically, the lth layer receives the hidden states of all
preceding layers, H0

t ,H1
t , · · · ,Hl−1

t , as input. Then, the hidden
state output by the current layer is transmitted to all subsequent
layers by the Fast Track mechanism.

To ensure maximum information flow between layers in the
network, we regulate the information flow by a gating mecha-
nism learned in the LMR cell. Due to this gating mechanism,
the valuable information of all preceding layers can flow across
several layers without attenuation. Specifically, we reuse the
output gateOt in the LMR cell to expose the desired unchanging
content information. The output gate Ot determines which part
of the cell states needs to be output in the LMR cell. We refer
to 1−Ot as the carry gate, indicating how much output to
produce by carrying previous hidden state information. This
Fast Track mechanism provides additional details to the current
hidden states through the carry gate and balances the invariant

and varying motion parts. When Ot = 1, no extra information
is provided between layers in the network. When Ot ∈ (0, 1),
the previous hidden states are used to update the current hidden
state. The fast track equation is shown as follows:

Hl
t = Hl

t + (1−Ot)�W1×1×1[H0
t ,H1

t , · · · ,Hl−1

t ] (2)

where� is the Hadamard product. [H0
t ,H1

t , · · · ,Hl−1
t ] refers to

the concatenation of the hidden states produced in all preceding
layers 0, 1, · · · , l − 1. Hl

t is the hidden state of the current layer
l. Ot is the output gate of the LMR cell in layer l at time t.
W1×1×1 is the 1× 1× 1 convolution. The dimensionality of
Hl

t, Ot, and W1×1×1[H0
t ,H1

t , · · · ,Hl−1
t ] must be the same for

(2) to be valid.

B. Long-Term Memory Recall Cell

The forecasting of future time steps can be enhanced by
pertinent features from previous time steps, which motivates
us to design LMR cell with memory capability. The LMR cell
introduces MSR module with memory function based on Con-
vLSTM, as illustrated in Fig. 3. The MSR module is designed
to capture mid- and long-term dependencies in the time domain,
and the details of the storage and recall of temporal memory
states in the MSR module are described in Section III-C.
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Fig. 3. Long-term Memory Recall (LMR) cell. To alleviate the deficiency of ConvLSTM in effectively capturing mid- and long-term temporal dependencies, we
introduced an MSR module endowed with memory functionality. The MSR module first stores the standard temporal memory states of the previous time steps
through the memory bank, and then recalls the mid- and long-term memory context features from the memory bank through the graph representation mechanism.

At time step t in layer l, the LMR cell receives four inputs:
Xt, the 3-D-Conv feature map from encoder or hidden state of
the previous layer; Hl

t−1, the hidden state from the previous
timestamp; Cl

t−1, the standard temporal memory state from the
previous timestamp; and Ml−1

t , the spatiotemporal memory
state of the previous layer. The LMR cell generates three outputs:
Hl

t, the hidden state from the current timestamp; Cl
t, the standard

temporal memory state from the current timestamp; and Ml
t,

the spatiotemporal memory state of the current layer from the
current timestamp.

In addition, unlike the 2-D convolution operation in ConvL-
STM, the LMR cell integrates 3-D convolution into recurrent
state transitions to mine the spatiotemporal features for complex
SSHA sequences. The overall equations of the LMR cell are
shown as follows:

It = σ(Wxi ∗ Xt +Whi ∗ Hl
t−1 + bi) (3)

Gt = tanh(Wxg ∗ Xt +Whg ∗ Hl
t−1 + bg) (4)

Ft = σ(Wxf ∗ Xt +Whf ∗ Hl
t−1 + bf ) (5)

Cl
t = It �Gt + MSR(Ft, Cl

t−1) (6)

I ′t = σ(W ′
xi ∗ Xt +Wmi ∗Ml−1

t + b′i) (7)

G′
t = tanh(W ′

xg ∗ Xt +Wmg ∗Ml−1
t + b′g) (8)

F ′
t = σ(W ′

xf ∗ Xt +Wmf ∗Ml−1
t + b′f ) (9)

Ml
t = I ′t �G′

t + F ′
t �Ml−1

t (10)

Ot=σ(Wxo∗Xt+Who ∗ Hl
t−1+Wco ∗ Cl

t+Wmo ∗Ml
t+bo)

(11)

Hl
t = Ot � tanh(W1×1×1 ∗ [Cl

t,Ml
t]) (12)

where σ is the sigmoid function, ∗ is the 3-D-Conv operation,
W1×1×1 is the 1× 1× 1 convolution for the transformation of
the channel number to match the dimensions. MSR(·) represents
the operations in our proposed MSR module. The use of the input
gate It, input-modulation gate Gt, forget gate Ft, and output
gate Ot control temporal information flow across the memory
state Cl

t. The use of the input gate I ′t, input-modulation gate G′
t,

forget gate F ′
t , and output gate Ot control spatial information

flow across the memory state Ml
t. At last, the final hidden state

Hl
t of this node relies on the fused spatiotemporal memory.
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C. Memory Store Recall Module

The bottom half of Fig. 3 shows the structure of the proposed
MSR module, which comprises two primary parts: 1) memory
bank and 2) graph representation mechanism. At time step t
in layer l, two inputs will be fed into the MSR: the standard
temporal memory state Cl

t−1 from previous time step and the
forget gate feature Ft from the current time step.

1) Memory Bank: The SSHA value at the current moment
is typically related to the SSHA at multiple moments in the
past. To provide mid- and long-term dependency information for
predicting future SSHA, we utilize a memory bank to efficiently
store the high-dimensional features of SSHA from the previous
time steps, which are standard temporal memory states in LMR
cells. The memory bank is a module to store previous infor-
mation, which is widely applied in temporal sequential signal
processing [34], [35]. As shown in Fig. 3, for time step t in
layer l, the standard temporal memory state Cl

t−1 ∈ Rn×H×W×C

is entered into the MSR and is concatenated along the time
dimension with the memory states stored in the memory bank
at the previous time steps to form a sequence tensor, which is
stored in the memory bank. As a result, all the standard temporal
memory states stored in the memory bank constitute a sequence
tensor Cl

1:t−1 ∈ R(t−1)n×H×W×C indicating that there are t− 1
historical memory states that are attended.

2) Graph Representation Mechanism: In order to learn the
importance of different historical temporal memory states in the
memory bank, we designed a recall method called graph rep-
resentation mechanism. The graph representation mechanism is
based on a novel graph structure and a flexible graph affinity
representation, aiming to achieve fast message updates and
capture mid- and long-term temporal dependencies of SSHA.

In the graph representation mechanism, the forget gate feature
Ft from the current time step and standard temporal memory
states Cl

1:t−1 stored in memory bank are used to recall mid-
and long-term memory features. The original forget gate fea-
ture Ft∈ Rn×H×W×C and stored standard temporal memory
states Cl

1:t−1∈ R(t−1)n×H×W×C are, respectively, projected into

Ft ∈ Rn×m and Cl
1:t−1 ∈ R

(t−1)n×m
, where m = H ×W ×

C. LetCz = [c1, · · · , c(t−1)n] represent standard temporal mem-
ory features after projection, where ci ∈ R1×m is an m-channel
temporal memory feature vector and i indicates the spatial loca-
tion of the feature vector. At the same time, letFz = [f1, · · · , fn]
represent a set of forget gate features after projection, where
fi ∈ R1×m is an m-channel forget gate feature vector.

We then use each temporal memory feature vector ci and
forget gate feature vector fi as a node to build an augmented
graph structure GL = (VL, ξL) with (t− 1)n+ n nodes, where
VL = Vc ∪ Vf . Here, Vc represents the nodes aligned with the
temporal memory features and Vf denotes the nodes correlated
with the forget gate features. Furthermore, we also define the
graph connectivity by graph edges ξL which denote the con-
nections between Vc and Vf . In particular, every node in Vc is
connected to every node in Vf and nodes of the same type are
not connected.

We make use of graph convolution Gconv to propagate in-
formation on the graph structure. Specifically, we update the

forget gate features by transmitting messages from the temporal
memory features in the Vc nodes to Vf nodes. The updated
forget gate features can capture the mid- and long-term memory
information from the historical temporal memory states, thereby
more accurately deciding which information is forgotten and
which important information should be retained. We construct
the graph affinity matrix by considering the similarity of neigh-
boring node features. Constructing the adjacency matrix in this
manner promotes stronger connectivity among similar nodes,
facilitating efficient information transfer and updates within
the graph structure. The message passing process is shown as
follows:

zi =

(t−1)n∑
j=1

exp(d(fi, cj))∑(t−1)n
k=1 exp(d(fi, ck))

WT
z cTj 1 ≤ i ≤ n (13)

d(fi, cj) = fic
T
j (14)

where zi represents the updated feature representation at node
in Vf . d(·, ·) computes similarity scores between two feature
vectors fi and cj . exp(·)/∑ exp(·) denotes softmax function
which is used to aggregate features along each row.Wz ∈ Rm×m

is the weight matrix defining a linear mapping to encode the
information from nodes in Vc. It is worth noting that we can
express the updating (13) in a matrix form as follows:

Z = A (Fz Cz) CzWz (15)

where A(Fz, Cz) ∈ Rn×(t−1)n represents the affinity matrix of
the graph in which Ai,j =

exp(d(fi,cj))
∑(t−1)n

k=1 exp(d(fi,ck))
. Finally, a mid-

and long-term memory feature is obtained by reprojecting Z ∈
Rn×m into Rn×H×W×C .

Given the mid- and long-term memory feature Z, we employ
a straightforward feature augmentation approach to integrate the
memory representation with the original temporal memory fea-
tures. Specifically, we employ a residual connection, followed
by layer normalization to obtain the final mid- and long-term
memory

MSR(Ft, Cl
t−1) = LayerNorm(Cl

t−1 + Z). (16)

IV. EXPERIMENTS

First, the study area, dataset, model setting, and implemen-
tation details are described. Second, our proposed GMR-Net
model is compared with existing methods on two study areas,
and the prediction performance of the model for mid-term SSHA
is demonstrated. Third, the effects of LMR cells, the Fast Track
mechanism, and the number of stacked LMR cell layers on
the mid-term SSHA forecasting are discussed. Finally, the suc-
cessful observations of Rossby waves from the model-predicted
SSHA data are analyzed.

A. Study Area and Dataset

The Pacific Ocean is the largest ocean on Earth, covering over
one-third of the Earth’s surface. It is one of the most crucial sea
trade routes in the world and an essential component of the global
climate system. The sea-level changes in the Pacific Ocean have
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Fig. 4. Study area located in the Tropical Western Pacific (TWP) (boxed in
red).

far-reaching impacts on global climate and environment [36].
Therefore, mid-term SSHA forecasting in the Pacific Ocean is of
great significance for predicting and mitigating climate change.
In this article, two subregions of the Pacific Ocean are selected
as the study areas, and experiments are carried out on these two
study areas to verify the proposed GMR-Net model.

1) Tropical Western Pacific (TWP): One of the study areas
is located in the TWP. The TWP is one of the regions with
complex circulation systems in the world, which has a significant
influence on global ocean and climate systems [37], [38], [39].
Furthermore, Rossby waves in this region exert a substantial
impact on sea level [40], [41], [42], which in turn affects global
climate change and ocean phenomena movements [43], [44],
[45]. Therefore, studying the fluctuating properties of SSHA
on TWP provides an opportunity to verify the ability of the
proposed GMR-Net model to predict SSHA and observe Rossby
waves. The study area was confined to a particular subregion
of the TWP, which spans from 0.125◦N to 19.875◦N and from
130.125◦E to 179.875◦E (see Fig. 4). This area will allow us to
better understand the dynamics of SSHA and Rossby waves on
TWP.

The SSHA data on TWP provide a gridded daily global
estimate of SSHA based on satellite altimetry measurements,
which are produced by archiving, validating, and interpret-
ing satellite oceanographic and distributed by the Copernicus
Marine Environment Monitoring Service (CMEMS). The data
encompass the time period from January 1, 1993, to December
31, 2020, and consist of daily average SSHA data within the area
of 0.125 ◦N−19.875◦ N, 130.125◦E−179.875◦ E, with a spatial
resolution of 1/4◦latitude by 1/4◦longitude. In the experiment,
the data are divided into a training set, consisting of SSHA
fields from January 1, 1993, to July 31, 2012, and a test set,
comprising SSHA fields from August 1, 2012, to December 31,
2020. For the training set, a sliding window with a width of
15 frames is used to slice the contiguous images, and the time
interval between the frames is one day. Therefore, each sequence
comprises 15 consecutive frames, with 10 input frames and 5
prediction frames. For the test set, a sliding window with a width
of 40 frames is used to slice the successive images. Therefore,
each sequence comprises 40 consecutive frames, with 10 input
frames and 30 prediction frames. In total, there are 10 174
sequences, with 7138 sequences used for training and 3036 for
testing.

Fig. 5. Study area located in the South China Sea (SCS) (boxed in red).

2) South China Sea (SCS): Another study area is located in
the SCS. The SCS is the largest marginal sea in the Pacific
Ocean. Understanding the patterns of SSHA and predicting
future SSHA in this area is not only of scientific significance
but also of extensive practical value to offshore economic,
military, engineering, and other fields. In addition, due to the
influence of monsoons, tidal currents, topography, and other
factors, mesoscale eddies and storm surges occur frequently in
this area, which has a strong influence on the sea surface [46],
[47], [48]. Therefore, the fluctuating characteristics of the SSHA
on SCS make it suitable for testing the prediction performance
of the proposed model. In this study, we choose a subarea of
the SCS as our study area, which covers the spatial extent of
4.875◦N −19.625◦ N and 109.875◦E −119.625◦ E (see Fig. 5).

The SSHA data on SCS also come from CMEMS, which
provides the gridded daily global estimate of SSHA covering the
spatial region of 0.125◦N −25.125◦ N, 100.125◦E −125.125◦

E. The spatial coverage of the data is larger than our selected
study area, which provides sufficient spatial features for accurate
SSHA forecasting within the study area. In this experiment, the
training set contains SSHA data from January 1, 2001 to May 1,
2016, and the test set contains SSHA data from May 2, 2016 to
May 13, 2019. We follow the same data processing as the data
on TWP, resulting in 6654 sequences, of which 5586 are used
for training and 1068 for testing.

B. Model Setting

We represented the daily observed SSHA field by a 3-D tensor
Xt of size H ×W × C. The sequence X1,X2, · · · ,XT formed
by the observations of T time steps is utilized as the input
sequence of the model. At each time step t,n consecutive tensors
from the input sequence are fed into the model. In our experi-
ment, we setn = 2,H = 80,W = 200,C = 1, andT = 10. We
applied a normalization step to the tensors before feeding them
into the proposed model to ensure that their values fell within
the range of [0, 1]. This normalization step helped to center the
data, resulting in faster model training and convergence.

At the beginning of the training phase, we set the initial state
values of the hidden state Hn

t=0, standard temporal memory
state Cn

t=0, and spatiotemporal memory state Mn
t=0 to 0. The

3-D-Conv operators integrated into the LMR cells have a kernel
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size of 2 × 3 × 3 (time× height×width). The number of hidden
state channels of each LMR cell is 64. To extract features from
the input frames, we used a single 3-D-Conv layer as the encoder.
Similarly, a single 3-D-Conv layer was used as the decoder to
map motion-aware hidden states to output frames.

C. Implementation Details

During the training phase, all models were trained to forecast
the subsequent 5 frames, utilizing the first 10 frames as input.
Choosing a specific number of frames as input and output is not
the only option, and it can be adjusted based on the specific
research and dataset. Training the model with 10 frames of
SSHA images as input is aimed at providing sufficient historical
data to capture patterns and trends in the spatiotemporal se-
quences. By leveraging 10 frames as input, the model can learn
more contextual information and gain a better understanding of
how past states influence the future. Although increasing the
number of input time steps can slightly improve performance, it
is important to note that the influence of historical frames on the
forecasted frames diminishes as the forecast interval increases.
Therefore, adding too many historical frames does not result
in a significant improvement in prediction accuracy. In addition,
using longer input sequences also increases computational com-
plexity. Selecting 10 frames as input can balance the relationship
between prediction accuracy and computational efficiency.

During the testing phase, all models were applied recursively.
At the first recursive step, each model generated a prediction
for the subsequent 5 frames based on the first 10 frames of input
data. At the second recursive step, we used the predicted 5 frames
from the first step and the previous 5 frames as input to generate a
prediction for the next 5 frames. Similarly, in the third recursive
step, we used the predicted 10 frames from the first two steps
to generate a prediction for the next 5 frames. Recursively, we
continued to make the SSHA forecasting at the fourth, fifth, sixth
recursive steps, until future 30 frames were predicted. Therefore,
all models were tested to predict the subsequent 30 frames based
on the first 10 frames of input data.

The training process terminated after completing 80 000
iterations, with mse as the loss function and Adam [49] as the
optimizer. The minibatch size of each iteration was set to 8.
The base learning rate was initially set at 0.0001 and reduced
by a factor of 0.9 every 2500 iterations [50]. The model was
trained on a single NVIDIA GeForce RTX 3090 GPU utilizing
the PyTorch library.

D. Compared Methods and Evaluation Metrics

The proposed GMR-Net model was compared with three
types of advanced prediction models. The first category is RNN-
based spatiotemporal prediction algorithms, including ConvL-
STM [33], MAU [51], and MotionRNN [52]. The second cat-
egory contains two prediction algorithms for predicting other
ocean elements, such as sea surface temperature, which are
SA-JSTN [53] and EEMD-GRU [54]. The third category is
prediction algorithms for SSHA forecasting, including MLFrnn
[22] and RF [14].

1) ConvLSTM [33]: This method incorporates the convolu-
tional structure into LSTM, which overcomes the limitations of
LSTM in handling spatiotemporal data. Unlike our GMR-Net

model that employs an MSR module to facilitate information
retention, the cell states in ConvLSTM network are refreshed
immediately at each time step.

2) MAU [51]: This model improves spatiotemporal predic-
tion performance by enlarging the temporal receptive field
of prediction cells. Different from our GMR-Net model
which focuses on capturing long-distance information, MAU
pays more attention to capturing reliable interframe motion
information.

3) MotionRNN [52]: This method achieves prediction by
decomposing motion into global motion trends and instanta-
neous changes, with a focus on short-term prediction of complex
spatiotemporal motions.

4) SA-JSTN [53]: An improved version of ConvLSTM has
been developed for temperature prediction. Compared with Con-
vLSTM, it adds a self-attention module to increase the ability
of the model to capture spatial information.

5) EEMD-GRU [54]: A hybrid model of EMD and gated
recurrent unit (GRU) is proposed as a prediction method for sea
surface temperature anomaly (SSTA). In contrast to our model
that directly predicts the SSHA map for a specific region, it
focuses on predicting the average SSTA values of the entire
region.

6) MLFrnn [22]: This method achieves spatiotemporal pre-
diction of the SSHA field by fusion cells to fully integrate
spatiotemporal features at each time step.

7) RF [14]: A powerful predictor is constructed from a group
of decision trees, similar to EEMD-GRU, which also enables
mid-term prediction of area-averaged SSHA values.

In the experiment, we apply EEMD-GRU and RF to separately
predict the SSHA value of each grid point in the whole study
area. The other comparison models keep the same experimental
settings as our GMR-Net model.

In order to assess the performance of the model, we utilized
two commonly employed evaluation metrics, namely, the root
mean square error (RMSE) and the mean absolute error (MAE).
The formulas of RMSE and MAE are, respectively, shown as
follows:

RMSE =

√∑N
i=1 (yi − xi)

2

N
(17)

MAE =
1

N

N∑
i=1

|yi − xi| (18)

where xi is the actual observed value at the ith sample, yi is the
predicted value at the corresponding sample, and N denotes
the total number of test samples. In (17), RMSE is highly
sensitive to large or small errors and can effectively reflect the
precision of measurement. In (18), MAE offers a more accurate
reflection of the predicted value error. It is worth noting that
lower values of both RMSE and MAE correspond to better
prediction performance.

E. Experiment Results on TWP

1) Comparison of Daily and Average RMSE and MAE: To
compare the performance of different models in forecasting
the SSHA field, we evaluated the daily RMSE and MAE, as
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TABLE I
DAILY AND AVERAGE RMSE COMPARISON RESULTS OF DIFFERENT METHODS DURING THE 30-D FORECAST PERIOD ON TWP

TABLE II
DAILY AND AVERAGE MAE COMPARISON RESULTS OF DIFFERENT METHODS DURING THE 30-D FORECAST PERIOD ON TWP

well as the average RMSE and MAE, during the 30-d forecast
period. Table I shows RMSE comparison results with different
methods on TWP, where the prediction results are in the form
of mean plus standard deviation . Our proposed GMR-Net
model exhibited superior performance in terms of daily RMSE
and average RMSE compared to other models. Specifically,
GMR-Net is much better than ConvLSTM, which illustrates
the effectiveness of our proposed MSR module with memory
storage function for mid-term SSHA forecasting. MAU focuses
on interframe motion information and achieves better prediction
results than ConvLSTM, but still cannot outperform our GMR-
Net model. This demonstrates the importance of long-range
motion information in mid-term SSHA forecasting. Motion-
RNN focuses on complex spatiotemporal motion and further im-
proves prediction performance. But its prediction performance
is still inferior to GMR-Net, which once again indicates that
long-term motion information cannot be ignored in mid-term
SSHA forecasting. The performance of the SA-JSTN model
is acceptable for short-term forecasting, but it sharply declines
for mid-term forecasting. This may be because mid-term SSHA
forecasting needs to consider longer-term impacts and changes,
while the SA-JSTN model mainly focuses on spatial dynam-
ics, making it difficult to effectively capture complex temporal
trends. Our model outperforms SA-JSTN, which indicates that
focusing on mid- and long-term information in the temporal
dimension is more important than focusing on global spatial
information in mid-term SSHA forecasting. MLFrnn exhibits
extremely unstable prediction performance in mid-term SSHA
forecasting, probably because it does not consider the complex
spatiotemporal dynamic relationship in longer time spans. The
overall prediction results of EEMD-GRU and RF are slightly
worse, indicating the spatiotemporal prediction of SSHA needs
to capture both temporal and spatial information. The prediction
of a single site cannot capture the spatial information of the
SSHA field, resulting in poor prediction results. Table II shows
MAE comparison results with different methods on TWP, which
exhibit similar results to those observed for RMSE in Table I.

2) Comparison of Frame-by-Frame RMSE and MAE: The
frame-by-frame quantitative comparison of RMSE and MAE for
different models is shown in Fig. 6. A lower value corresponds to
superior prediction performance. Fig. 6(a) and (b), respectively,
show the RMSE and MAE comparison on TWP. From Fig. 6(a)
and (b), we can see that our proposed GMR-Net model consis-
tently outperforms other models. The prediction performance of
SA-JSTN in the first 18 d is relatively good, but as the prediction
lead increases, its prediction error accumulates sharply, which
makes its performance unacceptable when predicting a longer
time span. As the forecast horizon extends beyond the 18th d,
the prediction performance of the MLFrnn model is extremely
unstable. Owing to the cumulative effect of errors, the prediction
performance of all models typically exhibits a decline as the
number of predicted frames increases. Our model accumulated
errors at a slower rate compared to other models, highlighting
its superior and stable mid-term prediction performance.

3) Comparison of Spatial Distributions of RMSE: The spa-
tial distributions of RMSE for different methods were calculated
on a grid-by-grid basis using the forecasting errors of all samples
during the testing period. Fig. 7 shows the RMSE spatial distribu-
tion of different methods on TWP. It can be intuitively found that
the discrepancy between the predicted results generated by our
proposed GMR-Net model and the observed values is very small
and acceptable. Compared with other methods, the GMR-Net
model yields prediction results with the best visual qualities
at each frame. The prediction results of EEMD-GRU and RF
exhibit a considerable number of noisy points, which may be
due to the lack of spatiotemporal feature modeling because they
make predictions for individual sites separately. SA-JSTN and
ConvLSTM perform adequately in short-term forecasting but
exhibit poor results in mid-term forecasting. This may be due to
the inability of the model to capture mid- and long-term temporal
dependencies. Although the MAU and MotionRNN frameworks
generate more precise prediction outcomes, their capacity to
accurately predict SSHA of edge locations and certain details
is limited, likely due to the loss of mid- and long-term motion
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Fig. 6. Framewise RMSE and MAE comparisons of different models during the 30-d forecast period on TWP. (a) Framewise RMSE comparisons of different
models. (b) Framewise MAE comparisons of different models. The lower the value of RMSE and MAE, the better the prediction accuracy. Compared with other
models, GMR-Net has the lowest RMSE and MAE on every prediction lead.

Fig. 7. Spatial distributions of RMSE for different methods during the 30-d forecast period on TWP. The spatial distributions of RMSE for different methods
were calculated on a grid-by-grid basis using the forecasting errors of all samples during the testing period. The lighter the color, the smaller the prediction error
and the better the prediction accuracy. Compared with other methods, the GMR-Net model yields prediction results with the best visual qualities at each frame.

information during the prediction process. In short, the proposed
GMR-Net model generated clearer predictions and is able to
memorize detailed visual appearances.

4) Comparison of Forecast Results in Different Months: SSH
is influenced by seasonal variations. To further validate the
prediction performance of the GMR-Net model, we tested the
prediction results of the model in different months. Fig. 8 shows
the comparison of RMSE and MAE results predicted by different
models in different months on TWP. It can be seen that the
prediction results of other comparative models, particularly the
SA-JSTN model, exhibit significant fluctuations with seasonal

changes. In contrast, our proposed GMR-Net model exhibits
minimal sensitivity to seasonal changes, providing evidence
of its robustness and reliability in predicting SSHA for vari-
ous months. In addition, it is noteworthy that our model also
exhibits the best prediction performance for each month, with
the smallest RMSE.

F. Experiment Results on SCS

1) Comparison of Daily and Average RMSE and MAE: We
further evaluated the performance of the GMR-Net model on
SCS. Table III and IV, respectively, shows RMSE and MAE
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Fig. 8. Comparison of RMSE and MAE results predicted by different models in different months on TWP. (a) RMSE comparison in different months. (b) MAE
comparison in different months. The RMSE and MAE of GMR-Net remains stable despite seasonal variations. Compared to other models, GMR-Net achieves the
smallest RMSE and the best prediction accuracy in every month.

TABLE III
DAILY AND AVERAGE RMSE COMPARISON RESULTS OF DIFFERENT METHODS DURING THE 30-D FORECAST PERIOD ON SCS

TABLE IV
DAILY AND AVERAGE MAE COMPARISON RESULTS OF DIFFERENT METHODS DURING THE 30-D FORECAST PERIOD ON SCS

comparison results with different methods on SCS. The predic-
tion performance of the MAU and MotionRNN models is not as
excellent as their performance on TWP. This observation may be
attributed to the intricate marine environment in the SCS area,
which poses a significant challenge for models to accurately
capture and predict complex spatiotemporal dynamics. The mid-
term prediction performance of the SA-JSTN model on SCS
is acceptable, indicating that the spatiotemporal information
captured by the SA-JSTN model in the short term is helpful
for mid-term forecasting. This may be because in the SCS area,
it is crucial for the model to pay more attention to the capture of
spatial dynamics. It is noteworthy that the GMR-Net model also
exhibits superior prediction performance on SCS compared to
other models. It can be concluded that the GMR-Net model can
capture mid- and long-term spatiotemporal dynamic changes in
complex marine environments, such as the SCS, and achieve
high-precision mid-term SSHA forecasting.

2) Comparison of Frame-by-Frame RMSE and MAE:
Fig. 9(a) and (b), respectively, show the frame-by-frame RMSE
and MAE comparisons of different models on SCS. It can be seen

that all models achieved good predictive results in the first five
days. However, as the prediction lead increases, the disparities
in prediction results between different models begin to widen.
Specifically, as the prediction lead increases from 5 to 20 d, the
prediction errors of RF and EEMD-GRU are significantly higher
than other models, probably because they made predictions for
each site separately. As the prediction lead increases from 25 to
30 d, ConvLSTM and SA-JSTN exhibit poor results, possibly
due to the lack of relevant modules for mid- and long-term
forecasting, resulting in severe error accumulation. As expected,
our GMR-Net model has performed well in the prediction results
of each day and has achieved the best prediction results. This
indicates that our model has a good ability to capture mid-
and long-term temporal dependencies, and can achieve accurate
mid-term prediction performance for SSHA field.

3) Comparison of Spatial Distributions of RMSE: Fig. 10
shows the RMSE spatial distribution of different methods on
SCS. Similarly, our model achieves the lowest error and the
best visual quality in each frame. The EEMD-GRU and RF
models yield nonuniformly distributed prediction errors and
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Fig. 9. Framewise RMSE and MAE comparisons of different models during the 30-d forecast period on SCS. (a) Framewise RMSE comparisons of different
models. (b) Framewise MAE comparisons of different models. The lower the value of RMSE and MAE, the better the prediction accuracy. Compared with other
models, GMR-Net has the lowest RMSE and MAE on every prediction lead.

Fig. 10. Spatial distributions of RMSE for different methods during the 30-d
forecast period on SCS. The spatial distributions of RMSE for different methods
were calculated on a grid-by-grid basis using the forecasting errors of all samples
during the testing period. The lighter the color, the smaller the prediction error
and the better the prediction accuracy. Compared with other methods, the GMR-
Net model yields prediction results with the best visual qualities at each frame.

numerous noise points. This is because they perform SSHA
predictions separately for individual sites, lacking the ability
to comprehensively capture spatial information. Spatiotemporal
prediction models, such as ConvLSTM, MAU, MotionRNN, and
SA-JSTN overcome the shortcomings of models that predict
individual sites separately, but there will still be large errors
in locations where sea-level fluctuations are large. Thanks to
the exceptional capability of our model in capturing mid- and
long-term spatiotemporal dynamics, it exhibits smaller predic-
tion errors compared to other methods.

G. Ablation Study

1) Effectiveness of MSR Module and Fast Track Mechanism:
In order to investigate the contributions of the proposed MSR
module and the effect of adding the Fast Track mechanism in
the network, an ablation study was conducted in this part of the
experiments.

Table V shows the daily and average RMSE of the 30-d
prediction results for the different models on TWP. The results
presented in rows 1 and 2 show the contribution of the two essen-
tial components in the proposed GMR-Net: 1) MSR module, and
2) Fast Track mechanism. Specifically, the first baseline method
was used to evaluate the effectiveness of the MSR module
in capturing mid- and long-term spatiotemporal patterns, and
the results indicate that this component can significantly learn
mid- and long-term dependencies and improve the mid-term
SSHA forecasting performance. Similarly, the contribution of
the Fast Track mechanism is isolated in the second baseline
method. The results indicate that Fast Track maintains the
motion context information and compensates existing models
for the additional useful information. The proposed GMR-Net
exhibits the best prediction performance, illustrating that both
components of the GMR-Net are essential and crucial for ef-
fectively modeling spatiotemporal data. Table VI shows the
comparison of daily and average MAE predicted by different
models 1–30 d ahead, which are consistent with the RMSEs in
Table V.

2) Effect of the Number of Stacked LMR Cell Layers: Our
proposed GMR-Net model employs a stacking scheme of four-
layer LMR cells. To investigate the impact of different stacking
configurations on the SSHA prediction performance, we vary
the number of stacked LMR cell layers L from 2 to 5 while
keeping other settings unchanged. Fig. 11 shows the prediction
results of the GMR-Net model under different numbers of LMR
cell layers on TWP. Specifically, when L = 2, the model shows
a steep increase in prediction error as the forecast horizon
exceeds 15 d, which can be attributed to the model’s inadequate
capacity for capturing SSHA feature information and informa-
tion transmission. In contrast, when L = 3, the model exhibits
a slower accumulation of prediction error as the prediction lead
increases. This is possibly due to the higher order interactions
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TABLE V
RMSE COMPARISON OF SSHA FORECASTING 1–30 D AHEAD WITH DIFFERENT MODELS ON TWP

TABLE VI
MAE COMPARISON OF SSHA FORECASTING 1–30 D AHEAD WITH DIFFERENT MODELS ON TWP

Fig. 11. Prediction results of the GMR-Net model with different numbers of LMR cell layers on TWP. (a) Framewise RMSE comparisons of GMR-Net model
stacked with different numbers of LMR cell layers. (b) Framewise MAE comparisons of GMR-Net model stacked with different numbers of LMR cell layers.
When L = 4, the GMR-Net model achieves the smallest RMSE and MAE.

captured by the increased number of layers, enabling the model
to extract more comprehensive features from the surrounding
oceanic environments. Notably, the GMR-Net model withL = 4
demonstrates no significant advantage in predicting the SSHA
for the first 10 d, yet the slowest accumulation of prediction error
and the best overall performance as the prediction lead increases.
Conversely, the predictive performance of the model deteriorates
as the number of LMR cell layers increases to 5, which can be
attributed to the loss or confusion of the captured SSHA feature
information over time as the number of LMR cell layers of the
model increased. Overall, we observe that the GMR-Net model
achieves the best performance when L = 4, as evidenced by the
smallest RMSE and MAE values. Based on this observation, we
select the stacking configuration of four-layer LMR cells in the
final model to obtain the most accurate SSHA prediction results.

H. Case Study: Observations of Rossby Waves

Rossby et al. [55], [56] discussed the classical free Rossby
waves solution in the Cartesian coordinate system. The
linearized large-scale and low-frequency motion equations can

be employed to obtain Rossby waves with infinitely many modes
when static fluid serves as the background field [57]. The dis-
persion relation of Rossby waves propagating along the zonal
direction is as follows:

cn = − β

k2 + l2 + λn
−2 (19)

where cn represents the speed of Rossby waves in the nth mode,
k is the latitudinal wavenumber, l is the meridional wavenum-
ber, λn is the deformation radius of Rossby waves in the nth
mode, and β is the change rate of the Coriolis parameter with
latitude, which is a fundamental parameter that affects the for-
mation of Rossby waves. The lowest order mode (n = 0) is the
barotropic mode, and the other modes are all baroclinic Rossby
wave modes. The most important one is the first-order baroclinic
mode when n = 1. By applying the long-wave approximation
(k2, l2 	 λ−2) to (19), the first-order baroclinic Rossby waves
can be further simplified as

c = −βλ2. (20)
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Fig. 12. Longitude-time plot of the satellite-observed and model-forecasted SSHA field at 19.875◦N from August 11, 2012, to December 31, 2020 on TWP. (a)
Longitude-time plot of the satellite-observed SSHA field at 19.875◦N from August 11, 2012, to December 31, 2020. (b) Longitude-time plot of the model-forecasted
SSHA field at 19.875◦N from August 11, 2012, to December 31, 2020. The movement of the model-forecasted SSHA field closely approximates that of the
satellite-observed data.

To further demonstrate the effectiveness of our proposed fore-
cast model, we conducted a case study in which we investigated
the observations of Rossby waves from the forecasted SSHA
field. Since Rossby waves propagate primarily along the zonal
(east to west) direction [27], we can observe them using the
longitude-time plots of the SSHA field at given latitudes, a tech-
nique typically used to detect Rossby waves [27], [58]. Fig. 12
shows the longitude-time distribution of the satellite-observed
and model-forecasted SSHA field along 19.875◦N during the
testing period, which clearly reflects the westward-propagating
signal of the SSHA and the changes of sea level on interannual
scale. From Fig. 12, it can be seen that the movement of the
model-forecasted SSHA field closely approximates that of the
satellite-observed data, which can further prove the accuracy of
our GMR-Net model for mid-term SSHA forecasting.

We can observe the following phenomena from Fig. 12.
1) SSHA propagates from east to west (the black dotted

line highlights the propagation path of SSHA), which is
consistent with the propagation characteristics that Rossby
waves mainly propagate along the zonal (east to west)
direction.

2) It can be directly inferred from the slope of the black dotted
line that the westward-propagating speed of the SSHA
field is about 0.11 m/s, which is also consistent with the
propagation speed of Rossby waves.

3) To detect Rossby waves, we also utilized the dispersion
relationship of Rossby waves along the zonal direction.
According to the data on the deformation radius of Rossby
waves provided by Chelton et al. [59], the deformation
radius of Rossby waves is approximately 70 km in the

range of 15◦N-20◦N in the TWP. When the latitude is
19.875◦N, according to the β calculation formula pro-
vided by Chelton et al. [59], it can be calculated that
β is about 2.15× 10−11m−1s−1. By substituting the
Rossby wave deformation radius, β, and our predicted
westward-propagating speed of SSHA into (20), we found
that the Rossby waves dispersion relationship is satisfied,
confirming that we observed Rossby waves from the fore-
casted SSHA field.

These observations further illustrate the validity of our pre-
diction method.

V. CONCLUSION

The SSHA field is intricately linked with a range of oceanic,
air–sea, biophysical, and climate change processes, making it a
critical factor in the study of various ocean phenomena, includ-
ing Rossby waves. In this study, we develop a novel end-to-end
GMR-Net to capture the mid- and long-term temporal dependen-
cies of the SSHA field, thereby enhancing the mid-term predic-
tion performance of SSHA. The core of our proposed model is a
new LMR cell that extracts mid- and long-term temporal depen-
dencies of the SSHA field using the proposed graph representa-
tion mechanism. Besides, the Fast Track mechanism is proposed
in the network to solve the problem of predicted SSHA field mo-
tion vanishing. The model was, respectively, trained and tested
using the daily SSHA spatiotemporal sequence data distributed
by CMEMS in the TWP and SCS. Comparisons with advanced
prediction models, including ConvLSTM, MAU, MotionRNN,
SA-JSTN, EEMD-GRU, MLFrnn, and RF, demonstrated that
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our proposed GMR-Net model has better mid-term prediction
performance.

An assessment of the effect of the proposed LMR cell and
Fast Track mechanism on the model was carried out, with
RMSE and MAE utilized as statistical indicators for comparison.
Experimental results demonstrate that our model can reliably
predict the SSHA by capturing the mid- and long-term temporal
dependencies and spatial motion correlations of SSHA sequence
change.

Moreover, we successfully observed Rossby waves from our
forecast data, further underscoring the validity of our prediction
method. The present study represents a significant extension of
the utilization of ocean satellite data and serves to enrich the
application of DL technology within the field of oceanography.
Furthermore, our findings have the potential to stimulate further
multidisciplinary research within this nascent domain.
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