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An Evaluation of Convolutional Neural Networks for
Lithological Mapping Based on Hyperspectral Images

Ziye Wang and Renguang Zuo

Abstract—Hyperspectral remote sensing images are character-
ized by nanoscale spectral resolution and hundreds of continu-
ous spectral bands, dominating significantly in geological appli-
cations ranging from lithological mapping to mineral exploration.
A major challenge lies in how to incorporate spectral and spatial
information, therefore promoting classification performance for
detecting closely resembling and mixed minerals and lithologies.
Recent advances in deep learning techniques have facilitated the
application of hyperspectral images in geological studies, especially
experts at handling high-dimensional data with strong neighboring
correlation. As a result, this study focuses on the evaluation of deep
learning algorithms for lithological mapping based on hyperspec-
tral images and further provides guidance on mineral exploration.
Four deep convolutional neural networks (CNNs), including 1-D
CNN, 2-D CNN, 3-D CNN, and a hybrid of 1-D and 2-D CNN,
were constructed for spectral, spatial, and spatial–spectral feature
extraction. The proposed frameworks were verified through the
case studies of lithological mapping to aid in prospecting rare metal
deposits using Gaofen-5 hyperspectral images in the Cuonadong
dome, Tibet, China. Lithological classification maps indicated that
the dual-branch 1D–2D CNN yields better performance than others
in both visual and quantitative comparisons, owing to the support
of joint spatial–spectral feature learning. An overall classification
accuracy of up to 97.4% further illustrates the feasibility of CNN
models for lithological mapping based on hyperspectral images,
which provides a realizable and promising approach for mineral
exploration by mapping specific lithologies.

Index Terms—Convolutional neural networks (CNNs), Gaofen-5
(GF-5), hyperspectral image, lithological mapping.

I. INTRODUCTION

HYPERSPECTRAL remote sensing refers to a technol-
ogy that images targets in tens to hundreds of spectral

bands using a hyperspectral sensor [1]. The combination of
imagery and spectra increases the capability of detecting more
detailed surface materials than multispectral images, thus has
been extensively used in the fields of agriculture [2], military
[3], environmental monitoring [4], geological mapping, and
mineral exploration [5], [6], [7]. Taking geological mapping
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as an example, minerals have specific spectral absorption and
texture properties in the visible- and near-infrared (VNIR) and
shortwave infrared (SWIR) spectral ranges, owing to various
compositions in the crystal structure, physical, and chemical
patterns [8]. Therefore, targeted lithologies and surroundings
can be distinguished and recognized using specific spectral
diagnostic features [9], [10].

Hyperspectral remote sensing images can be regarded as
a 3-D data cube, including spectral and spatial information
[11]. The spectral domain records the spectral reflectance of
targets with a change in wavelength; the spatial domain is
a 2-D image that reflects the position of each pixel and its
neighborhoods, providing complementary information for the
extraction of spectral features [12]. Hyperspectral image clas-
sification is fundamentally implemented by assigning a unique
label to each pixel or image [13], [14], which can be divided
into two categories: feature extraction approaches [15], such as
principal component analysis (PCA) [16], independent compo-
nent analysis [17], spectral feature fitting [18], minimum noise
fraction transformation [19], manifold learning [20], linear dis-
criminant analysis [21], band selection [22], and metric learning
[23]; classification approaches, such as k-means [24], spectral
angle mapper [25], support vector machine [26], random forest
[27], subspace learning [28], and more recent deep learning
algorithms, such as convolutional neural network (CNN) [29],
graph neural network [30], recurrent neural network [31], deep
belief networks [32], stacked autoencoders (SAE) [33], and
generative adversarial networks [34].

The pixelwise approaches regard hyperspectral images as
an ensemble of spectral information that ignores the spatial
structure of adjacent pixels, potentially resulting in isolated and
discrete classifications [35]. Alternatively, other methods are
based on spatial features, such as the Markov random field [36],
extended morphological profiles [37], gray-level co-occurrence
matrix [38], and Gabor filters [39]. Spatial information from
adjacent pixels is extracted by such kind of methods to improve
classification accuracy. However, these patchwise approaches
break the original spectral sequence without any concerns about
the spectral features of hyperspectral images, which are equally
important for classification.

Each pixel and its neighborhoods in a hyperspectral image
are locally spatially correlated and composed of continuous
spectral curves in a sequence. Therefore, the joint integration
of spatial–spectral features within neighboring regions as the
input can lead to learning more discriminating features than
spatialwise or spectralwise classification [40], [41], [42], [43].
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Fig. 1. Brief framework of lithological mapping based on hyperspectral im-
ages.

As an end-to-end deep learning algorithm that can perform
representation learning and classification tasks simultaneously,
CNNs are designed to learn complex nonlinear distribution
features in images by automatically extracting high-level spa-
tial features, which are especially suitable for dealing with
high-dimensional hyperspectral images with strong neighboring
correlations [44], [45]. In this aspect, 3-D CNN [46], fully
convolutional network [47], convolutional capsule network [48],
and multiple deep learning or dual-channel frameworks, such as
ConvLSTM [49], [50], 1D–2D CNN [51], 3D–2D CNN [52],
[53], convolutional autoencoder [54], graph convolutional net-
work [55], CNN-local discriminant embedding [56], CNN-SAE
[57], CNN-transformer learning [58], and joint attention net-
work [59], have been introduced for spectral–spatial hyperspec-
tral classification and achieved state-of-the-art performance.

The combined use of CNNs and hyperspectral data provides
the potential to assist in geological mapping involving mineral
exploration [60], [61], [62], [63]. On this account, this study fo-
cused on using CNNs to exploit hyperspectral data for litholog-
ical mapping. Four CNN models, namely, 1-D CNN, 2-D CNN,
3-D CNN, and 1D–2D CNN, were constructed for spectral,
spatial, and joint spatial–spectral feature extraction, respectively.
The 1D–2D CNN is a dual-branch structure model (see Fig. 1)
that incorporates a 1-D CNN with a 2-D CNN, in which 1-D
convolutions are employed to extract spectral features by ex-
ploring the contextual information between spectral bands, and
2-D convolutions are used to extract local spatial features and
neighboring relationships. The four CNNs were demonstrated
by a case study of lithological mapping in the Cuonadong dome,
the northeastern Himalayan orogenic belt, based on Gaofen-5
(GF-5) hyperspectral images. Notably, mineralogical research
supports the high potential of rare metal mineralization, such as
Be, W, Li, and Sn in this area [64], [65], [66], [67], further
promoting the significance of lithological mapping to aid in
mineral exploration. The main contributions of this study include
the following:

1) evaluating the feasibility of CNNs for lithological map-
ping based on GF-5 hyperspectral remote sensing images;

2) providing a realizable and valuable approach for mineral
exploration by mapping specific lithological units.

II. METHODS

A. CNN Architecture Setting

CNN is a deep learning algorithm with multiple hidden lay-
ers based on the idea of local connections and weight shar-
ing [68], [69]. A typical CNN architecture consists of input,
convolutional, pooling, and fully connected layers [70]. The
first three layers perform feature extraction, and the fourth

Fig. 2. Network architectures of (a) 1-D CNN, (b) 2-D CNN, and (c) 3-D
CNN.

layer maps the extracted features to the output and performs
classification [71]. Especially, the convolutional layer extracts
spatial dependencies in the input image through convolutional
filters with kernels. Features ranging from low to high level are
gradually and adaptively learned per layer. The shared weights
and locally connected layers equipped in the convolutional op-
eration significantly increase the model efficiency by reducing
the number of parameters. The pooling layer is responsible for
the downsampling operation and reduces the spatial size of the
convolved features. This process decreases computational com-
plexity, therefore reducing overfitting through dimensionality
reduction [72]. The last fully connected layer is also called the
output layer, designed to make predictions using the SoftMax
activation function, such as the probabilities of each class in
lithological mapping tasks. Depending on the dimensions of the
convolution kernel, CNNs can be divided into the following three
types.

1) One-Dimensional CNN: Each pixel in a hyperspectral
image is composed of a continuous spectral vector, which
can be regarded as a sequence-based data structure. The 1-D
CNN is specifically designed to handle 1-D data by performing
pixelwise classification using 1-D convolutional kernels/filters
[73]. Benefiting from a few computational complexities and
parameters, 1-D CNN is easier to implement by capturing the
contextual spectral information of each pixel within a sequence.
The 1-D CNN used in this study shares the basic structure of a
common CNN, including three convolution layers with 3 × 1
kernels, three max-pooling layers with 2 × 1 kernels, two batch
normalization layers, a SoftMax function as a fully connected
layer, and a ReLU as the activation function [see Fig. 2(a)].
Here, the normalization operation normalizes the input data in
each batch to prevent gradient explosions as well as accelerates
the training process.

2) Two-Dimensional CNN: 1-D CNN usually reshapes the
hyperspectral image into a vector and loses the spatial features.
As an alternative, 2-D convolution is introduced to extract spatial
neighboring information by taking the data patch delimited in a
given window around each pixel. In a 2-D CNN, the kernel slides
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Fig. 3. Network architecture of 1D–2D CNN.

along two dimensions on the image, as shown in Fig. 2(b), which
considers the local spatial correlations among the neighboring
pixels [74]. The 2-D CNN used in this study comprised three
convolutional layers, followed by two batch normalizations,
three max-pooling, and two fully connected layers (dense lay-
ers). Each convolutional layer with a size of 3 × 3 was utilized
to extract spatial information. Then, max-pooling layers with
2 × 2 kernels helped to reduce the data dimensions and the
number of parameters. The ReLU activation function was also
selected to improve the nonlinear mapping ability of the network
[see Fig. 2(b)].

3) Three-Dimensional CNN: The 3-D CNN is a variant of
CNNs that can extract features directly in both spectral and
spatial dimensions through 3-D convolution operations [46],
[75]. Fig. 2(c) illustrates the architecture of the 3-D CNN used
in this study. In a 3-D convolution operation, the 3-D kernel
slides in three directions, and the input cube is convolved with
three 3-D kernels (3 × 3 × 3), inserting by three 3-D pooling
operations with a kernel size of 2 × 2 × 2 and two fully
connected layers. The 3-D CNN preserves the original 3-D data
structure of hyperspectral images, thus contributing to a higher
classification performance owing to the simultaneous learning
of spectral–spatial features.

B. 1D–2D CNN Architecture Setting

The 1D–2D CNN architecture involves using 2-D convolu-
tional layers for spatial feature representation combined with 1-
D convolutional layers to support spectral sequence prediction,
avoiding the loss of either spectral or spatial information [51],
[76]. The 1D–2D CNN is a dual-branch structure comprising
three parts: spectral information extraction by a 1-D CNN,
spatial information extraction by a 2-D CNN, and integration
of spatial–spectral information by a fusion operation. Fig. 3
describes how a hybrid 1D–2D CNN work for lithological
mapping. The networks of 1-D and 2-D branches remain the
same as those described above. The 1D–2D CNN starts with an
input layer that is regarded as the combination of 1-D vectors
corresponding to each pixel and spatial neighborhoods centered
around the pixel. Then, spectral and spatial features were ex-
tracted using 1-D and 2-D convolutional kernels, respectively.
Subsequently, the extracted spectral and spatial features were
flattened into a 1-D vector and connected end-to-end. The joint
features were finally fed into the fully connected layer where the
SoftMax function serves as the classifier.

Hyperspectral images are presented in the form of 3-D data
cubes. In general, the input of a 1-D CNN is a 1-D vector
corresponding to each pixel in a hyperspectral image. The input

TABLE I
NETWORK ARCHITECTURES OF 1-D CNN

TABLE II
NETWORK ARCHITECTURES OF 2-D CNN

TABLE III
NETWORK ARCHITECTURES OF 3-D CNN

of a 2-D CNN is a 2-D spatial patch centered on a certain pixel.
And a 3-D CNN takes 3-D cubes within the neighborhood of
each pixel as inputs to the network. The detailed architectures of
these three networks are presented in Tables I–III, respectively.
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Fig. 4. Simplified geological map of the Cuonadong dome, northeast Tibet,
China [79].

C. Metrics

Three quantitative metrics, such as classification accuracy,
overall accuracy, and kappa coefficient, were employed to mea-
sure the performance of the four networks. The classification
accuracy is defined as the ratio of each category being correctly
classified. The overall accuracy is the percentage of total sample
correctly classified. The kappa coefficient is a robust index used
for consistency testing, that is, whether the predicted results
are consistent with the actual classification results [77]. These
metrics are essentially calculated based on a confusion matrix. A
confusion matrix is a visual representation of the performance of
a model, which summarizes the percentages of categories being
correctly classified and misclassified into others.

III. STUDY AREA AND DATASET

A. Geological Background

The study area, Cuonadong dome, is located in the eastern
part of the Himalayan orogenic belt and belongs to the famous
Zhaxikang ore concentration region [78]. Fig. 4 describes the
simplified geological map of the Cuonadong dome [79]. This
area is a gneiss dome cut by E–W and N–W faults, which is
basically covered with sandstone, slate, granitic gneiss, marble,
biotite quartz schist, and leucogranite [80], [81]. Abundant rare
metal mineralization has been discovered in this area, such as
Be, Nb, Ta, Sn, Pb, W, U, and Li. For example, Li et al. [64]
reported the W–Sn and Be–Rb rare metal mineralization hosted
in skarn marble, pointing out that large-scale Be–W–Sn deposits
are closely related to Himalayan leucogranites in the Cuonadong
dome. Xia et al. [82] recommended that the exploration of rare
metal deposits should be carried out around granite pegmatite
belts in which the possible targets are skarn and leucogranites.
Cao et al. [67] systematically analyzed stream sediment geo-
chemical data in the Himalayan orogenic belt, indicating positive
rare metal anomalies associated with leucogranites compared
with the upper continental crust. However, an average altitude
of 5000 m and poor environment limits the conduct of field
geological survey. Consequently, delineating the distribution of
lithological classes using remote sensing technology is of great
significance to assist in discovering rare metal deposits in the
study area.

The main mineral compositions of leucogranite include quartz
(35%–42%), orthoclase (15%–20%), plagioclase (30%–40%),
muscovite (7%–10%), and biotite (1%–2%), with particle di-
ameters ranging from 1 mm to 1 cm [83]. These minerals are in
response to various spectral absorption that can be discriminated
via the diagnostic signatures in the VNIR and SWIR regions
(0.4–2.5 µm). For example, research has confirmed that gran-
odiorite shows an absorption peak from 0.45–0.52 µm due to
ferromagnetic minerals. In contrast, absorption peak positions
of carbonate minerals (such as calcite and dolomite) occur
from 2.30–2.39 µm [5], [6], [84]. Spatially contiguous spectra
captured by hyperspectral images are more sensitive to subtle
variations in spectral absorption features, providing the potential
to quantitatively identify mineral categories and delineate the
spatial distribution of lithological units [62].

B. Hyperspectral Images

The GF-5 is the latest comprehensive hyperspectral obser-
vation satellite launched by China. The 30-m-spatial-resolution
advanced hyperspectral imager installed on GF-5 provides 330
spectral bands ranging from 0.4 to 2.5 µm. What is more, GF-5
poses more advantages over a multispectral image in the ability
to distinguish similar minerals owing to 150 VNIR bands with a
spectral resolution of 5 nm and 180 SWIR bands with a spectral
resolution of 10 nm [85].

The GF-5 hyperspectral image used in this study is a level 1
product acquired on Oct. 13, 2019, covering an area of approx-
imately 600 km2. Preprocessing of the GF-5 data comprised
band selection, radiometric calibration, atmospheric correction,
noise reduction, and geometric correction. Band selection was
attempted to remove 35 repeated and affected bands due to wa-
ter vapor absorption. Radiometric calibration and atmospheric
correction were then implemented to convert raw digital im-
ages from satellites into actual physical surface reflectance
and eliminate scattering and absorption effects from the atmo-
sphere. These two operations were primarily carried out using
the FLAASH module in the ENVI software [86]. Regarding
the geometric correction, it corrects the geometric distortions
and positional errors with the help of a reference coordinate
system, for example, the Landsat-8 imagery used in this study
[87]. Finally, 815 × 786 image with 30 m resolution and 295
hyperspectral bands was adopted for lithological mapping in
the study area (see Fig. 5).

Seven lithological units, including Jurassic sandstone and
slate (class 1), early Paleozoic marble (class 2), Triassic sand-
stone and slate (class 3), Cambrian granitic gneiss (class 4),
Paleozoic biotite quartz schist (class 5), Quaternary strata (class
6), Himalayan leucogranites (class 7), and an additional class
representing lakes and snow (class 8), were designed to identify
in the study area. Table IV lists the areas and mineral com-
positions of each category [79]. The spectral curves of these
lithological units are shown in Fig. 6. It was observed that the
seven lithological units remain consistent in the overall spectral
shape while varying slightly in absorption and reflection peaks,
implying strong band correlation. More detailly, these seven
lithological units present similar reflection features near 0.60 and
0.792µm in VNIR and 1.249, 1.418, and 1.839µm in SWIR, and
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Fig. 5. GF-5 hyperspectral image of the study area.

TABLE IV
AREAS AND MINERAL COMPOSITIONS OF EACH LITHOLOGICAL UNIT IN THE

STUDY AREA [79]

Fig. 6. Spectral curves of lithological units in the study area. (a) Jurassic
sandstone and slate. (b) Early Paleozoic marble. (c) Triassic sandstone and slate.
(d) Cambrian granitic gneiss. (e) Paleozoic biotite quartz schist. (f) Quaternary.
(g) Himalaya leucogranite. (h) Lakes and snow.

Fig. 7. Separability visualization of the hyperspectral image obtained by t-
SNE.

absorption features near 0.771, 1.334, and 1.713 µm. The reason
can be attributed to mixture spectra caused by intense weathering
and erosion. Triassic sandstone and slate exhibit discernable
spectral characteristics during 1.839–2.0 µm; Paleozoic biotite
quartz schist is distinguishable from others around 1.206 µm.
As the same silicate minerals, Himalaya leucogranite can be
identified by the absorption feature from 2.0 to 2.4 µm. The
premise of hyperspectral image classification is based on the
separability of spectral features into different classes. Fig. 7
visualizes the separability of the GF-5 hyperspectral image
using the t-distributed stochastic neighbor embedding (t-SNE)
algorithm. t-SNE is a popular unsupervised cluster analysis
method for visualization of high-dimensional data in a 2-D space
[88]. Visual inspection indicates that the lithological units in
the study area are separated by clustering, revealing that they
are distinguishable from each other and can be identified using
hyperspectral classification methods.

IV. EXPERIMENTAL SETTINGS

A. Training Sample Preparation

The size of the input hyperspectral data was 815 × 786 × D,
where D is the number of bands. A 1-D CNN typically reshapes
the input into 1-D vectors and performs convolution operations
in the spectral direction. A total of 10% of pixels in each class
were randomly selected to train the 1-D CNN model. The train-
ing samples were labeled based on the reference geological map
of the study area. The 2-D CNN creates patch-based samples by
drawing a spatial neighborhood around each pixel as the center,
thereby capturing the local spatial information contained in this
patch. This process was implemented using the sliding window
method at a stride of one, which also provides sufficient samples
for model training. Theoretically speaking, a larger patch will
bring better performance; however, an increased computational
burden needs to be borne. The size of the neighboring region was
empirically set to 21 × 21; in this context, more than 620 000
patches were produced. The 3-D CNN takes a cube as the input
formed by every pixel along with its 21 × 21 × D neighbors,
covering a 21 × 21 spatial extent and D spectral bands, making
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TABLE V
PARAMETERS SETTING OF FOUR MODELS

Fig. 8. Classification accuracy versus the hyperspectral dimension.

it possible to learn spectral–spatial information simultaneously.
Regarding the 1D–2D CNN, the network and size of training
samples were consistent with those of the 1-D and 2-D CNNs.
The 10% of each class is randomly selected as a training sample
set, of which 80% is for training and the remaining 20% is for
verification.

B. Parameters Setting

Three parameters, including batch size, learning rate, and
number of training epochs, need to be optimized for the CNN
architectures [89]. The number of epochs refers to the number
of times a learning process passes through the entire train-
ing dataset. The batch size defines the total number of train-
ing examples that work through a single batch, where the
training dataset is usually divided into one or more batches for
better computational efficiency. The learning rate is an important
parameter determining whether a network can converge to the
global minimum, which is set to control the apportioned error of
a model [90]. These parameters are commonly determined via
a grid search method optimized by the cross-entropy function.
Table V provides the detailed parameter settings for the four
networks.

C. Dimension Reduction

It was worth noting that hyperspectral bands should be
dimensionally diminished to remove spectral redundancy. Fig. 8
presents how the spectral dimension influences the classification
accuracy under different components, which was evaluated us-
ing the PCA. The model obtained the highest performance when
the number of spectral bands was set to 30. As a result, the GF-5

TABLE VI
ABLATION EXPERIMENT OF NETWORK ARCHITECTURE

hyperspectral image was reduced to 30 dimensions by PCA for
the latter case studies.

D. Ablation Experiment

Understanding the influence of each network structure is
crucial. An ablation experiment here was carried out to optimize
the proposed network architectures. The ablation experiment is
a set of studies to find the best-suited network by removing the
parts of model components [91]. Table VI lists the classification
accuracies of 2-D CNN with various architectures. The ablation
study illustrates that the proposed network architecture reaches
the best performance, on the other side, also provides a way to
measure the contribution of each convolutional/pooling layer to
the overall model.

E. Convergence Curves

The convergence curves of the epochs versus loss func-
tion/accuracy (see Fig. 9) remained steady after 300 epochs,
suggesting that all models were well trained by the training sets.
1D–2D CNN converges faster in the training samples, whereas
slower in the validation samples [see Fig. 9(a) and (c)], probably
owing to a deeper network and more parameters needed to learn.
In the case of the 3-D CNN, low loss values were obtained
benefit from simpler network architecture [see Fig. 9(b) and (d)].
However, the use of hybrid CNNs reduces the computational
complexity compared with 3-D CNN, thus outputting higher
training accuracy.

V. RESULTS

The construction of CNNs’ models and classifications of
lithological units were carried out based on the TensorFlow
platform. The GF-5 hyperspectral image was first segmented
into patches of the same size using the sliding window method.
All patches were then input into the trained models by coor-
dinate order and output the corresponding categories. Fig. 10
shows the lithological classification maps obtained using 1-D,
2-D, 3-D, and 1D–2D CNN. The 1-D CNN [see Fig. 10(a)]
suffers from salt pepper noise, resulting in poor performance
visually. The 2-D CNN [see Fig. 10(b)] overcomes this drawback
by learning the spatial correlation of each spectral dimension.
The 3-D [see Fig. 10(c)] and 1D–2D [see Fig. 10(d)] CNNs
achieved the best visual classification quality with fewer noisy
and misclassified pixels than the 1-D and 2-D CNNs. The
3-D CNN performs roughly equivalently to the 1D–2D CNN
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Fig. 9. Convergence curves of model training and validation. (a) Epoch versus
training accuracy. (b) Epoch versus training loss. (c) Epoch versus validation
accuracy. (d) Epoch versus validation loss.

due to the support of spatial–spectral feature learning, whereas
the joint network suppresses more noise, leading to smoother
boundaries and local details [see Fig. 11] compared with the
direct extraction of spatial and spectral information by the 3-D
CNN.

In addition to visual comparison, the confusion matrices of
the four networks [see Fig. 12] also reveal that the 1D–2D CNN

Fig. 10. Lithological classification maps obtained by (a) 1-D CNN, (b) 2-D
CNN, (c) 3-D CNN, and (d) 1D–2D CNN.
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Fig. 11. Zoom of classification maps obtained by the four networks.

TABLE VII
QUANTITATIVE CLASSIFICATION COMPARISONS OF THE FOUR CASE STUDIES

outperforms others both in classification accuracy, overall accu-
racy, and kappa coefficient, agreeing with the aforementioned
visual comparison. Two factors make 1D–2D CNN significantly
improve the classification accuracy of each lithological unit. On
the one hand, 1D–2D CNN makes full use of spectral and spatial
features in hyperspectral data; on the other hand, the dual-branch
structure integrates the two processes into a unified network,
reducing the computational complexity that enables learning
more discriminant information for lithological mapping.

VI. DISCUSSION

Table VII reports the quantitative comparison of the four
networks, presenting varying performance for each lithological
unit. In general, the joint extraction of spatial and spectral

Fig. 12. Confusion matrices of classification maps obtained by (a) 1-D CNN,
(b) 2-D CNN, (c) 3-D CNN, and (d) 1D–2D CNN. Class 1: Jurassic sandstone
and slate; Class 2: Early Paleozoic marble; Class 3: Triassic sandstone and slate;
Class 4: Cambrian granitic gneiss; Class 5: Paleozoic biotite quartz schist; Class
6: Quaternary; and Class 7: Himalaya Leucogranite.
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information by 3-D and 1D–2D CNNs improves approximately
5%–10% classification accuracy than using either spatial or
spectral features. The execution time reflects the complexity
of CNN model from another side. It is obvious that 1-D CNN
costs less time due to the simplest network structure and least
parameters. The 1D–2D CNN has a more complex network
architecture, and unexpectedly, it performs more efficiently
than 3-D CNN, indicating that 3-D convolution occupies more
computational burden and parameters than 2-D convolution. The
detailed analysis of the classification performance related to each
lithological unit is summarized as follows.

Jurassic sandstone and slate (Class 1): For the Jurassic sand-
stone and slate with the largest areas, each model predicts high
and unified classification accuracy (>96%). The main reason
is that these models were completely trained with sufficient
samples.

Early Paleozoic marble (Class 2): The Early Paleozoic mar-
ble exposes the smallest areas compared with other classes,
leading to poor performance for all models. Using only spec-
tral information causes the 1-D CNN to fail to extract more
discriminative features, whereas adding spatial information
from adjacent pixels significantly enhances the classification
accuracy.

Triassic sandstone and slate (Class 3): Triassic sandstone
and slate occupy independent parts of the study area. The 1-D
CNN correctly identified 66% of this lithological unit, while
most of them are misclassified as Jurassic sandstone and slate
(Class 1). The indistinguishable spectral curves of these two
classes caused by similar mineral compositions are regarded as
the main limitations. The extraction of spatial information by
2-D CNN improved the separability between various classes,
increasing the classification accuracy by 40%. Furthermore, the
integration of spatial–spectral features facilitated a classification
accuracy of over 97%, significantly reducing the misclassifica-
tion of highly similar lithological units. This finding implies
that spatial features play essential roles in identifying this type
of lithological unit.

Cambrian granitic gneiss (Class 4): The Cambrian granitic
gneiss is scattered throughout the core of the study area. It can be
observed from the confusion matrix that the spectral information
is unhelpful in improving the classification accuracy for this unit.
The 2-D CNN wrongly classifies a part of the Cambrian granitic
gneiss into the early Paleozoic marble (Class 2); however, the
3-D and 1D–2D CNNs correct this error, suggesting that the
recognition of Cambrian granitic gneiss mainly depends on
texture features.

Paleozoic biotite quartz schist (Class 5): The Paleozoic biotite
quartz schist spreads over the periphery of the study area in strip
form. A broad misclassification occurred in the four networks. A
reasonable explanation for this lies in the extensive contact with
other lithological units, resulting in similar lithologies caused
by intense metamorphism. Mixed spectral curves make it more
difficult to distinguish between these lithological units. Similar
to the Cambrian granitic gneiss (Class 4), spectral information
brings no contribution for improving the classification perfor-
mance. On the contrary, the fusion of spectral features instead
reduces classification accuracy, indicating from the side that 3-D
CNN is more suitable for those lithological classes with regular

shapes. Fortunately, the joint network of 1-D and 2-D CNNs
yields a satisfactory overall accuracy higher than 93%, which
implies that 1D–2D CNN can distinguish subtle differences in
highly similar lithological units through deep-level networks,
rather than focusing on simple features, such as spectra or
textures.

Quaternary (Class 6): The Quaternary strata are mainly dis-
tributed in the center of the study area, which are in contact
with all other lithological units. Extracting either spectral or
spatial information is meaningless for improving classification
accuracy. However, extracting both spatial and spectral informa-
tion can enhance classification performance to a certain extent.
The 1D–2D CNN yields 3-D CNN by wrongly dividing part of
the Quaternary into Jurassic sandstone and slate (Class 1). This
is more likely due to the correlated spectral curves caused by
weathering and erosion.

Himalayan leucogranite (Class 7): The Himalayan
leucogranite is considered the primary target for exploring
rare metal deposits in this area. Satisfactory identifications were
realized by all four networks. However, some leucogranites
are still misclassified as other classes. These lithological
units belong to silicates that are beyond the diagnosis of
GF-5 hyperspectral image. The 2-D CNN achieved 90.79%
classification accuracy, and 3-D CNN earned a 2% improvement
with the support of spatial–spectral information. The mixed
spectral curves and indistinguishable spatial texture caused by
similar geochemical and geophysical characteristics of adjacent
lithological units are the main reasons for this misclassification.
Nevertheless, a classification accuracy of up to 96.4% was
sufficient to demonstrate the potential application of 1D–2D
CNN in lithological mapping.

Hyperspectral remote sensing image combines high-
resolution spectral bands with spatial information that represent
the distribution and texture features, enabling to discriminate
closely resembling minerals for fine lithological mapping. CNNs
can automatically extract deep-level spatial–spectral features
through layer-by-layer convolution operations, providing a way
for handling high dimensionality and mixed pixels of hyperspec-
tral data. Case studies in this article illustrated that the proposed
dual-branch 1D–2D network achieved a marked improvement
in both visual and quantitative comparisons. The 1D–2D CNN
captures more training data to mine deeper prior knowledge,
thereby greatly enhancing the discrimination of spectrally closed
minerals. Regarding the misclassification of lithological units,
this might be addressed by conducting mineral spectral analysis
in fieldwork and laboratories, in conjunction with fusing more
multisource data, such as thermal infrared images, geochemical,
and geophysical information.

However, although CNNs have evolved extensively in ge-
ological applications, there are still several challenges raised.
The 1-D CNN fails to extract spatial and texture features, re-
sulting in noisy result when applied to lithological mapping;
2-D CNN considers local spatial information around each pixel;
however, 2-D CNN is not suitable for lithological mapping with
irregular shapes due to fixed convolution kernels; 3-D CNN
enables to learn spectral–spatial features simultaneously, signif-
icantly improving the classification accuracy, which comes with
computational costs as a result of the increased number of
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parameters. In addition, multiscale and multilevel feature fusion
strategies [42] can be employed to deeply integrate spectral–
spatial information to improve classification performance and
time–cost, which deserves further study. In a word, this study
provides a view of lithological mapping to support mineral
exploration using hyperspectral images and deep learning meth-
ods. The proposed workflow is worthy of promotion for geolog-
ical mapping work under harsh environments and is applicable
to a variety of lithologies or minerals mapping.

VII. CONCLUSION

Hyperspectral images provide both spectral and spatial in-
formation that occupy an important position in remote sensing
geology, such as geological mapping and mineral exploration.
Recent advances in deep learning techniques have facilitated the
application of hyperspectral images from qualitative discrimi-
nation to quantitative identification. On this account, this study
focuses on the evaluation of CNNs to extract spectral and spatial
features from hyperspectral data for lithological mapping and
further provides guidance on mineral prospectivity mapping for
rare metal deposits. The main conclusions of this study are as
follows.

1) Four deep learning networks, 1-D CNN, 2-D CNN, 3-D
CNN, and 1D–2D CNN, were compared for litholog-
ical mapping based on hyperspectral images. The 1-D
and 2-D CNNs consider spectral or spatial information
of hyperspectral data, respectively, whereas the 3-D and
1D–2D CNNs can learn spatial and spectral information
simultaneously.

2) The four CNNs were illustrated by mapping seven litho-
logical units in the Cuonadong dome using GF-5 hyper-
spectral images, which have been confirmed to be closely
related to rare metal mineralization. Classification maps
with a maximum overall accuracy of up to 97.4% were
achieved, indicating the potential value of CNN models
for lithological mapping.

3) The 1D–2D CNN yields better results in both visual
and quantitative comparisons. Satisfactory performance
benefits from the joint extraction of spatial and spectral
features, providing a realizable and valuable approach
for mineral exploration by mapping specific lithological
units.

COMPUTER CODE AVAILABILITY

The detailed codes used in this study are provided in GitHub
(https://github.com/ziyewangcug/CNNs for lithological map-
ping.git).
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